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Machine learning of the XY model on a spherical Fibonacci lattice
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The XY model on a spherical surface, inspired by recently realized atomic gases trapped in a spherical shell,
is analyzed here. Instead of a traditional latitude-longitude lattice, we introduce the much more homogeneous
Fibonacci lattice and use classical Monte Carlo (MC) simulations to generate spin configurations. The results
clearly show that topological defects, in the form of vortices, must exist in the stable configuration on a sphere but
vanish in a plane due to a mathematical theorem. Using these spin configurations as training samples, a graph-
convolutional network-based method is implemented to recognize different phases and successfully predict the
phase-transition temperature. We also apply the density-based spatial clustering of applications with noise, a
powerful machine-learning algorithm, to monitor the path of two vortices with topological charges on the sphere
during MC simulations. Our results provide reliable predictions for quantum simulators using polaritons or future
space-based experiments on ultracold atoms in microgravity.
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I. INTRODUCTION

The XY model is a paradigm in statistical physics with
important implications for condensed matter systems [1–7].
The two-dimensional (2D) XY model has inspired research
on topological defects and unconventional phase transi-
tions [8–10]. During the last half century, there have been
many studies on various aspects of XY model [2,3,5–7,11–
19]. Experimentally, it can be emulated by ultracold atoms
in optical lattices [20] or in polariton systems [21]. Recently,
the fast development of space-based technique has stimulated
experimental efforts to confine ultracold atoms on a spherical
surface in microgravity [22–30], making a systematic analysis
of the XY models on a spherical lattice an intriguing quest.

In contrast with the planar case, however, there is no ar-
bitrarily large and exactly uniform lattice on a sphere, which
prevents a direct analytical study on such models. Neverthe-
less, one may gain insights by the aid of powerful tools in
processing big data, such as machine learning. Recently, this
approach has achieved tremendous and unexpected progresses
in physics [31–45]. Even the simplest three-layer fully con-
nected neutral network (FCN) can well recognize different
phases of the Ising model [33]. For topological phase tran-
sitions, the FCN does not work equally well since it cannot
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effectively capture the local spatial information. An alterna-
tive tool is the convolutional neutral network (CNN), which
has proved its power in many situations [18,46]. However,
CNN is designed for image recognition [47] and is not appli-
cable to lattices with no resemblance to a picturelike structure,
including the lattices on a sphere and irregular lattices. In
the following, a different tool is introduced to handle those
irregular lattices.

Here we focus on the spherical XY model. The traditional
latitude-longitude lattice is far from uniform, so we first intro-
duce the Fibonacci lattice, which is basically the most uniform
lattice on a spherical surface. With the help of Monte Carlo
(MC) simulations, we find various spin configurations of the
spherical XY model. Multiple vortices onset even at ultralow
temperatures, and the net topological charge is always 2 due
to the topology of the 2D sphere S2. We further introduce
the powerful graph-convolutional network (GCN) method to
overcome the disadvantages of the traditional CNN. Using
the samples of the spin configurations from MC simulations,
the GCN can effectively classify different phases and suc-
cessfully predict the Berezinskii-Kosterlitz-Thouless (BKT)
phase-transition temperature. The BKT transition [8,48] is not
a typical phase transition that has different values of the order
parameter across the transition. Moreover, it is impractical to
determine the BKT transition by counting the vortices [49].
Therefore, determining the critical BKT temperature is an
important but daunting task, and our work offers a solution to
this challenge. Moreover, the results also confirm topological
properties on 2D plane and sphere. While both Fibonacci lat-
tice and GCN are promising tools for investigating physics on
complex geometries, they have not been broadly introduced in
condensed-matter systems. The MC annealing of a quantum
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system is equivalent to the spontaneous relaxation dynamics
in some sense. To capture the dynamics of topological defects,
we introduce the density-based spatial clustering of applica-
tions with noise (DBSCAN), which shows the merging of
vortices with different topological charges during MC anneal-
ing. Our methods offer useful tools and insights for spherically
confined ultracold atoms or polaritons in engineered struc-
tures.

The rest of the paper is organized as follows. In Sec. II,
we give an introduction to the spherical Fibonacci lattice and
discuss its properties. Section III presents spin configurations
of the spherical XY model by using MC simulations. We then
use these results as the training samples for the GCN and
predict the BKT transition temperature in Sec. IV. Next, we
discuss the vortex dynamics during MC annealing in Sec. V.
Finally, Sec. VI concludes our work. Some details are sum-
marized in the Appendix.

II. THE SPHERICAL XY MODEL

The 2D classical XY model on a square lattice is described
by

H = −J
∑
〈i, j〉

si · s j = −J
∑
〈i, j〉

cos(θi − θ j ), (1)

where J is the coupling constant, si denotes the spin with
angle θi at site i, and the sum is taken over all pairs of
nearest-neighbor spins. At zero temperature, the system stays
at the ground state in which all spins are aligned in the same
direction. There are also excitations with nontrivial topology,
such as vortices and anti-vortices, which are bounded below
the BKT transition temperature Tc but proliferate above it.
An interesting question is: What happens when all spins are
confined on a topologically nontrivial surface like S2?

A map of the planar XY model onto a spherical one is
nontrivial since the 2D plane is topologically different from a
spherical surface. On a square lattice, the ordinary XY model
described by Eq. (1) is isotropic and the lattice site is evenly
distributed. However, a spherical surface lacks a completely
isotropic lattice of arbitrarily large size, which prevents a
direct analytical study of the XY model on a sphere. The
traditional latitude-longitude lattice is highly inhomogeneous
with the lattice sites near the north or south pole much denser
than anywhere else. If a spherical lattice is totally isotropic, its
sites must be located at the vertices of a regular polyhedron.
However, there are only five different types of regular poly-
hedrons. The regular dodecahedron has the largest number of
vertices at 20, which is still too small for a systematic study of
the XY model toward the thermodynamic limit. For a lattice
with a large number of sites, we have to seek an alternative
allowing the area occupied by each site to be almost identical.
Fortunately, there exists such a spherical lattice, called the
Fibonacci lattice [50], where the i-th site on a sphere of radius
R is defined by

xi =
√

R2 − z2
i cos(2iπφ), yi =

√
R2 − z2

i sin(2iπφ),

zi = R

(
2i − 1

N
− 1

)
, (2)

FIG. 1. (Top) Random lattice (left) and Fibonacci lattice (right)
on a spherical surface. (Bottom) Perspectives of a N = 1000 Fi-
bonacci lattice from different directions.

for i = 1, 2, · · · , N . Here N is the total number of sites, and
φ =

√
5−1
2 is the golden ratio. Figure 1 shows the comparison

between a random and a Fibonacci lattices on a sphere in the
top panels, both of which have N = 1000 sites. For each site,
the points within its neighborhood of radius rc = 0.1298R are
referred to as its neighbors. Apparently, the site distribution of
the latter is much more uniform.

Although the site density of the Fibonacci lattices is quite
uniform, this does not mean it is locally identical a 2D square
lattice. To show the difference, we connect all pairs of neigh-
bors of the Fibonacci lattice in the top panel of Fig. 1 and
present the result in the bottom panels. Obviously, it is not
a uniform lattice as some sites have three or five neighbors.
The traditional CNN is for translationally invariant systems
and is designed for images. Thus it can be applied to regular
lattice structures that has a picturelike format, which is illus-
trated in Appendix A. Since the Fibonacci lattice has neither
translational invariance nor picturelike structure, the CNN is
not applicable.

To demonstrate the uniformity, we consider a unit sphere
sprinkled with the above-mentioned Fibonacci lattice (N =
1000 and rc/R = 0.1298). There are 850 sites with four neigh-
bors, 76 sites with three neighbors, and 74 sites with five
neighbors. Altogether, there are 850 × 4 + 76 × 3 + 74 ×
5 = 3998 neighbors, and the average distance between neigh-
boring sites and its standard deviation are 0.11455R and
0.00816R, respectively. Basically, this is the best approxima-
tion on a sphere of a 2D square lattice, where each site has
exactly four nearest neighbors.

III. SPIN CONFIGURATIONS

When mapping the XY model onto a sphere, we introduce
a cutoff range of the interaction, such that only spins within
rc of each other interact. The Hamiltonian is further approxi-
mated by

H = −J
∑
<i, j>

e−αr2
i j si · s j, (3)

023005-2



MACHINE LEARNING OF THE XY MODEL ON A … PHYSICAL REVIEW RESEARCH 4, 023005 (2022)

FIG. 2. MC simulations of the XY model on a spherical Fi-
bonacci lattice after a complete annealing. Top row: (Left) A vortex
on one side. (Middle) Another vortex on the opposite side. (Right)
Perspective drawing. Here rc/R = 0.1298. The angle between the
two vortices with respect to the origin is 131.5◦. Lower row: (Left)
A vortex on one side. (Middle) Another vortex on the opposite side.
(Right) Perspective drawing. Here rc/R = 0.4. The angle between
the two vortices is 174.3◦.

where a Gaussian-type interaction is implemented since the
separation between different pairs of sites is not a constant.

We set N = 1000, α = 10.0/R2, T/J = 5.0 × 10−4 and
rc/R = 0.1298 and use standard MC techniques to obtain
samples of spin configurations. The spins are randomly ori-
ented initially and then evolve under the MC annealing.
Multiple vortices appear during the annealing, and some pairs
of vortices merge or annihilate as the simulation continues.
We plot the stable spin configuration in Fig. 2, showing only
two unpaired vortices survive. Moreover, the distance between
the two vortices tends to increase with the interaction range
rc during the MC annealing. For rc/R = 0.1298, the angle
between the two vortices with respect to the origin is about
131.5◦. For rc/R = 0.4, the two vortices eventually reside on
two nearly opposite sites (not necessarily the two poles) on the
sphere, and the angle between them is 174.3◦. The relation
between the vortex-separation and rc is because rc indicates
the local scale of order. As it increases, the vortex-pair size
will increase correspondingly.

The topological charge of a vortex is n = 1
2π

∮ ∇θ · dl. The
charges of all vortices in Fig. 2 are found to be +1, which
explains why the vortices move away from each other because
of the repulsion between them. Since all spins are confined
on the tangent plane at each site, they actually belong to a
tangent vector field X on S2. Thus the result agrees with the
Poincaré-Hopf theorem [51] that∑

i

indxi (X ) = χ (S2). (4)

Here xi ∈ S2 denotes the zeros of the vector field X , indxi (X )
is the index of X at xi, and χ (S2) is the Euler characteristic and
equal to 2 for S2. A zero at xi actually corresponds to the center
of a vortex. Thus the theorem states that the net topological
charge of a spherical XY model is always 2, independent of
temperature. Hence the vortices must exist on a sphere even at

FIG. 3. MC simulations of the XY model on a spherical Fi-
bonacci lattice after a complete annealing. Here N = 3000, T/J =
5.0 × 10−4, and rc/R = 0.081. The spin configuration is presented
from three different directions to show all vortices.

zero temperature, essentially different from the planar square-
lattice XY mode without any vortex in its stable ground state.
Our simulations on the Fibonacci lattice also exhibit other
types of stable spin configurations as the parameters change.
For example, the case with N = 3000, T/J = 5.0 × 10−4 and
rc/R = 0.081 shows a final stable configuration with eight
vortices, five of which have charge +1 while the other three
have charge −1, which is shown in Fig. 3. This may be
understood as follows. The N = 3000 lattice becomes much
denser than the N = 1000 case. Thus the effective distance
between the vortices, or the sites on the shortest path between
them, becomes larger and the interactions felt by the vortices
become relatively smaller, which may prevent the merging
of vortices as the annealing goes on. Moreover, these results
agree with those on a spherical random lattice [52,53].

IV. PHASE-TRANSITION TEMPERATURE

To determine the phase-transition temperature, a powerful
tool is the recently developed paradigm, the machine-learning
method, which, exemplified by the FCN and CNN, has
become a powerful tool for determining phase-transition tem-
peratures in physical systems [31–35,39,42,43]. Even the
simplest three-layer FCN can well recognize different phases
of the Ising model [33]. However, for topological phase tran-
sitions, FCN does not work equally well since it cannot
effectively capture the local spatial information. An alterna-
tive tool is the CNN, which relies on the convolutional kernels
to extract local features from the input, which usually requires
the information distribution to have spatial translation invari-
ance. The Fibonacci lattice, however, is only approximately
uniform.

Here we propose a more versatile method based on the
GCN [54]. The GCN can effectively aggregate the local spa-
tial information, thereby achieving a classification of vertices
and graphs. Figure 4 shows a flow chart to classify different
phases of the spherical XY model by the GCN. Here we
give a brief introduction of the procedure. For a N = 1000
spherical Fibonacci lattice, we set rc = 0.1298R, so most sites
have four neighbors. We then map the lattice to a graph G,
and all information of G is stored in the degree matrix D
and adjacency matrix A, as shown in Fig. 4(a). The convolu-
tion is performed by using the Laplacian matrix L = D − A.
The input features are specified by the feature matrix X =
(sT

1 , · · · , sT
N )T ∈ RN×3, where si = (xi, yi, zi ) is the spin at

site i. Next, we apply the random-walk normalized Laplacian
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(a)

(b)

(c)

FIG. 4. Flow charts for phase classification of the XY model
on a sphere based on the GCN. Panel (a) shows how to extract a
graph structure from a spherical Fibonacci lattice. Panel (b) indicates
that the input features are aggregated by the Laplacian matrix. Panel
(c) shows that the classification probabilities are finally obtained by
combining a softmax layer and the fully connected layer.

Lrm = D−1L to aggregate the features [see Fig. 4(b)]:

H = ReLu(LrmXW h + bh), (5)

where ReLu is the activation function, W h ∈ R3×1 is the
weight, and bh ∈ RN×1 is the bias. Finally, by using the fully
connected layer and the sof tmax function to aggregate the
hidden layer output H ∈ RN×1, we generate the classification
confidences of the ordered phase (with probability po) and
disordered phase (with probability pd), as shown in Fig. 4(c).
More details can be found in Appendix B. The criterion po =
pd is adopted to identify the critical temperature Tc. Above
Tc, the vortex number will proliferate but in a gradual fashion,
as shown in Ref. [49] for the planar XY model, so a simple
counting of the vortices is unreliable for determining Tc.

FIG. 5. (Top panel) Application of the GCN to the XY model on
a 32 × 32 square lattice, where po is plotted vs temperature. Here
the lower and top edges of each rectangle respectively label the
lower and higher quartiles of the calculated po, and the black-solid
and red-dashed lines denote the corresponding median and average
values. The inset shows how to determine the critical temperature.
(Bottom panel) Critical temperature of the XY model on a spherical
Fibonacci lattice. The blue-dashed, brown dot-dashed, and green
solid curves correspond to rc/R = 0.1298, 0.15, and 0.17, respec-
tively; po and pd are obtained from the average values. Here the inset
shows the change in Tc with respect to loss function values of GCN
on validation sets, which indicates the convergence of our estimation
of Tc.

Using the results from MC simulations as the test sets for
the GCN after training, we can identify phases and phase
transitions. The top panel of Figure 5 shows our test of the
GCN by a 32 × 32 square-lattice XY model. The estima-
tion of Tc (= 1.10J) is very close to the result 1.08J from
the renormalization group [55]. The bottom panel of Fig. 5
shows the GCN prediction of the spherical XY model with
N = 1000 sites. The classification confidence is plotted as a
function of temperature for rc/R = 0.1298, 0.15, and 0.17.
The critical temperatures are determined by locating where
po = pd, which are Tc/J = 0.96, 1.32, and 1.47, respec-
tively. The translucent region of each curve indicates the 95%
confidence intervals. To ensure the numerical accuracy, we
also show the change in Tc with respect to the loss function
values of the GCN on the validation sets in the inset of the
bottom panel. The trends clearly indicate the convergence of
our estimations. Moreover, our results show that Tc increases
with rc. Similar inferences also hold for planar-lattice XY
models. A larger rc means more neighbors are involved in
the interactions. Thus more energetic thermal fluctuations are
required to unbind vortices, resulting in higher Tc. On a 2D
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FIG. 6. (Top row) Tracking of vortices of a 2D square XY model
by the GCN (left), and the distance between two vortices as a func-
tion of MC steps for a spherical XY model by the DBSCAN (right),
in which one iteration is equivalent to 10,000 steps. (Bottom row)
Snapshots of two annihilating vortices (left and middle) and their
trajectories (right).

plane, Tc of the XY model on a triangular lattice with six
neighbors [56] is 226% higher than that on a square lattice.
For more details, please refer to Appendix B. The spherical
Fibonacci lattice thus demonstrates a continuous tuning of the
number of neighbors and its influence on Tc.

V. VORTEX DYNAMICS

We also investigate the motion of vortices on the sphere
during a MC annealing. The number of MC steps is related to
the real time via a certain function f : n = f (t ) [57]. Hence the
MC simulation, which brings a system to equilibrium from a
nonequilibrium starting point, is equivalent to the spontaneous
relaxation dynamics governed by the Langevin equation [57].
Physically, the trajectory describes the time-dependent evolu-
tion of the vortex on a sphere while n = f (t ) can be thought
of as a reparametrization of the evolution path. In Ref. [27],
vortex dynamics of a Bose-Einstein condensate on a spherical
shell is discussed from the view of an effective theory. To
trace out the motion of vortices, we need to locate the vortices.
Interestingly, we found that the hidden layer H of the GCN,
given by Eq. (5), quantifies the local disorder at site i since
Hi is negligible at the sites where there is no vortex but finite
at the sites where the vortices reside (details can be found in
Appendix C). This may come from the fact that H carries the
feature information of the input data. Specifically, we set a
threshold � = γ

N

∑
i Hi, where γ is an adjustable parameter.

By filtering out the coordinates with Hi > � at every 10,000
steps, the vortices can be located. We then use a well-known
machine-learning method, the DBSCAN [58], to group these
coordinates by the vortices that they belong to, which finally
gives the dynamical picture of the vortices on a sphere.

As a test of this algorithm, we first use it to track vortices
of a 32 × 32 square-lattice XY model and present the result
in Fig. 6 (top-left panel). Evidently it works very well. We
then apply it to the spherical XY model with N = 1000,
rc/R = 0.225 at T/J = 5.0 × 10−4 and visualize the results

in Fig. 6. Initially, there are multiple vortices, as discussed
before. Eventually, only two of them survive in the final state,
as others merge during the MC annealing. In this situation, the
system shows a very clear merging path. In the top row (right
panel), we present the distance between the two remaining
vortices as a function of the MC step, which indicates that
the positions of vortices become stable. Here the distance is
evaluated along the great circle (geodesic curve) connecting
the two vortices on the sphere. In the bottom row, we present
the merging process of one pair of vortices with different
topological charges during the MC annealing. The left panel
shows an early vortex configuration, in which the two vor-
tices are far from each other, and the middle panel shows
an intermediate state, in which the two vortices move close
to each other. The right panel presents their merging path.
The whole figure tells that during the MC annealing, some
vortices merge, and the remaining vortices of the same charge
tend to stay away from each other due to the repulsion, which
is similar to the behaviors of two equally charged particles
moving on a sphere.

VI. CONCLUSION

We have presented distinct features of the XY model on
a spherical surface, inspired by cold-atom experiments in
microgravity environments, such as the International Space
Station. Using the Fibonacci lattice, MC simulations and
machine-learning techniques like the GCN, our results predict
the vortex distributions and phase-transition temperatures.
Moreover, the DBSCAN clustering method allows us to vi-
sualize the evolution paths of the vortices during a MC
annealing. The Fibonacci lattice, with its uniformity and tun-
able neighborhoods, can be generalized to other models on a
sphere. Other than irregular lattices, the GCN has potential
applications for multiparameter systems by using aggregation
methods beyond the Laplacian matrix. The methods and anal-
yses shed light on future experiments of engineered systems,
including cold atoms and polaritons, with spherical geome-
tries.
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APPENDIX A: A COMPARISON BETWEEN CNN AND GCN

It is crucial to introduce the GCN in this work since the
traditional CNN cannot be applied to the irregular spherical
lattices. The CNN was first implemented [47] in the field
of computer vision. Since it can effectively capture the local
features of images and enhance the image-sensing ability of
computers, the CNN has been widely applied during the last
thirty years. The spin configuration in the square-lattice XY
model has explicit local order, which can be captured by the
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FIG. 7. Diagrammatic sketch of the principle of the convolution
of pictures.

CNN. Hence the CNN has been applied to study the Ising
model, XY model, and others in physics [18,33,59,60]. In
the main text, we have cited some references to show the
high-precision estimation of the critical temperature of the
Ising model by the CNN.

However, the tradition CNN is designed for images. The
convolution kernel (or filter) is like a sliding window. It slides
back and forth with a given step length when placed over
an input image, as indicated by Fig. 7. The characteristic
pixel (destination pixel) will be obtained by performing the
convolution on the source pixels, and accordingly the local
features of the input (source) image can be extracted in this
way (see Fig. 7). In other words, the CNN can only be ap-
plied to picturelike structures. In related topics of physics,
only the regular lattices correspond to this kind of structure,
since the lattice site can be thought of as a pixel and the
spin-value (including the direction and angle) is accordingly
the pixel values. This is why most machine-learning papers in
this field are focused on the square lattice, a simple regular
lattice. There are, however, many lattices that do not have
picturelike structures, especially those without translational
invariance. For example, in the studies of frustrated Ising
models, researchers may face some complicated lattices like
the Cairo pentagonal lattice [61] or the 3D garnet lattice [62],
as shown in Fig. 8. Due to the complexity of these lattices,
the traditional CNN does not work in these situations. Thus
a new framework beyond the CNN has to be introduced.
For lattices with translational invariance, such as the trian-
gular and honeycomb lattices, it might be possible to change
the convolution kernel to perform a “modified” CNN. How-

FIG. 8. (a) Cairo pentagonal lattice [61]. (b) Garnet lattice [62].

FIG. 9. A diagrammatic sketch of the GCN.

ever, as will be shown below, the GCN is the most versatile
alternative.

The key of the convolution is to aggregate the information
from nearby pixels (sites). Thus a natural idea to generalize
the traditional CNN is to extend its ingredients in order to
match arbitrary local topological structures. The GCN is pro-
posed exactly under this guidance. We can map an arbitrary
lattice into a graph, which not only preserves the neighbor
structure but also breaks the limitation on information net-
works required by the traditional CNN. Thus GCN has a much
broader range of applications. A diagrammatic sketch of the
key idea of the GCN is shown in Fig. 9.

As an example, the spherical lattice does not have a pic-
turelike structure due to its local variations; thus the traditional
CNN is not applicable. In our paper, we first set a suitable rc to
determine the neighbors of each lattice site. Thus the topolog-
ical structure of the whole lattice can be simply represented
by a graph. There are already many aggregation methods in
mathematics to capture the information from graphs. Here we
find that by using the simplest random-walk Laplacian matrix
and the FCN, it is possible to give results that are promising
for the spherical XY models.

We want to emphasize that the GCN provides a unified
machine-learning framework and can be applied to any kind
of lattice, even including the irregular lattices. For various
lattice models in physics (such as the Ising model, the XY
model, and the Heisenberg models), once their topological
structures are determined by certain graphs, we only need to
choose suitable methods to perform information aggregations.
Thus the GCN is much more powerful and has broad gener-
alizations. Since the CNN is a special case of the GCN as
the regular lattices can also be expressed by simple graphs,
those problems studied by the CNN can also be studied by the
GCN, as shown in Fig. 10. In our paper, we apply the GCN to
both square and spherical lattices and indeed obtain excellent
results. For example, our estimation of the critical temperature
for the square lattice agrees very well with other theoretical or
numerical predictions.

The GCN is expected to stimulate wide research interests.
We envision some of its future applications, including physics
of irregular lattices, crystals with defects, and other geometri-
cal or topological problems.
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FIG. 10. The mapping from a 2D square lattice to a graph.

APPENDIX B: DETAILS OF GCN

1. Formulation

The GCN is a powerful machine-learning method which
can effectively classify different phases of many-body sys-
tems confined on irregular lattices, including the spherical
Fibonacci lattice.

Our goal is to distinguish the ordered phase at low tem-
peratures and the disordered phase at high temperatures of
the XY model on a spherical surface by using the GCN.
Specifically, we are going to obtain a classification function
Ŷ = F (X ; 	) by data training, which maps the feature matrix
X containing all the spin information into the label space
Ŷ = (po, pd). Here po and pd, respectively, give the classifi-
cation confidences of the ordered and disordered phases. The
training process is to adjust the set 	 of parameters such that
the classification result Ŷ is as close to the real label Y as
possible.

2. Preliminaries

Graph is a powerful data structure for processing relational
information, which can effectively realize the clustering of
neighbor information. A graph G comprises a set V of vertices
and a set E of edges. For two vertices vi, v j ∈ V , if there exists
an edge ei j ∈ E , vi and v j are said to be connected by ei j in
the graph G. The number of vertices, to which a vertex vi is
linked is defined as the degree dj of vi. Explicitly, G can be
represented by the adjacency matrix A of which the entries
are given by Ai j = 1 if ei j ∈ E , or 0 otherwise. The feature
of each vertex vi can be expressed by a d-dimensional vector
xi. Thus for all vertices, their features can be represented by a
matrix X ∈ Rn×d , where n is the degree of G.

The GCN is a generalization of the traditional CNN, which
can be used to classify vertices and graphs. There are many
ways to realize the GCN, which may be mainly classified
into spatial-based and spectral-based convolutions. Both can
be realized with the help of the Laplacian matrix L, defined
by L = D − A, where A is the aforementioned adjacency
matrix, and D is a diagonal matrix called the degree matrix,
of which the diagonal elements are the degrees of the corre-
sponding vertices. The definition of the Laplacian matrix is
not unique, and the frequently used definitions include the
symmetrically normalized Laplacian Lsym = D− 1

2 LD− 1
2 and

the random-walk normalized Laplacian Lrm = D−1L.
The spatial-based GCN can be expressed by

H l+1 = σ (LH lW l ), (B1)

where W is the set of learnable parameters, H l is the feature
of the l-th layer (note that H0 represents the input feature),
and σ (·) is the activation function. In this method, the feature
of each vertex is obtained by aggregating the information of
its neighbors.

The spectral-based GCN is realized by first taking the spec-
tral decomposition of the Laplacian matrix (i.e., the Fourier
transformation) and then performing the associated inverse
transformation. It can be expressed by

H l+1 = σ (Ugθ (�)UT H l ), (B2)

where U is the matrix comprised by the eigenvectors of L, �

is the diagonal matrix comprised by the eigenvalues of L, and
the convolutional kernel gθ (�) represents the set of learnable
parameters. A widely adopted choice of gθ is the Chebyshev
polynomial, which can reduce the number of steps of eigen-
decomposition and is thus more suitable for large-scale graph
networks.

3. Methodology of phase classification

Here we illustrate how to apply the GCN to recognize
different phases of the XY model on a sphere, schematically
illustrated by the flow charts in Fig. 4. The convolutional
kernel of the traditional CNN can capture the local spatial
information, which corresponds to the short-range order of
the XY models on a square lattice at low temperatures. This is
why the traditional CNN works well in those situations. Note
that the key point in phase recognition is to effectively aggre-
gate the local spatial information. For the XY model, the first
step is to establish the neighbor relation of each spin, which is
guaranteed by the homogeneity of the square lattice. However,
no such homogeneous lattice exists on a spherical surface, and
the Fibonacci lattice is only an approximate uniform lattice
without translation invariance. Thus the traditional CNN does
not apply here. Fortunately, the GCN provides an ideal struc-
ture to characterize the neighbor relation of irregular lattices.

For a spherical Fibonacci lattice, all the sites naturally
comprise a set of vertices V . Moreover, by choosing a critical
radius rc such that ei j ∈ E if ||ri − r j || < rc, a graph G can
be constructed. To better capture the local features, the value
of rc must be carefully selected, such that each site is only
linked to the nearby sites. For example, when N = 1000, the
(almost) best choice is rc/R = 0.1298, shown in Fig. 4(a). For
the XY model on a sphere, the spin at site i is denoted by a unit
vector si = (xi, yi, zi ) with i = 1, 2, · · · , N . Thus the feature
matrix is given by X = (sT

1 , · · · , sT
N )T ∈ RN×3. In this work,

we use the random-walk normalized Laplacian Lrm = D−1L
to aggregate the features and apply the ReLu function as the
activation function, as shown in Fig. 4(b). Explicitly,

H = ReLu(LrmXW h + bh), (B3)

where the weight W h ∈ R3×1 and the bias bh ∈ RN×1 are both
learnable parameters, and H ∈ RN×1 is the feature representa-
tion. We further use the fully connected layer and the sof tmax
function to aggregate the representation H , as demonstrated in
Fig. 4(c), which can also be expressed by

Ŷ = sof tmax(HT W p + bp). (B4)
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Here W p ∈ RN×2 and bp ∈ R2 are both learnable parameters,
and the output Ŷ ∈ R2 gives the classification confidences that
the input features, respectively, correspond to the ordered or
disordered phase.

4. Training and prediction

a. General settings

The trial data come from MC simulations using the com-
mon Metropolis-Hasting algorithm and local spin update. As
an example, we generate a N = 1000 Fibonacci lattice on a
spherical surface of radius R. On the tangent plane of each lat-
tice site, a randomly oriented spin is assigned initially. When
mapping the lattice into a graph, we choose rc/R = 0.1298
and use the cross entropy function as the loss function.

b. Data settings

At first, we give a very rough estimation of the critical tem-
perature Tc by several runs of MC simulations, which show
Tc/J ∼ 1.0. Then, at temperatures far below Tc, we perform
MC simulations over the temperature range [0.001, 0.005]J
with an increment of 0.001J and get a data set of the spin
distributions in the low-temperature ordered phase. We repeat
the simulations over the same temperature range for 100 times
and get 100 sampling sets. Similarly, at a temperature far
above Tc, we perform MC simulations over the temperature
range [101.0, 105.0]J with an increment of 1.0J and get a data
set of the spin distributions in the high-temperature disordered
phase. We also repeat the simulations to get 100 sampling sets.
Finally, we split them into the training set, the validation set,
and the test set, which have, respectively, an 80, a 10, and a 10
sampling set for the ordered and disordered phases.

c. Critical temperature

A prediction of the critical temperature can be achieved
if the GCN model is trained sufficiently. We sample the data
in a temperature range, in which Tc is included, and input
those features into the GCN model. The output gives the
confidences that the input features correspond to the ordered
(po) and disordered (pd) phases. Obviously, po + pd = 1. We
extract the critical temperature as the location when po = pd.
In order to suppress the errors, we carry out multiple sim-
ulations and classifications with the same set of parameters
and average the corresponding classification confidences. For
example, we execute our algorithm in the range [0.1, 2.5]J
with an increment of 0.1J and repeat the procedure 500 times
to average the confidences for rc/R = 0.1298, 0.15, and 0.17,
respectively.

d. Numerical results

When testing the GCN model with the samples from the
test sets, it gives the correct classification results of �99.9%
classification confidences and 100% accuracy, even with only
one convolutional layer.

5. Details of the results

We outline the numerical results in Figure 5. We first test
our GCN model by using the data from the XY model on a

32 × 32 square lattice. We start with an arbitrary spin config-
uration and use MC simulations to give a spin sample; then
we use the sample as the test set for the GCN and find an es-
timation of the classification confidences po and pd. To obtain
low-temperature data samples, we perform MC simulations
over the temperature range [0.001, 0.005]J with an increment
of 0.001J and repeat the simulations for 100 times. For high-
temperature data samples, we perform MC simulations over
the temperature range [101.0, 105.0]J with an increment of
1.0J and also repeat the simulations for 500 times. We then
divide each of the 100 sampling sets into the training sets of
80 each, validation sets of 10 each, and test sets of 10 each.
After the GCN model is trained with those samples, we apply
it to the temperature range [0.1, 2.0]J with an increment of
0.1J and repeat the procedure 500 times at each temperature
to give 500 sets of raw data. In the top panel of Figure 5,
the lower and upper edges of each rectangle, respectively,
label the lower and higher quartiles of the data set, and the
black-solid and red-dashed lines denote the corresponding
median and average values (we only show the estimation of
po). We use the average values for the estimated po and pd.
The critical temperature is determined by po = pd. The esti-
mation of Tc = 1.10J is very close to the result (Tc = 1.08J)
by the renormalization group calculation [55]. There are also
very few statistically abnormal data labeled by the black dots,
which basically have no influence on the final result. Note
here we consider a finite-size system. Strictly speaking, Tc

is not the Kosterlitz-Thouless transition temperature TKT in
the thermodynamic limit, but the effective transition temper-
ature at which the correlation length ξ is comparable to the
system size (L = 32) [55]. Tc can be inferred from TKT via
Tc ≈ TKT + π2

c(ln L)2 where c is a constant [55]. Above Tc, the
vortex number will proliferate. Is it possible to determine
Tc simply by counting the vortex number as the temperature
varies? For the ordinary XY model, the answer is negative on
a square lattice as shown in Ref. [49].

In the bottom panel, we apply the GCN to the XY model
on a spherical Fibonacci lattice. Similarly, we repeat the pro-
cedure of the GCN for 100 times and then average those raw
data. We plot the classification confidences vs temperature for
rc/R = 0.1298, 0.15, and 0.17, and the corresponding critical
temperatures are Tc/J = 0.96, 1.32, and 1.47, respectively.
To ensure the accuracy of our numerics, we also show the
change in Tc with respect to the loss function values of GCN
on validation sets in the inset of the bottom panel of Fig. 5.
The trends clearly indicate the convergence of our estimations.
The increase of Tc with rc is also reasonable since a larger rc

means more neighbors are involved in the interactions. There-
fore more energetic thermal fluctuations are needed to unbind
the vortices, signifying higher Tc. We emphasize that similar
inferences also hold for XY models on a planar lattice. For
XY models on a large square lattice (L → ∞), each site has
four neighbors and TKT/J ≈ 0.898 [63]. While for XY models
on a large triangular lattice, each site have six neighbors and
TKT/J ≈ 2.93 [56]. (Ref. [56] actually found βKT ≈ 0.683
with J = 1

2 , implying TKT/J ≈ 2.93.) Hence they demonstrate
the same influence of the number of neighbors on the tran-
sition temperature. The numerical results indicate the SGD
optimizer works very well while others, like the Adam, do not
produce accurate results.
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FIG. 11. (Left) Detection of vortices by using the “local disor-
der” ξi in the XY model on a 2D square lattice, where rc/a = 1.0,
and T/J = 0.005. (Right) Detection of vortices by using the element
Hi of the hidden layer H in the same XY model.

APPENDIX C: DETAILS OF THE VORTEX DYNAMICS

As pointed out in the main text, the dynamics of the vor-
tices on a spherical surface can be traced by a well-known
machine-learning method, the DBSCAN [58]. We present the
details of the method here. Previous discussions have shown
that the GCN has superior performance on recognizing the or-
dered and disordered phases even with only one convolutional
layer. In the main text, we pointed out that the hidden layer H ,
which is given by Eq. (5), can actually be used as an indicator
of the local vortices. Here we present a qualitative explanation
by a direct comparison.

For a one-convolutional-layer GCN, the Laplacian matrix
realizes the feature aggregation of the neighbors for each site,
i.e.,

R = LrmX = (
rT

1 , · · · , rT
N

)T
. (C1)

Here ri = 1
|Ei|

∑
j∈Ei

(s j − si ), Ei is the set of neighbors of site
i, and |Ei| is its cardinal number. Note the spins change slowly
at the sites away from any vortex. Thus ‖ri‖ is close to zero.
On the contrary, the sites around a vortex have drastic changes
of the spins, and ‖ri‖ must be finite. Hence we can introduce a
suitable “observable:” ξi = ‖ri‖ as the “local disorder” at site
i to probe the local order. Specifically, we set a threshold � =
γ ‖r̄‖, where ‖r̄‖ = 1

N

∑
i ‖ri‖ is the average local disorder,

and γ is an adjustable parameter. As a check of this method,
we apply it to the XY model on a 32 × 32 square lattice and
present the result in the left panel of Fig. 11. Evidently, all the
vortices are accurately by their local disorder.

Interestingly, we find that the detection of vortices can also
be directly probed by the hidden layer H of the GCN instead
of introducing the artificial “local disorder.” As we pointed out
before, H is also the feature representation of the input data,
which is given by Eq. (5). The i-th element Hi of H plays a
similar role as the local disorder. Similarly, we can also intro-
duce � = γ

N

∑
i Hi and detect the vortices in the same way. In

the right panel of Fig. 11, we show the results of probing the
vortices in the same XY model. A direct comparison shows
that H indeed captures all the vortices effectively. This also
provides an example about how the GCN classifies different
objects by learning local features.

We then apply the method to the XY model on a spherical
Fibonacci lattice. After identifying the vortices, their evo-
lution paths can further be traced out by a data-clustering
algorithm. Specifically, we first filter out the coordinates such

FIG. 12. (Top) Snapshots of the equilibrium spin configurations
of a 2D 32 × 32 square-lattice XY model at T = 1.0J (left) and 1.2J
(right). Here Tc = 1.10J in this model. (Bottom) The vortex number
vs T/J of the same model.

that ξi > � at every 10000 steps. Those data should belong to
the sites hosting the vortices. We label the set of those coordi-
nates by P and use the DBSCAN to group those coordinates
by the vortices:

{P1, · · · , Pk} = DBSCAN(Minpts, r, P). (C2)

Here Minpts and r are two required parameters, k is the
number of different vortices, and Pi(i ∈ {1, · · · , k}) is the
classified coordinate set, each of which belongs to a single
vortex. The position of a vortex is given by

xv
i = argmin

‖x‖=R

∑
xp∈Pi

‖x − xp‖2
. (C3)

With these tools, we finally obtain the dynamics of the vortices
on a spherical surface.

APPENDIX D: Tc AND VORTEX NUMBER

When the temperature is above the BKT transition temper-
ature Tc, the vortex number of the XY models will proliferate.
However, Ref. [49] shows that the vortex number increases
smoothly for the standard XY model on a plane; therefore it is
not possible to determine Tc by checking the vortex numbers.
To confirm the result, we consider a 32 × 32 square-lattice
XY model and run MC simulations to obtain equilibrium
results. At high temperatures, the spin configuration is indeed
very disordered, and we present an example in the top pan-
els in Figure 12. The complex patterns make it difficult to
find any significant difference between the spin configurations
just below (left) and above (right) Tc = 1.10J (the numerical
estimation in Appendix B 5). In the bottom panel, we plot
the vortex number vs T , and there is no abrupt change of
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the vortex numbers, especially Tc. We mention that Ref. [49]
also considered an extended square-lattice XY model with a
modified potential

Vi j = 2J

[
1 −

(
cos2 θi − θ j

2

)p2]
, J > 0. (D1)

When p2 = 1, this model reduces to the ordinary 2D XY
model. Only when p2 is large enough (like p2 = 50), the
vortex number may increase abruptly at the critical temper-
ature. According to these results, we expect that the method
by plotting vortex number vs T may not work as an indicator
to determine the BKT temperature of the standard XY model.
Although it is hard to count the vortex number directly from
the figure, we found that the GCN can still recognize those
spin patterns very well.
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