Capturing transient core-to-core resonances in Kr in intense extreme-ultraviolet laser fields by electron-ion coincidence spectroscopy

Mizuho Fushitani, Makoto Yamada, Hikaru Fujise, Shigeki Owada, Tadashi Togashi, Yasumasa Hikosaka, Akitaka Matsuda, Akiyoshi Hishikawa

1Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
2RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
3Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
4Institute of Liberal Arts and Sciences, University of Toyama, Toyama 930-0194, Japan
5Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan

(Received 12 October 2022; accepted 9 February 2023; published 23 February 2023)

Resonances between core-hole states have been long hypothesized to understand nonlinear responses of atoms and molecules exposed to intense x-ray free-electron laser (XFEL) pulses, but evaded clear identification in previous studies due to their transient nature. Here we report clear evidence of core-to-core resonances by state-of-the-art electron-ion coincidence spectroscopy on Kr atoms. The observed 3p-3d resonance manifested the significance in multiple ionization to highly charged states against the ultrafast core-hole decay. The present study, elucidating the role of the core-to-core resonance in electronic responses of matter to high-frequency laser fields, will advance our understanding of nonlinear spectroscopy and ultrafast imaging by ultrashort intense EUV and x-ray pulses.

DOI: 10.1103/PhysRevA.107.L021101

Resonances are of great importance in light-matter interaction in strong laser fields, which enhance particular nonlinear processes by orders of magnitude. In extreme ultraviolet (EUV) and x-ray laser fields, the nonlinear responses of matter can be characterized by the participation of inner-shell or core electrons (see, for example, Refs. [1–5]), which makes a marked contrast to those in the visible and infrared regions. It was shown that the resonant excitation of core electrons into densely spaced Rydberg and valence states can enhance nonlinear photoionization to unexpectedly high charge states, as demonstrated with Ne [6,7], Kr [8], Xe [9,10], and CH3I [11].

It was shown that the resonant excitation of core electrons into densely spaced Rydberg and valence states can enhance nonlinear photoionization to unexpectedly high charge states, as demonstrated with Ne [6,7], Kr [8], Xe [9,10], and CH3I [11]. The photoionization cross section of Xe−(4d−1) to Xe++(4d−2) was found to be up to three times larger than the typical cross section of 4d inner-shell ionization [17,18], indicating an additional contribution to the well-known 4d giant resonance. To explain this unexpectedly large cross section, core-to-core resonant transitions from 4d−1 to 4p−1 states in Xe++ were proposed because the 4p−1 states couple strongly with 4d−2 states. However, the broad spectral feature of the 4p−1 state spreading over 30 eV near the 4d−2 ionization threshold [19,20] prevented the unambiguous identification of resonances. Therefore, core-to-core resonant transitions have yet to be verified to fully understand the complex responses of matter in intense EUV and x-ray laser fields. Obviously, such resonances, hidden in neutral species in their ground states, require a transient core vacancy. The competition with core-hole decay proceeding in an ultrashort timescale (∼10 fs) makes the observation of the transient resonances challenging.

Here we present clear identification of hidden core-to-core transitions with Kr in intense EUV-FEL fields by using electron-ion coincidence spectroscopy [16,21]. In contrast to the strongly perturbed Xe+(4p−1) case, the 3p and 3d core-hole states of Kr are well defined in energy [22,23]. The optical transitions between the spin-orbit sublevels (3p1/2,3/2 and 3d3/2,5/2) should appear with three distinct spectral lines around hv = 120 eV, which allows us to identify the 3p − 3d resonances as a function of the central photon energy of EUV-FEL. The 3p core-hole state formed in Kr+2 is detected by the 3p Auger electrons [24–26]. The coincidence electron
spectroscopy with the counterpart Kr$^{3+}$ and Kr$^{4+}$ ions, the major products via 3p core-hole decay [26] [see Fig. 1(b)], securely identifies the formation of the 3p core hole and the dependence of the FEL photon energy with minimal contamination from strong single-photon processes.

The experiments were conducted at the soft x-ray beam line (BL1) of SACLA [29]. Intense ultrashort EUV laser pulses ($h\nu = 118$–128 eV, bandwidth ~ 1–2 eV, pulse duration ~ 30 fs, repetition rate 60 Hz) [29,30] were focused by Kirkpatrick-Baez (KB) mirrors to gaseous Kr. Electrons and ions produced by the interaction with intense EUV pulses were detected by using a magnetic-bottle multielectron-ion coincidence spectrometer [16,21]. Briefly, the electrons are guided by a magnetic field toward a multichannel plate (MCP) detector placed at the end of the time-of-flight tube [31,32]. The counterpart ions were then collected by pulsed voltages applied approximately 1 μs after the laser irradiation to repeller (+4.0 kV) and extractor (+3.1 kV) electrodes, to be detected by the same MCP detector. In coincidence measurements, the sample pressure was kept at $\sim 4 \times 10^{-8}$ Pa. A Zr filter (0.1 μm) was used to suppress the harmonics of the FEL. The average event rate was 0.32 per laser shot. The typical energy resolution ΔE of the spectrometer can be given as $E/\Delta E = 33$ at the electron energy $E \lesssim 200$ eV. Electrons were decelerated by retarding electrodes to observe Kr 3p Auger peaks [24–26] with a high-energy resolution.

Figure 1(c) presents the ion time-of-flight mass spectrum of Kr in intense EUV-FEL fields (1.2×10^{14} W/cm2). The photon energy was tuned at 121.5 eV near the resonance (120.7 eV) expected from the difference between the 3$p^{3/2}$ and 3$d^{5/2}$ states [22]. Multiply charged Kr$^{z+}$ ions up to $z = 4$ were observed in the spectrum. The lower charged ions ($z = 1$–3) were mainly produced by one-photon ionization to the 3d core-hole states followed by the Auger decay, while the formation of Kr$^{4+}$ needs absorption of at least two photons. The electron spectrum recorded at a field intensity of 5.5×10^{14} W/cm2 is shown in Fig. 2, which exhibits distinct peaks at 108 and 93 eV corresponding to photoionization (P_1) to the 4p^{-1}, 4s^{-1} and satellite states of Kr$^+$ [33,34] [see Fig. 1(b)]. Furthermore, the spectrum reveals an additional shoulder-like component at 92 eV and weak broad features below 100 eV, both of which become suppressed in the spectrum recorded at a lower laser field intensity (1.9×10^{13} W/cm2).

To understand how the peaks in the electron spectra that are nonlinearly proportional to the FEL intensity are correlated with the formation of Kr$^{z+}$ ions ($z = 1$–4), the electron-ion coincidence events are collected and processed further by covariance analysis [35–37] to suppress the contributions from false coincidence events. The electron-ion covariance may be expressed as Cov($X, Y) = \langle (X - \langle X \rangle)(Y - \langle Y \rangle) \rangle = \langle XY \rangle - \langle X \rangle \langle Y \rangle$, where X and Y are electron and ion signals, respectively, and the bracket denotes an average per laser shot. The second term corresponds to the contributions from false events, which is not negligible in the measurements recorded at the present event rate. Figure 3(a) shows the electron spectrum correlated with Kr$^+$, exhibiting the peaks (P_1) associated with valence ionization of Kr. These peaks also

FIG. 1. (a) Schematic of transient core-to-core resonance at the 3$p^{-1} - 3d^{-1}$ transition in the two-photon ionization of Kr, competing with ultrafast 3d core-hole decay. (b) Energy level diagram of Kr$^{z+}$ ($z = 0$–4) [24,26–28] relevant to the present study. Possible multiple ionization pathways are shown by arrows representing photoabsorption and electron emission (black: single-photon process; purple: multiphoton process). (c) Time-of-flight spectrum of Kr in intense EUV-FEL laser fields (121.5 eV, 1.2 $\times 10^{14}$ W/cm2).

FIG. 2. Total electron spectra of Kr at $h\nu = 121.5$ eV, recorded with a retarding voltage of -57 V. The laser field intensities of 1.9 $\times 10^{13}$ W/cm2 (gray) and 5.5 $\times 10^{14}$ W/cm2 (red). Sticks represent energies of photoelectrons (P_1) to the 4p^{-1}, 4s^{-1} and satellite states of Kr$^+$. The spectra are normalized at the 4p photoelectron peak.
appear in Fig. 3(b) for Kr$^{2+}$, showing that Kr$^{2+}$ can be formed via the Kr$^{+}$ states. The features appearing at 65–100 eV are attributed to photoelectrons (P_i) produced by photoionization of the Kr$^{+}$ 4p^{-1} states to the 4$s^{-1}4$p$^{-1}$ and 4p^{-2} states of Kr$^{2+}$, as well as those from 4s^{-1} to 4$s^{-1}4$p$^{-1}$ [thin stick spectra in Fig. 3(b)]. In addition, photoionization from Kr$^{+}$ satellite states, such as Kr$^{+}$ (4$p^{-2}4$s$^{-1}n l$) + $h\nu$ → Kr$^{2+}$ (4$p^{-2}4$s$^{-1}n l$) + e^{-}, appears in this energy region. Because of the contributions from these electronic states, a quasiumisdiction distribution is formed in the photoelectron spectrum. The broad distribution below ~80 eV may also be attributed to one-photon double ionization of Kr, where two 4p photoelectrons share the extra energy of 81.7 eV above the double-ionization threshold (38.8 eV [27]).

The electron spectrum recorded with Kr$^{3+}$ in Fig. 3(c) exhibits a prominent peak at 92.4 eV, with an additional peak at 78.4 eV. The former corresponds to the shoulderlike component observed in Fig. 2. The observed electron energies are in good agreement with those reported for the Auger decay (A_i) from the 3$p_{3/2}$ core-hole state to the 3$d^{-1}4$p$^{-1}$ and 3$d^{-1}4$s$^{-1}$ states [24–26]. In addition, the relative intensities agree well with those expected for the 3$p_{3/2}$ Auger decay [thick stick spectra in Fig. 3(c)], where the branching to the Kr$^{3+}$ and Kr$^{4+}$ final states [25,26] is taken into account. Note that the peak at 92.4 eV is hardly seen in the Kr$^{4+}$ spectrum [Fig. 3(d)] because the dominant intermediate states, Kr$^{2+}$ 3$d^{-1}4$p$^{-1}$, are located below the 4p^{-1} ground state of Kr$^{4+}$ [see Fig. 1(b)].

Figure 4(a) shows the corresponding spectra recorded at a different photon energy of $h\nu = 124.5$ eV, where all of the 3p Auger peaks become suppressed. This photon-energy dependence suggests a resonance contribution to produce the 3p^{-1} core hole, depicted in Fig. 1(a). To securely confirm the core-to-core resonance from the 3d^{-1} to 3p^{-1} states, the Auger peak intensity at 92.4 eV from the 3$p_{3/2}$ core hole is estimated from the total electron spectra as a function of the FEL photon energy (see Supplemental Material [38]). As shown in Fig. 4(a), the 3$p_{1/2}$ Auger signal exhibits a peak around $h\nu = 121$ eV, which agrees well with the energy difference between the 3$p_{3/2}$ and 3$d_{5/2}$ states calculated from their state energies [22].

The observed spectrum is well reproduced by stick spectra for the 3$p_{3/2}^{-1} → 3$d$^{-1}$ transitions, where the line strengths are calculated by the statistical weights of each state. The stick spectra are convoluted with the natural widths of the 3$p_{3/2}^{-1}$ (1.28 eV) and 3$p_{1/2}^{-1}$ (1.65 eV) states [24] and the FEL spectral width (1.1 eV), which explains the observed photon-energy dependence, as shown in Fig. 4(a). Figure 4(a) also shows that the Auger electron from the upper spin-orbit component 3$p_{1/2}^{-1}$ appears at higher photon energies $h\nu = 128$ eV, which is consistent with the core-to-core resonance transition between the 3$p_{1/2}^{-1}$ and 3$d_{5/2}$ core-hole states.

Figure 4(b) plots the integrated intensity of the 3$p_{3/2}^{-1} → 3$d$^{-1}4$p^{-1}$ Auger peak as a function of FEL field intensity
I\at\nu = 120.5\text{ eV}. The field-intensity dependence is well expressed by \(l^2\) with \(k = 1.9\) (2), supporting that the \(3p_{3/2}\) core hole is produced by two-photon processes, filling the vacant \(3d\) orbital by an electron from the deeper-lying \(3p\) orbital.

It is worth noting that the electron spectrum for \(\text{Kr}^{3+}\) in Fig. 3(c) shows features from the \(P_1\) and \(P_3\) photoelectrons, in addition to the Auger electrons from the \(3p^{-1}\) state \((A_1')\) discussed above. This indicates that the photoionization to \(\text{Kr}^{3+}\) also proceeds from the \(\text{Kr}^{+}\ 4l^{-1}\) and \(\text{Kr}^{2+}\ 4l^{-1}4l'_{1}\) states [see Fig. 1(b)]. The quantitative contributions to the electron spectrum can be estimated from the integrated intensities of the corresponding spectra (see Supplemental Material [38]). Briefly, the net signals from the core-to-core transition, \(S(3p_{3/2})\), in Fig. 3(c) are obtained by subtraction of a scaled off-resonance spectrum in Fig. 3(g). The relative contribution \(S(4l^{-1})\) from the \(4l^{-1}\) pathway is obtained as the integrated intensity of the \(P_1\) photoelectron spectrum in Fig. 3(e) normalized at the \(4p^{-1}\) peak of the off-resonance spectrum. The ratio between the core and the \(4l^{-1}\) valence pathways is obtained as \(S(3p_{3/2})/S(4l^{-1}) = 1.4(2)\). These show that the \(3p^{-1} - 3d^{-1}\) core-to-core resonant transition efficiently takes place under the present experimental conditions even though the lifetime of the intermediate \(3d\) core-hole state (7.4 fs [40]) is substantially shorter than the FEL pulse duration (28 fs [30]).

For a more quantitative discussion, numerical simulations solving coupled rate equations for multiphoton ionization of Kr [Fig. 1(b)] were carried out (see Supplemental Material [38]). For simplicity, cross sections of the valence and the \(3d\) photoionization of \(\text{Kr}^{+}\) and \(\text{Kr}^{2+}\) are assumed to be the same as those for Kr, 0.37 Mb and 2.54 Mb, respectively [41,42]. In addition, the lifetime of \(3d\) core-hole states of \(\text{Kr}^{2+}\) was set to that of \(\text{Kr}^{+}\) (7.4 fs [40]), while the \(3p_{3/2}\) core hole, having an ultrashort lifetime (0.6 fs [24]), was assumed to instantaneously decay to the \(3d^{-1}4p^{-1}\), \(3d^{-1}4s^{-1}\), and satellite states. The photoabsorption cross section of the \(3p^{-1} - 3d^{-1}\) core-to-core transition, \(\sigma_{CC}\), was treated as an adjustable parameter in the simulation. It was found that the observed yield ratio \(S(3p_{3/2})/S(4l^{-1})\) is reproduced with \(\sigma_{CC}(3p_{3/2} - 3d_{5/2}^{-1}) = 1.6 \pm 0.2\) Mb. The obtained value may be compared with cross sections of dipole-allowed transitions of Kr [43], for instance, the excitation cross section to the \(3p^{-1}4d\) state, \(\sigma \sim 0.3\) Mb, estimated from a photoabsorption spectrum [44].

Figure 5(a) plots the yields of \(\text{Kr}^+(z = 1 - 4)\) recorded as a function of the FEL field intensity \((\nu h = 120.5\text{ eV})\). As the FEL intensity increases, the yields of the lower charged states \((z = 1 - 3)\) become saturated at \(\sim 5 \times 10^{14}\text{ W/cm}^2\), as they are mainly produced by the one-photon \(3d\) ionization [Fig. 1(b)]. On the other hand, a steep increase is observed for \(\text{Kr}^{2+}\) that requires absorption of more than one photon for the production. These behaviors are well reproduced by the curves simulated with the cross section \(\sigma_{CC}(3p_{3/2} - 3d_{5/2}^{-1})\) determined above. Figures 5(b) and 5(c) show the contributions from individual pathways leading to \(\text{Kr}^{3+}\) and \(\text{Kr}^{4+}\), respectively. At low intensities below \(10^{14}\text{ W/cm}^2\), \(\text{Kr}^{3+}\) is essentially produced by one-photon \(3d\) ionization as discussed above, while the contribution from the pathway via the \(3p^{-1}\) core-hole state becomes significant at higher field intensities. For \(\text{Kr}^{4+}\), the two-photon pathway via the double Auger decay from the \(3d^{-1}\) states is dominant at the low field intensities. The three-photon pathway via \(3p^{-1}\) (see Fig. 1) becomes one of the major pathways at \(5 \times 10^{15}\text{ W/cm}^2\), showing that the effect of core-to-core resonance becomes significant at high field intensities against the ultrafast Auger decay of the intermediate \(3d\) core-hole state.

In summary, we captured transient resonances between core-hole states during multiple ionization of Kr in intense EUV-FEL fields by electron-ion coincidence spectroscopy. The resonance between the core-hole states, which eluded clear identification in previous studies, is observed between \(3p^{-1}\) and \(3d^{-1}\) states of Kr at \(\nu h = 121\text{ eV}\), which manifested the significance in the multiple ionization to highly charged \(\text{Kr}^{z+}\) \((z = 3, 4)\). Nonlinear responses of matter to high-frequency laser fields are inherently complex, as photoabsorption proceeds along various pathways consisting of different sequences with competing Auger and radiative processes. As has been discussed in the previous study [14–16], transient core-to-core resonance is not specific to Kr and is expected to be common in other targets. The present study shows that the core-to-core resonance is a crucial ingredient to understand the complicated nature of the nonlinear responses of matter, ranging from isolated molecules [11,45] to bulk materials [46], in intense EUV and x-ray laser fields, in particular generated by broadband FEL pulses covering a wide photon-energy range for resonance transitions [14].

Recently, the methodology of quantum control has been extended to high-frequency regions [47–49]. In this regard,
this study demonstrating the feasibility of core-to-core excitation against ultrafast core-hole decay presents a significant step toward coherent control of transferring an electron hole between inner-shell levels. The quantum control on core-hole states by EUV and x-ray laser pulses will allow us to actively manipulate local atomic states within a molecule, rather than the valence and Rydberg states that spread over the molecule, thus offering new approaches for element-specific chemical analysis and control of processes involving core-hole states such as intermolecular Coulombic decay [50].

We are grateful to the operation and engineering staff members of SACLA, Shunya Koizumi and Naoto Taguchi (Nagoya University), for their assistance during the beam time. This work is supported by JSPS KAKENHI (Grants No. JP18K03489, No. JP20K05549, No. JP21K03430), Integrated Research Consortium on Chemical Sciences (IRCCS) and World Research Unit (B-1) of Reaction Infography (R-ing) at Nagoya University. This research was carried out at SACLA BL1 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposals No. 2019B8046, No. 2021A8052, No. 2021B8072).

