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Studying spinning magnetized particles in strong gravitational and electromagnetic fields is crucial for
understanding astrophysical processes near black holes, particularly in the scenarios of millisecond pulsars
orbiting supermassive or intermediate-mass black holes. In this work, we analyze the circular motion and
collisions of such particles in the close environment of a magnetized Kerr black hole, considering both spin-
curvature and magnetic dipole interactions. Using the Mathisson-Papapetrou-Dixon (MPD) equations, we
derive the effective potential governing the circular motion of spinning magnetized particles and investigate
the innermost stable circular orbit (ISCO) under the influence of black hole spin, external magnetic fields,
and intrinsic particle spin and magnetic dipole moment. The results reveal how the interaction of the
magnetic dipole moment with the external field and spin-curvature interactions significantly alter stable
orbits, leading to modifications in accretion dynamics. Furthermore, we explore the center-of-mass energy
of such high-energy particle collisions, demonstrating that spin and magnetic interactions can amplify
collision energies beyond the standard Bañados-Silk-West (BSW) process, with implications for the
production of ultrahigh-energy cosmic rays and the formation of jets in active galactic nuclei and low-
luminosity galaxies. Our findings may provide theoretical predictions that can be tested using observations
of compact objects in strong magnetic fields, such as pulsars near supermassive black holes.

DOI: 10.1103/bl45-hbjm

I. INTRODUCTION

Understanding the motion of spinning particles near
black holes (BHs) might provide information on rotating
neutron stars, including millisecond pulsars around the
supermassive BH Sagittarius A� (Sgr A�). Unfortunately,
the GRAVITY Collaboration’s recent observations to hunt
for pulsars surrounding Sgr A� have revealed no nearby
pulsars. The scattered nature of radio waves within the thick
plasma region near Sgr A� and the interaction of magnetism
caused by the dipole moment of neutron stars and the

external magnetic field are possible explanations. Magnetic
fields play an essential role in astrophysics. They can be
observed and tested for almost every celestial entity and have
a major impact on charged particles. Therefore, when
studying the motion of test particles, we need to understand
how the BH’s surroundings’magnetic field interacts with the
magnetized items’ dipole moment. The existence of mag-
netic fields around BHs is useful for testing theories of
gravity. Wald [1] revolutionized the study of such fields
outside Kerr BHs in an asymptotically uniform external
magnetic field. Subsequently, several researchers have
explored the electromagnetic fields surrounding various
BH models in external magnetic fields, including uniform,
dipolar, and split monopole magnetic fields [2–12] and
neutron stars [13]. External magnetic fields significantly
influence the dynamics of test-charged particles, a phenome-
non that has been extensively explored in Refs. [14–16].
Furthermore, investigations have been conducted into the
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motion and radiation of charged particles aroundmagnetized
BHs, incorporating radiation reaction forces.
Electromagnetic fields near BHs facilitate examining

particle dynamics with magnetic dipole momentum and
nonzero rotation. Felice and Sorge [17] studied the
Schwarzschild BH submerged in an external uniform
magnetic field and observed that magnetized particles
might travel in stable, nongeodesic, axially circular equa-
torial orbits with a radius less than the innermost stable
circular orbits (ISCO). Later, the research was expanded to
incorporate the Kerr BH scenario [18].
The motion of neutral and electrically charged test

particles around BHs is a key component in astrophysics.
The dynamics of charged particles are exciting because
they are crucial to understanding how magnetic fields affect
the accretion process. A detailed examination of particle
dynamics around BHs and spacetime structure may be
found in [19–23]. Investigations into the dynamics of
magnetized particles as a test of gravity theories and the
structure of spacetime have been carried out in [24–30].
Capture of massless and massive particles by parame-

trized BHs [31–33]. The orbital and epicyclic frequencies
in axially symmetric and stationary spacetime [34–36].
In relativistic astrophysics, particle behavior near BHs

reveals a variety of fascinating phenomena. One of the
relativistic consequences is the presence of an ISCO, which
has been numerically studied for revolving test particles in
Schwarzschild and Kerr BHs [37]. The ISCO is the barrier
between test particles rotating around the BH and those
plunging into it. As a result, it is a crucial characteristic in
the study of the accretion disc, as it signifies the inner
boundary of the accretion disk in the thin disc model
proposed by Shakura and Sunyaev [38,39]. Additionally, it
serves as a boundary over the parametrized space, which
leads to confined solutions in the thick disc model [40].
Such models have been used extensively as a basis for
accretion disc simulations and may be compared with EHT
data [41].
The standard Penrose process, proposed for the first

time by R. Penrose in 1969 [42] and then by Penrose and
Floyd [43], is considered among the most reliable mech-
anisms for the release of energy from revolving BHs. The
central concept of the technique is that a neutral particle
undergoes decomposition into two subcomponents inside
the ergoregion of spinning BHs. One of these components
descends into the center of the BH with negative energy. In
contrast, the other component exits the region with positive
energy, surpassing the original energy of the parent particle.
Theories of gravity have led to the development of several
techniques and variations in energy extraction processes
over the past few decades. For instance, the Blandford-
Znajeck mechanism [44], the Penrose processes involving
magnetic and electric fields have been proposed by consid-
ering the rotating and charged decayed particles [45–52], and
particle acceleration mechanism (BSW) [53] are assumed

to be a miniature representation of several energy mecha-
nisms near compact objects in relativistic astrophysics. Zahid
et al. [54,55] hypothesized that the charged Gauss-Bonnet-
AdS BHs might serve as particle accelerators, having
potentially significant center-of-mass energy provided the
two neutral electrical test particles collide near the horizon.
In our previous paper [56], we first investigated the spin-

ning magnetized particles’ motion around Schwarzschild
BHs immersed in an externally uniform magnetic field. In
this work, as an extension of the previous work, we plan to
study the circular motion of spinning magnetized particles
around magnetized rotating Kerr BHs. The article is organ-
ized as follows:We begin our study by exploring the rotating
magnetized particle dynamics near rotating Kerr BHs in
Sec. II. Section IV studies the collisions of spinning
magnetized particles in the spacetime of magnetized Kerr
BHs. Finally, in Sec. V, we summarize our results with
concluding remarks. We use the signature ð−;þ;þ;þÞ for
the spacetime metric and geometrized unit system
G ¼ c ¼ 1. The Latin indices run from 1 to 3, while the
Greek indices take values from 0 to 3.

II. MPD EQUATIONS FOR TEST SPINNING
MAGNETIZED PARTICLE MOTION

Equations governing the motion of particles possessing
both spin and mass, known as the MPD equations, are
fundamental in this context. Recent modifications to these
equations have been proposed in Refs. [57,58].
For a magnetized Kerr BH, the Mathisson-Papapetrou-

Dixon (MPD) equations describe the motion of a spinning
test particle with massm, spin and magnetic dipole moment
μ, including spin-curvature coupling and magnetic dipole
interactions [59]

Dpσ

dτ
¼ 1

2
ðFαβ;σμαβ − Rσ

ναβS
αβuνÞ; ð1Þ

DSμν

dτ
¼ pμuν − pνuμ; ð2Þ

where pσ is the four-momentum, uν is the four-velocity,
Fαβ is the electromagnetic field tensor, and μαβ is the
magnetic dipole tensor. The first term accounts for the
magnetic dipole interaction, while the second term repre-
sents spin-curvature coupling. The covariant derivative
reads as D=dτ≡ uα∇α and Sαβ is the spin tensor, which
is the second rank antisymmetric tensor: Sαβ ¼ −Sβα,
describing the spin of particles as follows:

SαβSαβ ¼ 2S2 ¼ 2m2s2: ð3Þ

This modified MPD equation describes the motion of
magnetized particles near a rotating BH, considering both
the particle’s spin and its interaction with the BH’s
electromagnetic field. It allows for the study of complex
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phenomena, such as spin-orbit coupling and the influence
of the BH’s magnetic field on the particle’s trajectory. The
magnetic dipole tensor takes into account the interaction
with the magnetic field of the BH

μαβ ≡ ϵαβγδμ
γuδ; μα ¼ 1

2
ϵαβγδuβμγδ: ð4Þ

On the other hand, the magnetic dipole moment interacts
with the external magnetic field. The four-momentum,
accounting for this magnetic interaction, is expressed
as [60]

pαpα ¼ −m2

�
1 −

U
2m

�
2

; ð5Þ

where, U ¼ DαβFαβ characterizes the magnetic interac-
tion, appearing as a scalar and Dαβ represents the polari-
zation tensor. Notably, the effective mass of the test
particles in the presence of the electromagnetic field
becomes meff ¼ m − ð1=2ÞDαβFαβ, evident from the
right-hand side of Eq. (5).
The right-hand side of Eq. (5) is not constant in general

due to magnetic interactions. However, for circular orbits,
the effective potential ensures stationarity.
The tensorsDαβ and Sαβ for particles possessing both the

magnetic dipole moment and spin can be expressed as
follows:

Dαβ ¼ ηαβσνuσμν; Sαβ ¼ ηαβσνuσsν: ð6Þ

The rank-4 tensor ηαβσν is the Levi-Civita tensor, defined as
ηαβσν ¼ ffiffiffiffiffiffi−gp

ϵαβσν, where ϵαβσν is the totally antisymmetric
symbol and g is the metric determinant.
It is evident from Eq. (6) that when the magnetic moment

and spin axes of the particles are orthogonal to the four-
velocity (implying that the magnetic dipole moment and
spin possess only the vertical θ-component: μi ¼ ð0; μθ; 0Þ
and si ¼ ð0; sθ; 0Þ), a certain condition must be met for
both the spin and polarization tensors

Sαβpβ ¼ 0; Dαβpβ ¼ 0: ð7Þ

A. Spin supplementary conditions
and Mathisson-Papapetrou-Dixon equations

When studying the dynamics of spinning particles in
curved spacetime, particularly around BHs, spin supple-
mentary conditions (SSCs) play an essential role. These
conditions are necessary to close the system of equations
arising from the MPD equations and to consistently
define the center-of-mass and spin dynamics of the
particle. Below, we discuss the most widely used SSCs,
including their assumptions, implications, and areas of
application [61–63].

1. Tulczyjew-Dixon condition

The Tulczyjew-Dixon SSC is given by

Sαβpα ¼ 0; ð8Þ

where Sαβ is the spin tensor and pα is the four-momentum
of the particle [64]. This condition ensures that the spin
tensor is orthogonal to the four-momentum. Key features of
the Tulczyjew-Dixon condition include its suitability for
high-energy particles and its ability to define a unique
center-of-mass for the particle. This makes it particularly
advantageous in relativistic systems, such as the motion of
particles in Kerr spacetime, where its consistency with the
MPD formalism ensures accurate and reliable results.

2. Mathisson-Pirani condition

The Mathisson-Pirani SSC is expressed as

Sαβuα ¼ 0; ð9Þ

where uα is the four-velocity of the particle [65,66]. This
condition implies that the spin tensor is orthogonal to the
particle’s four-velocity. The Mathisson-Pirani condition
offers a more flexible description of a particle’s dynamics,
making it particularly useful for analyzing the helical
motion of particles. However, it comes with a notable
challenge: it can introduce ambiguities in defining the
center-of-mass trajectory, a phenomenon often referred to
as the “helical ambiguity.”

3. Corinaldesi-Papapetrou condition

The Corinaldesi-Papapetrou SSC is formulated as

S0i ¼ 0 ðin the rest frame of the particleÞ; ð10Þ

where i denotes spatial indices [67,68], this condition
assumes that the spin vector is purely spatial in the rest
frame of the particle. The characteristics of this approach
include several advantages and limitations. It simplifies
calculations in static or quasistatic spacetimes, making it
particularly effective for slow-moving particles. However,
it has limitations as it is not suitable for highly relativistic
systems, where more advanced methods are required.

4. Poitou-Dixon condition

This condition modifies the Tulczyjew-Dixon SSC by
introducing an arbitrary vector zα

Sαβzα ¼ 0: ð11Þ

The vector zα can be chosen to align with specific
physical properties of the system [69]. The characteristics
of this approach include several advantages and applica-
tions. It offers flexibility in choosing the reference frame
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and can be adapted to specific scenarios, such as magnet-
ized Kerr BHs. While rarely used in practice, it is valuable
in tailored analyses where specific conditions must be taken
into account.

5. Ohashi-Kyrian condition

The mathematical formulation of the Ohashi-Kyrian
condition is as follows:

Sαβuα ¼ λuβ: ð12Þ

Here, λ is a scalar parameter (a specific constant for
the spinning particle). The Ohashi-Kyrian condition
describes how the spin tensor changes about the particle’s
motion, enabling flexible solutions in specific systems
and scenarios. This SSC introduces a hybrid approach,
combining elements of the Tulczyjew-Dixon and
Mathisson-Pirani conditions. It ensures that the spin is
orthogonal to a dynamically evolving four-vector. The
features of this approach include several advantages and
challenges. It successfully balances the benefits of the two
foundational SSCs, avoiding helical ambiguities while
maintaining consistency with relativistic dynamics.
However, it comes with the challenge of a more complex
mathematical formalism, which can make implementation
more difficult.
The appropriate SSC depends on the physical context

and the specific characteristics of the studied system. The
Tulczyjew-Dixon SSC is preferred for high-energy systems
due to its robustness in relativistic regimes. In contrast, the
Corinaldesi-Papapetrou SSC may simplify the analysis for
low-energy or slow-moving systems. When dealing with
helical motion systems, the Mathisson-Pirani SSC is useful
for understanding nonlinear trajectories. For more tailored
studies, the Poitou-Dixon or Ohashi-Kyrian SSCs can be
adjusted to suit specific scenarios.
In conclusion, each SSC offers a distinct perspective on

the dynamics of spinning particles, shaping how spin-
curvature and spin-magnetic interactions are interpreted.
The Tulczyjew-Dixon condition stands out in magnetized
Kerr BHs, as it aligns well with relativistic dynamics and
uniquely defines the center-of-mass. However, exploring
alternative SSCs provides valuable flexibility, enriching the
depth of analyses and ensuring a more comprehensive
understanding of these complex systems.
Similar to Mathisson’s approach, Tulczyjew’s method

[70,71] provides a framework for handling such scenarios.
Additionally, scholars like Moller and others have refined
studies concerning the definition of the center-of-mass
[72–75].

6. Restricting magnetic dipole moment direction

To simplify the analysis, we assume that the magnetic
dipole moment μαβ is aligned along the θ̂ direction and

remains static in the equatorial plane (θ ¼ π=2). The
evolution equation for the dipole moment is,

Dμαβ
dτ

¼ ϵαβγδω
γμδ; ð13Þ

where ωγ is the four angular acceleration. In the equatorial
plane, the magnetic field is approximately aligned with the
θ̂-direction, and the torque term μαβFαβ vanishes due to
symmetry, ensuring that μαβ remains constant. This
assumption is consistent with the setup in [59].
The spatial spin vector si is assumed to have only a

θ-component, i.e., si ¼ ð0; sθ; 0Þ, implying that the spin is
orthogonal to the equatorial plane. This condition is
enforced by the Tulczyjew-Dixon SSC, which ensures that
the spin tensor Sαβ is orthogonal to the four-momentum pβ.
In the equatorial plane (θ ¼ π=2), the symmetry of the Kerr
spacetime and the alignment of the external magnetic field
along the θ̂-direction restrict the spin to the θ-component,
as verified in Ref. [18]. On the other hand, when the
direction of the magnetic dipole moment of the particle is
misaligned with the magnetic field and spin vectors, the
particle radiates dipole radiation, loses its kinetic energy,
and its orbit is no longer circular. Therefore, in this study,
we consider noninclined magnetic dipole moment and spin
cases to investigate the circular motion of spinning and
magnetized particles.

B. Conserved quantities

Additionally, incorporating the Tulczyjew SSC given by
Eq. (7), we obtain conserved quantities associated with the
spacetime symmetries. The spacetime metric possesses two
Killing vector fields. One generates invariant time trans-
lation denoted by ξα, while the other produces invariant
rotation denoted by ψα. Consequently, we derive two
conserved quantities, as depicted in the equation below

pακα −
1

2
Sαβ∇βκα ¼ pακα −

1

2
Sαβ∂βκα ¼ const; ð14Þ

where κα is a vector related to the two Killing vector fields;
i.e., ξα or ψα.
The conservation of the spin magnitude S and orbital

angular momentum L is verified using the Tulczyjew-
Dixon SSC (Sαβpβ ¼ 0). The spin magnitude is defined as
S2 ¼ 1

2
SαβSαβ. Taking the covariant derivative, we find

DS2

dτ
¼ Sαβ

DSαβ
dτ

¼ Sαβðpαuβ − pβuαÞ ¼ 0; ð15Þ

since Sαβpα ¼ 0. Thus, S is conserved. For the orbital
angular momentum L ¼ pϕ − S, conservation follows
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from the conserved total angular momentum J ¼ pϕ, as the
spin contribution S is constant under the SSC [73].

III. CIRCULAR MOTION OF SPINNING
MAGNETIZED PARTICLES AROUND

MAGNETIZED KERR BHS

The spacetime geometry around the Kerr BH can be
described using the standard Boyer–Lindquist coordinates
with the help of the line element as

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2 þ 2gtϕdtdϕ;

where

gtt ¼ −
�
1 −

2Mr
Σ

�
;

gtϕ ¼ −
4Mra sin2 θ

Σ
;

grr ¼
Σ
Δ
;

gθθ ¼ Σ;

gϕϕ ¼
�
ρ2 þ 2Mr

Σ
a2 sin2 θ

�
sin2 θ;

and

Σ ¼ r2 þ a2 cos2 θ;

Δ ¼ ρ2 − 2Mr;

ρ2 ¼ r2 þ a2;

where, M is the mass of the rotating BH, and a is the spin
parameter, defined as a ¼ J=M, where J is the angular
momentum.

A. Magnetization of Kerr BH

Here, we consider the external magnetic field as a weak
test magnetic field around the rotating BH, which can
satisfy the condition B ≪ 1019ðM⊙=MÞ G that cannot
contribute to the spacetime curvature of the BH [76].
The magnetic field structure surrounding a BH’s horizon

can be incredibly complex, particularly near the axis of
rotation, where jets may form. Despite the original layout of
the magnetic field, a parabolic magnetic field pattern is
observed in this region. However, for fundamental estima-
tions, it is often useful to begin with an assumption of an
asymptotically uniformmagnetic field, as proposed byWald
and widely utilized in significant cosmic investigations.
This work assumes a uniform magnetic field with

intensity B, and the field lines aligned along the z-axis
to maintain symmetry in the spacetime configuration. This
assumption allows us to express the nonzero elements of
the electromagnetic potential four-vector Aα, as

Aα ¼ B
2
ðξαðϕÞ þ 2aξαðtÞÞ −

Q
2M

ξαðtÞ; ð16Þ

where Q represents the induced electric charge within the
spacetime of the BH. For BHs lacking any charge, the
induced electric charge is absent unless influenced by
the spin of the BH and the surrounding magnetic field.
This influence generates a maximum electric charge known
as the “Wald charge,” denoted as QW ¼ 2aB. This charge
creates a potential drop between the central region of the
BH and extends to infinity.
The authors of Ref. [18] have estimated that the Wald

charge typically remains significantly lower than the critical
charge, potentially contributing to the spacetime structure.
Hence, in our further analyses, we focus only on chargeless
rotating BHs by settingQ ¼ 0. Thus, we have the following
nonzero electromagnetic field four-potentials:

At ¼
B
2
ðgtϕ þ 2agttÞ;

Aϕ ¼ B
2
ðgϕϕ þ 2agtϕÞ: ð17Þ

The orthonormal components of the magnetic fields can
be expressed using the electromagnetic field tensor in the
following form:

Bî ¼ 1

2
ϵijk

ffiffiffiffiffiffiffiffiffiffiffiffi
gjjgkk

p
Fjk

¼ 1

2
ϵijk

ffiffiffiffiffiffiffiffiffiffiffiffi
gjjgkk

q
Fjk: ð18Þ

where the symbol ϵijk is the three-dimensional Levi-Civita
symbol, with ϵ123 ¼ 1 and antisymmetric under index
permutation. The hatted indices (e.g., î) denote components
in the orthonormal tetrad frame, which is measured by a
zero angular momentum observer (ZAMO).
Consequently, we have the vertical components of the

magnetic field measured by ZAMO with the velocities
uμZAMO ¼ fut; 0; 0; uφg, (where ðutÞ2 ¼ gϕϕ=ðg2tϕ − gttgϕϕÞ,
uϕ ¼ −gtϕut=gϕϕ) take the form [77]

Bθ̂ ¼ −
B0rsin2θ

ffiffiffiffi
Δ

p

Σ2A

��
Δ −

�
1 −

M
r

�
Σ − a2sin2θ

�

× a2ð1þ cos2θÞ − Σ2

�
: ð19Þ

In this subsection, we aim to derive the effective
potential for the circular motion of spinning test particles
having magnetic dipole moments orbiting magnetized
rotating Kerr BHs. Additionally, we consider a scenario
in which a test particle possesses both a proper magnetic
dipole moment and a spin parameter, with these vectors
assumed to be parallel to each other. Moreover, the dipole
moment interacts with the external magnetic field in an
extra way.
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B. Magnetic interaction term

The product’s value DαβFαβ can be determined by
considering the conditions specified in Eqs. (6) and (7),
yielding

DαβFαβ ¼ 2μα̂Bα̂: ð20Þ
In our analysis, we assume that the direction of the magnetic
dipolemoment is perpendicular to the equatorial plane and is
parallel to the externalmagnetic field.Moreover,we consider
the equatorial motion of the test spinning magnetized
particles, which simplifies our calculations.
Thus, we can express the components of the magnetic

dipole moment as μî ¼ ð0; μθ̂; 0Þ, where μ2 ¼ μαμ
α denotes

the norm of the dipole magnetic moment. This configura-
tion ensures that the magnetic dipole moment is always
parallel to the magnetic field lines and perpendicular to the
equatorial plane. Consequently, the interaction term U for
the ZAMO takes the form U ¼ 2μθ̂Bθ̂.
At the equatorial plane, the interaction term simplifies to

U ¼ 2μB0FðrÞ, where

FðrÞ ¼ a2M − r3

rðr2 þ a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

þ a2

r2

r
: ð21Þ

C. Total angular momentum and energy
of spinning particle

Indeed, the interaction of the magnetized particle’s
magnetic dipole moment solely with the external magnetic
field does not disrupt the conservation of quantities pt and
pϕ for spinning particles. These quantities can be derived
from Eq. (14) as follows:

−E ¼ pt −
1

2
gtα;βSαβ

¼ pt −
1

2
ðgtt;rStr þ gtφ;rSφrÞ; ð22Þ

J ¼ pφ −
1

2
gφα;βSαβ

¼ pφ −
1

2
ðgφt;rStr þ gφφ;rSφrÞ: ð23Þ

Where J is the spinning particle’s total angular momentum,
which can be described as J ¼ Lþ S (S ¼ sm, L ¼ Lm).
In reality, in a plane near the equatorial plane, mag-

netic field lines do not align perpendicular to that plane.
According to our assumption, the magnetic dipole moment
of the particle is perpendicular to the plane in which its
motion occurs. Consequently, the external magnetic field
and the magnetic dipole moment are not parallel to
each other. A nonzero angle exists between the particle’s
magnetic moment and the external magnetic field.

It is well-known that the potential energy of magnetic
interaction reaches its minimum when this angle is zero,
representing an equilibrium state. Consequently, a “non-
linear” force emerges, restoring the magnetized particle to
equilibrium. This force initiates nonlinear oscillations of
the magnetic dipole around the vertical axis. Subsequently,
the particle emits electromagnetic waves, leading to either
its gravitational collapse or its escape from the central
object as it loses energy and angular momentum. Hence,
the motion of magnetized particles at a nonequatorial plane
proves unstable.
Therefore, to simplify our analysis and focus on more

stable scenarios, we confine our attention to the equatorial
plane, where θ ¼ π=2. Using the Eq. (3) and Eq. (7)
conditions, one may get the equations below,

Str ¼ −
pφsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grrðg2tϕ − gttgϕϕÞ
q ; ð24Þ

Sφr ¼ ptsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðg2tϕ − gttgϕϕÞ

q : ð25Þ

Starting from this point, we adopt a unit convention
where radial coordinates and momenta are rescaled by the
BH mass M, i.e., r → r=M, J → J=ðmMÞ.
The Eqs. (24) and (25) can be described as

−E ¼ pt −
s
2r

ðpφgtt;r þ ptgtφ;rÞ; ð26Þ

J ¼ pφ −
s
2r

ð−pφgtφ;r þ ptgφφ;rÞ; ð27Þ

and by solving Eqs. (26) and (27) we get

pt ¼
Js − Eðasþ r3Þ

r3 − s2
; ð28Þ

pφ ¼ Esða2 − r3Þ þ Jðr3 − asÞ
r3 − s2

: ð29Þ

D. Deriving effective potential for circular motion

Now, we use Eqs. (5) and (20) to get the equation for the
effective potential of the spinning magnetized particle,

ðprÞ2 ¼ −grr½gttp2
t þ gφφp2

φ þ 2gtφptpφ

þm2ð1 − βFðrÞÞ2�; ð30Þ

where β ¼ μB0=m is the magnetic interaction (coupling)
parameter that describes the interaction between the dipole
moment and the magnetic field.

ρðurÞ2 ¼ αE2 þ δE þ γ; ð31Þ
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where E is the specific angular momentum, and new notations are

ρ ¼ ðr3 − S2Þ2ð2rgϕϕ − Σðg2tϕ þ gϕϕÞÞ;
α ¼ 2rS2ða2 − r3Þ2 þ Sða2 − r3ÞðSðr3 − a2Þ þ 2gtϕðaSþ r3ÞÞ þ gϕϕðaSþ r3Þ2;
δ ¼ 2JðgtϕðS2ðr3 − 2a2Þ þ r6Þ þ Sða2 − r3ÞðaS − r3Þ − SgϕϕðaSþ r3ÞÞ − 2rSðr3 − a2Þðr3 − aSÞ;
γ ¼ f2J2Sgtϕðr3 − aSÞ þ J2ðr3 − aSÞ2 þ gϕϕðβFðr3 − S2Þ − JS − r3 þ S2ÞðβFðr3 − S2Þ þ SðJ þ SÞ − r3Þ

þ ðβF − 1Þ2g2tϕðr3 − S2Þ2g þ 2J2rðr3 − aSÞ2 þ 2rðβF − 1Þ2gϕϕðr3 − S2Þ2: ð32Þ

We can rewrite Eq. (31) as,

ðurÞ2 ¼ α

ρ
ðE − VþÞðE − V−Þ: ð33Þ

Hence, it is possible to define the effective potential
for the circular motion of the spinning magnetized par-
ticles pr ¼ 0 as a solution of Eq. (33) in the following
form [78,79]:

V� ¼ −δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4αγ

p
2α

: ð34Þ

We can define new variables as s → s=M ¼ S=ðmMÞ.
One can see from Eq. (33) that to have ðurÞ2 ≥ 0, the

specific energy of the test particles must satisfy the
conditions: (i) E < V− or (ii) E > Vþ.
Hereafter, we focus on the case of test particles spin-

ning with positive energy, which coincides with the
effective potential Veff ¼ Vþ. Here, we redefine the effec-
tive potential as,

Veff ¼
−δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4αγ

p
2α

: ð35Þ

Indeed, due to the complexity of the expression for the
potential considering the combined effects of spin and
magnetic interactions, graphical analysis proves to be a
valuable tool for understanding the behavior of test
particles spinning and magnetized in radial motion. By
plotting the effective potential as a function of the radial
coordinate, we can visualize how the interplay between
spin and magnetic interactions, as well as their combined
effects, influences the particle’s motion. We can explore
these plots by exploring different parameter values and
scenarios to gain insights into the particles’ behavior.
Specifically, we can examine how spin and magnetic

interactions alter the shape and depth of potential wells or
barriers, indicating regions where particles are attracted
toward or repelled from the central object. Additionally, we
can investigate how varying the strength of the magnetic
field or the particle’s spin affects the stability of orbits and
the overall dynamics of the system. Graphical analysis
allows us to discern intricate patterns and dependencies in

the behavior of spinning and magnetized particles, provid-
ing valuable insights that may not be immediately apparent
from the mathematical expressions alone.
An interesting point is in which values of the spin and

magnetic interaction parameters the effective potential (35)
takes positive values. Let us make simple analyses: since it
depends on the sign of the complicated notations α, δ, and
γ. Let us make simple algebraic analyses in which cases
Veff is only positive. Here are the combinations of sing of
the notations where Veff > 0: at δ > 0 cases: α > 0 & γ <
0 and α < 0 & γ < 0, also at δ < 0 cases: α > 0 & γ > 0
and α < 0 & γ < 0.
Figure 1 illustrates the radial dependence of the effective

potential for the radial motion of a magnetic spinning
particle, considering various values of the magnetic param-
eter β and the spin of the particle s. The results are
considered for two cases here: (I) the first case is in the
upper panel of Fig. 1 for the normal rotation of the BH
(a ¼ 0.3) around its axis, and (II) the second case is in the
lower panel of Fig. 1 for the rapid rotation of the BH
(a ¼ 0.9). In comparison, the specific angular momentum
of the particle is constant, with a value of L ¼ 4.3.
In the upper-left panel of Fig. 1, the effective potential of

the neutral spinning particle is shown as a function of radial
distance. The plot demonstrates that the maximum effective
potential increases as the particle’s spin increases. The
upper-middle panel of the figure indicates that the magnetic
parameter β significantly affects the effective potential; as β
increases, the effective potential diminishes, as shown. On
the upper right, the radial dependence of the effective
potential for a magnetized particle with normal spin is
shown. Additionally, the three figures in the lower panel
display different values of the magnetic parameter β and the
particle’s spin s for a rapidly rotating BH.

E. Superluminal bound

In this section, we explore the concept of a superluminal
bound. As previously mentioned, the four-velocity uα and
four-momentum pα of a particle are not aligned with the
spin of the particle. For a massive particle, the four-velocity
satisfies the condition

uαuα ¼ −1; ð36Þ
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ensuring that the trajectory of the particle is timelike [73].
This shows that as particles approach a BH, their velocities
increase, becoming faster than the speed of light in a
vacuum, and as a result they may eventually become
spacelike, meaning their motion becomes nonphysical or
superluminal. The superluminal condition plays a crucial
role in describing the motion of spinning particles, as it
allows us to differentiate between timelike and spacelike
trajectories. Essentially, this condition imposes a limit on
the spin of the particles. Helpful discussions on the
superluminal bound can be found in the work of [80,81].
The criterion for a spinning, magnetized particle to

follow a timelike trajectory is given by uαuα < 0.
Alternatively, this condition can be expressed as:

uαuα
ðutÞ2 ¼ gtt þ 2gtφ

dφ
dt

þ grr

�
dr
dt

�
2

þ gφφ

�
dφ
dt

�
2

< 0: ð37Þ

With the superluminal bound in place, the components of
the symmetric spin tensor Sαβ can be determined using the
approach outlined in Ref. [82]. This approach involves
applying the MPD equations (1) alongside the Tulczyjew-
SSC. In particular, the second MPD equation is utilized to
computeDStr=dλ,DStφ=dλ, andDSrφ=dλ, which results in
a system of equations for the nonzero components of Sαβ.
This system can then derive the radial and azimuthal
components of the four-velocity vector,ur and uφ.

DStr

dλ
¼ ptur − utpr; ð38Þ

DStφ

dλ
¼ ptuφ − utpφ; ð39Þ

DSrφ

dλ
¼ pruφ − urpφ: ð40Þ

By selecting a unique gauge where λ ¼ t, as described in
Ref. [82], the system of equations for the nonzero compo-
nents of Sαβ can be simplified to a single equation involving
only Sφr. This simplification arises from the MPD equa-
tions, which enable the derivation of constraints on the
components of Sαβ.

dr
dt

¼ ur

ut
¼ Cpr

Bpt þDpφ
;

dφ
dt

¼ uφ

ut
¼ Dpt þApφ

Bpt þDpφ
; ð41Þ

with

A ¼ gφφ þ Rtrrt

�
Sφr

pt

�
2

; ð42Þ

B ¼ gtt þ Rφrrφ

�
Sφr

pt

�
2

; ð43Þ

C ¼ grr þ Rφttφ

�
Sφr

pt

�
2

; ð44Þ

FIG. 1. The radial dependence of the effective potential for various values of the magnetic parameter β and the particle’s spin s. We
consider L ¼ 4.3M and two cases on the basis of BH spin, i.e., the normal rotation of the BH (a ¼ 0.3) and rapid rotation of the
BH (a ¼ 0.9).
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D ¼ gtφ þ Rtrφr

�
Sφr

pt

�
2

: ð45Þ

By substituting Eq. (41) into the superluminal bound
condition (37), we can derive a condition that determines
when the superluminal bound holds.

F ¼ gttðBpt þDpφÞ2 þ grrðCprÞ2 þ 2gtφðDpt þApφÞ
× ðBpt þDpφÞ þ gφφðDpt þApφÞ2 < 0; ð46Þ

By applying the conservation of four-momentum, as
shown in Eq. (5), the superluminal bound condition can be
simplified.

F ¼ X
�
pt

m

�
2

þ 2Y
�
pt

m

��
pφ

m

�
þ Z

�
pφ

m

�
2

− G < 0;

ð47Þ

with

X ¼ gttB2 þ 2gtφBDþ gtφD2 − gttg2rrC2;

Y ¼ gttBDþ gtφðAB þD2Þ þ gφφAD − gtφg2rrC2;

Z ¼ gttD2 þ 2gtφADþ gφφA2 − gφφg2rrC2;

G ¼ g2rrC2: ð48Þ

A more detailed discussion on the superluminal bound
and its role can be found in Refs. [81]. According to these
references, for timelike particles to move in a circular orbit,
the condition F < 0 must be satisfied.
In Fig. 2, we show region plots of particle and BH

spins for timelike and spacelike spacetimes in the presence
(right panel) and absence (left panel) of magnetic dipole

interaction. It is observed that the spin range for timelike
spacetime expanded in the extreme rotating Kerr BH case,
at a ¼ 1; however, when a ¼ −1, the negative values of s
decrease and become larger than s > −2.

F. Stable circular orbits

The circular orbits around rotating Kerr BHs are a
fundamental concept in understanding the behavior of
test particles in the vicinity of these enigmatic objects.
To investigate these orbits, we use a set of conditions that
describe the stationary, stable motion of particles in the
curved spacetime surrounding a rotating BH. The following
equations define these conditions:

ṙ ¼ 0; Veff ¼ E;
∂Veff

∂r
¼ 0: ð49Þ

Here, ṙ ¼ 0 ensures no radial velocity, the particle is
constrained to a circular orbit. The second condition,
Veff ¼ E, equates the effective potential of the particle to
its conserved energy E, ensuring that the particle has
precisely the right amount of energy to remain in orbit
without moving radially inward or outward [83].
The third condition, ∂Veff

∂r ¼ 0, identifies the critical points
in the effective potential, and these points must correspond
to minima for the orbit to be stable [84,85]. Together, these
conditions describe the stable circular orbits of test particles
in Kerr spacetime. The stability of such orbits depends not
only on the effective potential but also on the curvature of
spacetime and the rotation of the BH itself. The angular
momentum and energy of the particle in these orbits can be
calculated precisely from the derived expressions, provid-
ing essential insights into the particle’s motion around the
BH [86].

FIG. 2. Region plots of F given in Eq. (47) for timelike and spacelike spacetimes, withM ¼ 1 in the absence (left panel) and presence
(right panel) of magnetic dipole interaction.
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The rotation of the BH, characterized by the spin
parameter a, plays a crucial role in the behavior of circular
orbits. In particular, in prograded orbits (corotating orbits),
particles move in the same direction as the BH’s spin.
Spacetime dragging allows the particle to orbit closer to the
event horizon [87]. In retrograde orbits (counterrotating
orbits), particles orbit opposite the BH’s spin. These orbits
are pushed farther out due to the opposing effects of the
BH’s spin [88].
The ISCO represents the critical boundary beyond which

particles can no longer maintain stable circular motion.
This boundary is crucial in astrophysical processes, includ-
ing the structure of accretion disks, the formation of
relativistic jets, and the generation of gravitational waves
in compact binary systems.
By deriving the expressions for the energy and angular

momentum of particles in circular orbits, we gain a deeper
understanding of the physical principles governing motion
around rotating BHs [89]. These insights are crucial for
interpreting observational data from high-energy astro-
physical phenomena and advancing our knowledge of
the nature of BHs.
Figure 3 presents the radial distributions of energy

and angular momentum for circular orbits of test particles
with spin and magnetization around magnetized Kerr B
Hs, considering various spin and magnetic interaction

parameter values. The left panel presents the values of
the specific energy and specific angular momentum for a
normally (a ¼ 0.3) rotating BH. The right panel displays
the values of the specific energy and specific angular
momentum for a rapidly (a ¼ 0.9) rotating BH. It can
be concluded from the graphs that the specific energy and
specific angular momentum reach their minimum values in
the presence of a rapidly rotating BH.

G. Innermost stable circular orbits

The ISCO plays a vital role in understanding the motion
of particles around rotating BHs, as described by the Kerr
metric. For spinning magnetized particles orbiting a Kerr
BH, identifying the ISCO requires analyzing how the
magnetic parameter β and the BH’s spin influence the
particle’s motion.
To find the ISCO for spinning magnetized particles, the

following three conditions must be satisfied:
(1) The particle must have no radial motion, meaning it

follows a perfectly circular orbit:

dr
dτ

¼ 0 or VeffðrÞ ¼ E: ð50Þ

where VeffðrÞ is the effective potential, and E is the
conserved energy of the particle [83].

FIG. 3. Radial dependence of energy (left panel) and angular momentum (right panel) at circular orbits of the spinning particle for
different values of the spin and magnetic parameter. Here, we assume M ¼ 1; the graphs show that the specific energy and specific
angular momentum reach their minimum values when the BH rotates rapidly.
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(2) The radial acceleration must vanish to ensure sta-
bility

d2r
dτ2

¼ 0 or
dVeff

dr
¼ 0: ð51Þ

(3) At the ISCO, the orbit becomes marginally stable,
which requires

d2Veff

dr2
¼ 0: ð52Þ

Together, these three conditions determine the precise
location of the ISCO [84].
Spin effects introduce additional terms due to spin-

curvature coupling, which is more complex in Kerr
spacetime. Due to the complexity introduced by the
BH’s rotation and the particle’s spin, this system cannot
be solved analytically. These methods allow precise deter-
mination of the ISCO radius for given values of the BH’s
spin a and the particle’s spin s [88].
The ISCO marks the inner edge of the accretion disk

around a BH. Material inside this radius spirals inward and
falls into the BH [86]. Processes near the ISCO contribute

to the generation of relativistic jets. The ISCO influences
the gravitational wave signals emitted during the mergers of
compact objects.
The ISCO radius decreases with increasing BH spin for

prograde orbits and increases for retrograde orbits. For a
maximally rotating Kerr BH, the ISCO for prograde orbits
shrinks to the event horizon, while it moves farther out for
retrograde orbits [89].
Determining the ISCO in Kerr spacetime is essential for

understanding the dynamics of spinning particles around
rotating BHs. By solving the system of nonlinear equations
numerically, one can accurately find the ISCO radius, which
has significant implications for accretion disk structure, jet
formation, and gravitational wave physics [83].
Figure 4 illustrates the specific angular momentum

(LISCO) and the specific energy (EISCO) of the particles
at the ISCO and rISCO for normally (a ¼ 0.3) rotating BH.
The top panel of Fig. 4 shows the dependence of rISCO,
EISCO, and LISCO on the particle’s spin s for different values
of the magnetic interaction parameter β. As seen in the
figure, as β increases, rISCO also increases, while LISCO and
EISCO decrease. The middle panel of Fig. 4 illustrates the
dependence of rISCO, EISCO, and LISCO on the magnetic

FIG. 4. Dependence of ISCO radius, specific angular momentum, and the specific energy at the ISCO radius on the particle’s spin for
the different magnetic parameter values β, and M ¼ 1. β contributes to rISCO, whereas it diminishes both of the LISCO and EISCO.
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interaction parameter β for different values of the particle’s
spin s. It can be seen that as the particle’s spin increases, the
values of rISCO, EISCO, and LISCO decrease. In the bottom
panel, the graphs of rISCO, LISCO, and EISCO as functions of
the BH’s spin are shown for different values of β. As
depicted in the figure, an increase in β leads to a rise in
rISCO, whereas LISCO and EISCO exhibit a decreasing trend.
The first left panel of Fig. 5 depicts the correlation

between the specific energy and the radius at the ISCO,
considering various values of the particle’s spin s. Larger
values of the particle’s spin s require the magnetized
particle to move in the ISCO with reduced energy. The
graph on the right side of Fig. 5 illustrates the dependence
of the particle’s energy at the ISCO on its angular
momentum, presented for various values of the par-
ticle’s spin.
Figure 6 illustrates the relationship between the ISCO

radius, specific energy, and specific angular momentum of
spinning magnetized particles orbiting a magnetized Kerr
BH, parametrized by the magnetic interaction parameter.
The results are obtained for a fixed value of the spin
parameter s ¼ 0.3, which accounts for the spin-curvature
interaction in the particle’s motion.
The left panel of Fig. 6 shows the variation of the ISCO

radius. The ISCO radius with the magnetic interaction
parameter β. It is evident that as β increases, the ISCO
radius also increases. This trend indicates that stronger

magnetic interactions tend to shift the ISCO outward,
suggesting that the combined effects of spin and magneti-
zation introduce repulsive interactions that stabilize circular
orbits at larger radii.
The middle panel presents the dependence of the specific

energy EISCO of the particle at the ISCO on β. The results
indicate a decreasing trend in the energy required for stable
circular motion as β increases. This behavior can be
attributed to the energy contributions from the magnetic
dipole interaction, which alters the balance of forces
governing the stability of circular orbits. The right panel
depicts the variation of the specific angular momentum
LISCO as a function of β. A clear decreasing trend indicates
that magnetized particles require lower angular momentum
to maintain stable orbits at the ISCO as the magnetic
interaction strengthens. This effect is particularly relevant
in understanding how magnetized accretion flows behave
in the presence of strong magnetic fields around rotat-
ing BHs.
Lastly, Fig. 7 illustrates the connection between the

magnetic parameter and the spin of the particle for a
constant circular orbit (rISCO ¼ 6M). The graph shows that
the particle’s rotation slows as the BH’s spin increases. This
figure is also significant as it highlights the combined
effects of spin and magnetic interaction on the stability of
circular orbits around a magnetized Kerr BH. Additionally,
it illustrates how the allowed range of the spin parameter

FIG. 5. ISCO radius, the specific energy and specific angular momentum of the particles at ISCO as a function of β for different values
of s, and M ¼ 1.

FIG. 6. Dependence between ISCO radius, specific energy, and specific angular momentum of the particles at ISCO for different
values of β. Here, we have set s ¼ 0.3 and use M ¼ 1.
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varies with the magnetic interaction parameter to satisfy the
ISCO condition.
As Fig. 7 shows, for higher values of the BH spin, the

region of parameter space where ISCO is possible shifts
significantly. In particular, as the BH’s spin increases, the
corresponding particle’s spin value decreases, which is
necessary to maintain a stable orbit. This indicates that
strong frame-dragging effects dominate higher spins,
resulting in more compact orbits for spinning, magnetized
particles. For lower values of the spin parameter, the ISCO
remains at larger radii, and the dependence on β and s is
less pronounced. When the magnetic interaction parameter
increases, the ISCO solutions shift toward higher spin
values, indicating that the magnetic force provides an
additional stabilizing effect on the orbit. This result has
important astrophysical implications. It suggests that the
combined influence of magnetic fields and spin-curvature
coupling may play a crucial role in the structure of
accretion disks, the formation of relativistic jets, and the
potential observational signatures in strong gravity
regimes. The findings are particularly relevant to neutron
stars, magnetized accretion disks, and active galactic nuclei
hosting spinning BHs.

IV. COLLISIONS OF SPINNING
MAGNETIZED PARTICLES

The study of high-energy particle collisions near BHs
has gained significant attention due to its potential to
explain some of the most energetic phenomena in the
universe. One of the key mechanisms in this field is the
Bañados-Silk-West (BSW) process, first proposed by
Bañados, Silk, and West in 2009 [90]. This process
explores how particles colliding near BH’s event horizon
can achieve high center-of-mass energies, potentially
allowing energy extraction from BH.
The BSW process describes how particles can be

accelerated to arbitrarily high energies when they collide
near the event horizon of a rotating BH. The process is most
effective in extreme Kerr BHs, where the BH spins at its

maximum allowed rate. In this scenario, if two particles fall
into the BH and collide near the event horizon, the energy
in the center-of-mass frame can become extremely large.
This offers a theoretical method for extracting energy from
a BH.
Further studies have extended the BSW process to

nonextremal and more general BH solutions, including
the external fields and different types of matter.
Before the BSW process, Roger Penrose introduced the

concept of energy extraction from rotating BHs in 1969.
The Penrose process involves a particle entering the
ergoregion of a rotating BH, where the BH’s rotation drags
the spacetime. Within the ergoregion, a particle can split
into two: one particle falls into the BH with negative energy
(relative to an observer at infinity), and the other escapes to
infinity with more energy than the original particle.
The efficiency of this process is directly linked to the size

of the ergoregion. A larger ergoregion allows for more
efficient energy extraction. However, the process stops
when the ergoregion vanishes (as in the case of non-
rotating BHs).
The magnetic Penrose process (MPP) extends this idea

by considering the effects of an external magnetic field
around the BH. Introduced byWagh and Dadhich, the MPP
demonstrates that the presence of a magnetic field can
significantly enhance energy extraction efficiency. Near
magnetized supermassive BHs, charged particles such as
protons and ions can be accelerated to ultrahigh energies,
reaching up to 1022 eV. This mechanism could explain the
origin of the highest-energy cosmic rays observed in the
Universe.
Studies have shown that head-on collisions near BHs are

particularly efficient for energy extraction. In such scenar-
ios, two particles approach each other from opposite
directions, maximizing their relative velocity and, conse-
quently, the center-of-mass energy. This configuration
enables a more efficient conversion of gravitational energy
into kinetic energy, making it a favorable setup for studying
high-energy processes.
In the context of spinning magnetized particles, the

dynamics become even more complex and interesting. The
spin of a particle and its interaction with external magnetic
fields introduce additional forces, such as spin-curvature
coupling and Lorentz forces, which influence the motion
and collision dynamics. These effects can either enhance or
suppress the energy of collisions, depending on the align-
ment of the particle’s spin with the BH’s spin and the
magnetic field configuration [91].

A. Critical angular momentum

Understanding the behavior of particles near a BH is
essential for exploring high-energy astrophysical processes,
such as particle collisions and accretion dynamics. Before
delving into the study of center-of-mass energy in colli-
sions involving spinning and magnetized particles, it is

FIG. 7. The relationships between the spin and magnetic
parameters providing the ISCO radius as r ¼ 6M.
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crucial to determine the conditions under which particles
can move from infinity toward the BH and interact near its
event horizon. The particle’s angular momentum largely
influences this motion [83]. For a particle to move closer to
the BH, its radial motion must satisfy the condition

ṙ2 ≥ 0: ð53Þ

This condition ensures that the particle’s motion is physi-
cally allowed and that it can continue moving inward
without being halted by an effective potential barrier. From
the radial equation of motion, it becomes evident that an
increase in the particle’s angular momentum leads to a
decrease in its radial velocity. The centrifugal force
associated with higher angular momentum counteracts
the gravitational pull of the BH. As a result, particles with
sufficiently large angular momentum cannot move closer to
the BH and are instead forced to orbit at a safer distance.
We introduce the concept of critical angular momentum to
identify the precise threshold at which this transition
occurs. This is the maximum angular momentum a particle
can have while still being able to approach the BH. It can be
determined by solving the following system of equations
simultaneously.
The critical angular momentumLcr is obtained by solving

ṙ2 ¼ 0;
dṙ2

dr
¼ 0; ð54Þ

The first condition, ṙ2 ¼ 0, signifies that the particle
reaches a turning point in its radial motion, meaning it
momentarily stops moving inward or outward. The second
condition, dṙ2

dr ¼ 0, ensures that this turning point is an
inflection point, indicating the transition between possible
and forbidden motion.
Solving these equations provides the critical angular

momentum value, which separates particles capable of
falling into the BH from those that remain in stable orbits
farther away.
One can immediately have the following form of radial

velocity with respect to the angular momentum (L)

hðṙ2Þ ¼ aL2 þ bLþ c; ð55Þ

or equivalently, we have

ṙ2 ¼ a
h
ðL − LþÞðL − L−Þ: ð56Þ

with the solutions

Lcr ¼ L� ¼ −b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a
; ð57Þ

where � corresponds to clockwise and anticlockwise
orbits and

h ¼ −
grr

ðr3 − S2Þ2
a ¼ ðgϕϕr6 þ 2gtϕr3S − 2agϕϕr3Sþ gttS2 − 2agtϕS2 þ a2gϕϕS2Þ
b ¼ ð−2gtϕr6 − 2gttr3Sþ 2a2gϕϕr3S − 2gϕϕr6S − 2agttS2 þ 4a2gtϕS2 − 2a3gϕϕS2 − 2gtϕr3S2 þ 2agϕϕr3S2Þ
c ¼ ðr6 þ gttr6 þ 2agttr3S − 2a2gtϕr3Sþ 2gtϕr6Sþ a2gttS2 − 2a3gtϕS2 þ a4gϕϕS2 − 2r3S2 þ 2agtϕr3S2

− 2a2gϕϕr3S2 þ gϕϕr6S2 þ S4 − 2Fr6β þ 4Fr3S2β − 2FS4β þ F2r6β2 − 2F2r3S2β2 þ F2S4β2Þ:

Particles with angular momentum greater than the
critical value experience a strong enough centrifugal force
to prevent them from crossing into the BH’s gravitational
domain. Conversely, particles with angular momentum
equal to or less than the critical value can overcome this
barrier and spiral toward the event horizon, potentially
leading to high-energy collisions or accretion [92].
This concept is fundamental in BH astrophysics for

several reasons. For example, critical angular momentum
determines which particles contribute to the accretion disk
and which remain in distant orbits.
Particles with angular momentum near the critical value

are most likely to collide near the event horizon, where the
center-of-mass energy can be extremely high.

The dynamics governed by critical angular momentum
influence observable phenomena, such as jet formation and
radiation from accretion disks.
Figure 8 illustrates the dependence of the critical angular

momentum of a rotating magnetized particle on the spin of
the particle (s), the magnetic interaction parameter (β), and
the spin of the Kerr BH (a). The figure consists of three
panels, each showing how different physical parameters
influence the motion of spinning magnetized particles near
a Kerr BH immersed in an external magnetic field.
In the left panel, the variation with magnetic interaction

parameter (β) is shown, displaying how the critical angular
momentum of the test particle varies with the magnetic
interaction parameter (β) for different values of the
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particle’s spin (s), keeping the BH spin fixed at a moderate
value (a ¼ 0.3). An increase in β leads to an increase in the
critical angular momentum. Stronger magnetic interactions
require a higher angular momentum for the particle to
remain in orbit. Additionally, the effect is more pronounced
for particles with larger spin values. In the middle panel, we
illustrate the relationship between the critical angular
momentum and the particle’s spin (s) for different values
of β while keeping the BH spin constant at a ¼ 0.3. It is
observed that, for small spin values (s ≈ 0), the effect of the
magnetic interaction is minimal. The interplay between
spin-curvature coupling and magnetic interactions signifi-
cantly modifies the required angular momentum for larger
spin values. Retrograde spinning particles (negative s) tend
to have lower critical angular momentum values compared
to prograde spinning particles (positive s). In the right
panel, we show the variation of critical angular momentum
as a function of the BH spin (a) for different values of β,
with the particle’s spin fixed at s ¼ 0.3. It is also observed
that increasing the spin of a BH significantly reduces the
required angular momentum for a given particle to maintain
stable motion. This effect is particularly noticeable for high
values of the magnetic interaction parameter (β). For
rapidly rotating BHs (a ≈ 0.9), the critical angular momen-
tum decreases sharply due to the dominant frame-dragging
effects. One may conclude from the findings in the figure
that both spin and magnetic interactions play crucial roles
in determining the stability of particles. Also, an increase of
β may enhance the coupling between the particle’s dipole
moment and the external magnetic field, shifting the
stability regions of circular motion. The BH spin acts as
a stabilizing force for prograde orbits, lowering the required
angular momentum for stable circular motion. The com-
bined effects of spin-orbit coupling, magnetic dipole
interactions, and frame-dragging must be considered in
modeling particle motion around magnetized Kerr BHs.

B. Collisions of spinning magnetized particles

Assuming that two spinning magnetized particles
approach the BH from infinity with identical energy-to-
mass ratios ðE1=E2 ¼ 1Þ, the center-of-mass energy ðEcmÞ

of their collision can be derived. This energy depends on
the particles’ spins, magnetic interactions, and the BH’s
gravitational field.
In Schwarzschild spacetime (nonrotating BH), the cal-

culation simplifies, but spin and magnetic interactions still
significantly affect the result [93].
The center-of-mass energy is given by

E2
cm ¼ −gμνðpð1Þ

μ þ pð2Þ
μ Þðpð1Þ

ν þ pð2Þ
ν Þ

¼ m2
1 þm2

2 − 2gμνpð1Þ
μ pð2Þ

ν : ð58Þ

Here, pð1Þ
μ and pð2Þ

μ are the momentum of the first and
second particle, respectively, given in Eqs. (28) and (29).

Ecm ¼ Ecm

2m2
¼ 1 − gttpð1Þ

t pð2Þ
t − grrpð1Þ

r pð2Þ
r

− gφφpð1Þ
φ pð2Þ

φ − gtφðpð1Þ
t pð2Þ

φ þ pð1Þ
φ pð2Þ

t Þ: ð59Þ

Here, pð1Þ
μ and pð2Þ

μ are the momentum of the first and
second particle, respectively, given in Eqs. (28) and (29).
Spin and magnetic field effects modify these velocities,

potentially leading to extremely high collision energies.
The study of collisions between spinning magnetized
particles near BHs has profound astrophysical significance.
For example, the acceleration of particles to energies as
high as 1022 eV near magnetized supermassive BHs could
explain the most energetic cosmic rays detected on
Earth [94].
High-energy collisions and interactions near BHs con-

tribute to forming relativistic jets observed in active galactic
nuclei (AGN) and quasars. Collisions of compact objects
and extreme particle dynamics near BHs are potential
sources of gravitational waves, detectable by observatories
like LIGO and Virgo.
The collision of spinning magnetized particles near BHs

presents a powerful mechanism for studying high-energy
astrophysical processes and energy extraction. The BSW
process, Penrose process, and magnetic Penrose process
[93] provide theoretical frameworks to explore how BHs

FIG. 8. Dependence of the critical angular momentum of a rotating magnetized particle on its spin (s), the magnetic interaction
parameter (β), the BH spin (a), andM ¼ 1. Higher BH rotation lowers the angular momentum barrier for infalling particles, facilitating
collisions and energy release in magnetized Kerr systems.
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can accelerate particles to extreme energies. Understanding
the role of spin, magnetic fields, and critical angular
momentum is essential for predicting and interpreting
observable phenomena such as ultrahigh-energy cosmic
rays, jet formation, and gravitational wave signals.
Figure 9 illustrates the center-of-mass energy (Ecm) for

collisions of spinning magnetized particles in the vicinity of
a Kerr BH. The analysis is conducted for different values of
the particle’s spin (s) and the magnetic interaction param-
eter (β), emphasizing how these factors influence high-
energy collisions. The left panel presents the radial
dependence of the center-of-mass energy for two colliding
particles with different spin values. It is observed that as the
particles approach the BH, the center-of-mass energy
increases significantly. Higher spin values amplify the
energy of the collisions, particularly in the near-horizon
region. An external magnetic field enhances the center-of-
mass energy, suggesting that strong magnetic interactions
can contribute to the production of ultrahigh-energy cos-
mic rays.
This panel highlights the dependence of the center-of-

mass energy on the magnetic interaction parameter (β) (see
middle panel). Increasing β significantly enhances the
energy of the collisions. Magnetic interactions enable
greater energy amplification in the ergoregion, rendering
this mechanism particularly relevant for astrophysical
energy extraction processes. Finally, in the right panel,
we explore how the Kerr BH’s spin affects the energy of
particle collisions. We have shown faster spinning BHs,
which result in higher center-of-mass energy values. The
combination of high spin and strong magnetic interactions

FIG. 9. Radial dependence of the center-of-mass energy of collisions of magnetized spinning particles motion with different s and β
parameters. We take M ¼ 1. Collisions yield ultrahigh energies close to the BH, supporting models of cosmic ray acceleration and
gamma-ray bursts in spinning, magnetized environments.

FIG. 10. The dependence of the center-of-mass energy of
collisions of magnetized spinning particles at the ISCO on the
BH spin parameter a for different s and β parameters. We take
M ¼ 1, and observe that energy maximizes at ISCO for aligned
spins and moderate β. ISCO collisions in magnetized particles
provide peak energy outputs, linking to efficient particle accel-
eration and radiation in active galactic nuclei.
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yields extreme energy outputs, supporting scenarios in
which BH magnetospheres accelerate particles to ultra-
relativistic speeds.
In Fig. 10, we present the center-of-mass energy of

colliding spinning-magnetized particles at ISCO with the
angular momentum L1 ¼ −L2 ¼ 2M. It is observed that
Ecm increases with the increase of the BH spin due to a
decrease in the ISCO radius, while when the spin is
negative, the energy decreases as the ISCO goes far from
the central BH. The collisions of particles with the same
spin direction are more energetic than those of particles
with zero spin and opposite spin. Additionally, the presence
of magnetic interaction causes a decrease in the center-of-
mass energy. As the particles approach each other, their
magnetic interaction energy increases, resulting in a loss of
center-of-mass energy.
Now we analyse the center-of-mass energy at the horizon

in Fig. 11. One can see from the dependence of the energy
on the BH spin that it has a symmetry in cases of a < 0,
positive spinning particle collisions (si > 0), and the case
of a > 0, negative spinning particle (si < 0) collisions.
Also, as large as the BH spin is, the particle’s spin effects on
the energy are significant. That means the BH and particle
spin effects on the center-of-mass energy at the horizon
support each other, enhancing the energy.

V. CONCLUSION

This study investigated the motion and collisions of
spinning magnetized particles near a magnetized Kerr BH.
Based on the MPD equations, our analysis offers new
insights into the interplay between spin-orbit coupling,
magnetic dipole interactions, and frame-dragging effects in
strong gravitational fields. The key results of our study
provide a new theoretical framework for understanding the
behavior of magnetized test particles in astrophysical
environments with strong magnetic fields.
One of the most significant findings is the modification

of the ISCO and critical angular momentum due to the
combined effects of spin and magnetic interactions. We
found that the ISCO shifts outward with increasing

magnetic interaction parameters, which suggests that strong
magnetic interactions can stabilize orbits at larger radii. In
contrast, the frame-dragging effect of the Kerr BH reduces
the ISCO radius for prograde orbits, which means that
spinning particles in strong magnetic fields can maintain
stable circular motion much closer to the event horizon than
previously thought. The critical angular momentum of a
spinning magnetized particle increases with β, meaning that
a higher angular momentum is required to counterbalance
the effects of both the external magnetic field and the
particle’s intrinsic spin. Furthermore, we have discovered a
new physical mechanism that can lead to an ultraefficient
energy extraction process from Kerr BHs. Specifically, our
results demonstrate that collisions of spinning magnetized
particles can produce energy significantly exceeding the
Bañados-Silk-West (BSW) limit. This enhancement occurs
because the resonant interaction between spin-curvature
coupling and the external magnetic field modifies the
particle trajectories, thereby boosting the center-of-mass
energy. The alignment or antialignment of the particle’s
spin with the BH’s spin significantly affects the energy of
the collision. In particular, particles with opposite spin
orientations experience an amplified acceleration effect due
to differential frame-dragging, leading to highly energetic
collisions. This occurs when a spinning magnetized particle
can effectively “extract” rotational energy from the BH and
transfer it to the collision products by interacting with the
external field. We have identified this as a novel energy
extraction mechanism. One may explain that the interaction
between the particle’s spin and the Kerr BH’s frame-
dragging enhances energy transfer. Additionally, the exter-
nal magnetic field alters the stability of orbits, enabling
enhanced acceleration in specific resonance regions. The
combination of spin-magnetic effects leads to highly
energetic collisions, potentially generating particles with
energy orders of magnitude higher than expected. This new
process has direct astrophysical implications, particularly
for ultrahigh-energy cosmic rays. The new mechanism
could offer a natural explanation for the acceleration
of cosmic rays to extreme energies that surpass the
limits imposed by standard astrophysical accelerators.

FIG. 11. The dependence of the center-of-mass energy of collisions of magnetized spinning particles at the event horizon on the BH
spin parameter a for different s and β parameters. We takeM ¼ 1. Here, we consider all kinds of collisions: particles with the same spin
orientation around corotating and counterrotating BHs. Energy increases with BH spin but decreases for opposite particle spins and
magnetic interaction β.
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Our findings may open new avenues for studying the
interaction of magnetized plasmas and relativistic particles
in the strong gravity regime of Kerr BHs. This study
represents a significant step in understanding how spin and
magnetism shape astrophysical processes near BHs. The
new mechanism provides a fundamental mechanism for
energy extraction, which may play a crucial role in the
high-energy astrophysics of BHs, neutron stars, and mag-
netized compact objects. In contrast to our previous work
on spinning magnetized particles around Schwarzschild
BHs [56], this study extends the analysis to rotating Kerr
BHs, revealing new effects due to BH spin and its
interaction with particle spin and magnetic dipole moment.
Our results show that the BH spin itself significantly alters
the ISCO structure, shifting it inward for corotating orbits
(a > 0) and outward for counterrotating orbits (a < 0),
unlike the Schwarzschild case, where ISCO locations
depend solely on spin and magnetic parameters. Further-
more, the combined effects of BH and particle spin (a, s)
lead to highly asymmetric modifications in orbital dynam-
ics, where positive spin particles (s > 0) experience a more
substantial frame-dragging effect, resulting in a reduced
ISCO radius. In contrast, negative spin particles (s < 0)
counteract frame-dragging and shift ISCO outward.
Additionally, the magnetic dipole moment and BH spin

interaction (μ, a) introduce new features in the stability
conditions of orbits—higher a values enhance the effect of
magnetic repulsion, leading to a greater ISCO deviation
compared to the Schwarzschild case. Notably, in the strong-
field regime, the interplay of spin and magnetic interactions
enables more efficient energy extraction via particle colli-
sions, exceeding the energy amplification limits found in
the Schwarzschild spacetime. These findings underscore
the importance of considering BH spin when modeling
astrophysical scenarios involving highly magnetized, spin-
ning particles, such as pulsars and neutron stars orbiting
supermassive BHs.
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