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Magnetic bond-order potential for iron-cobalt alloys
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For large-scale atomistic simulations of magnetic materials, the interplay of atomic and magnetic degrees
of freedom needs to be described with high computational efficiency. Here we present an analytic bond-order
potential (BOP) for iron-cobalt, an interatomic potential based on a coarse-grained description of the electronic
structure. We fitted BOP parameters to magnetic and non-magnetic density functional theory (DFT) calculations
of Fe, Co, and Fe-Co bulk phases. Our BOP captures the electronic structure of magnetic and nonmagnetic
Fe-Co phases. It provides accurate predictions of structural stability, elastic constants, phonons, point and planar
defects, and structural transformations. It also reproduces the DFT-predicted sequence of stable ordered phases
peculiar to Fe-Co and the stabilization of B2 against disordered phases by magnetism. Our Fe-Co BOP is suitable
for atomistic simulations with thousands and millions of atoms.
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I. INTRODUCTION

Fe-Co is a magnetic alloy with the highest saturation
magnetization among all materials [1,2], which places it at
the top of the Slater-Pauling curve [3,4]. Together with high
permeability and high Curie temperature, Fe-Co alloys are
suitable for high-performance transformers, solenoid valves,
magnetostrictive transducers, and other uses [5].

Fe-Co alloys tend to order, so the B2 (CsCl) phase, where
Co atoms are at the corners of the bcc conventional unit cell
and Fe at the center, forms below 1000 K at 1:1 composi-
tion [6,7]. Above this temperature, the alloy transforms to
disordered bcc. Abrikosov et al. [8], using density functional
theory (DFT), revealed that at 0 K, ordered and partially
ordered ferromagnetic B2 are the most stable phase from 0
to 85 at. % Co. Neumayer and Fähnle [9] addressed the role
of magnetism for the ordering in light of structural defects.
They found that Fe and Co antisite defects in the B2 phase
have small but positive formation energies for magnetic DFT
calculations. Positive formation energy prevents the sponta-
neous exchange of Fe and Co atoms and transformation to
disordered bcc. For the nonmagnetic case, antisite defects also
have small but negative formation energies, making B2 unsta-
ble compared to disordered bcc. Thus magnetism is crucial for
structural stability in Fe-Co.

Large-scale atomistic simulations of magnetic alloys such
as Fe-Co are still challenging. Modeling and simulation of
lattice defects like dislocations, grain boundaries, or cracks
often require cell sizes from a few thousand to hundreds of
thousands of atoms [10–15]. DFT provides high accuracy but
is limited to only a few hundred atoms. Simulations with many
atoms are possible with empirical interatomic potentials, but
they usually do not capture the electronic structure and mag-
netism. For this reason, for example, empirical potentials
are unreliable in simulations of dislocations in bcc transition
metals [16,17] and, consequently, their alloys, including Fe-
Co. Machine learning potentials combine high precision and

computational efficiency but require a vast amount of refer-
ence DFT data [18–21]. Besides, incorporating magnetism is
still tricky, and the first magnetic machine learning potentials
are just appearing [22–24]. Thus accurate electronic structure
methods with lower computational costs than DFT are neces-
sary for simulations of magnetic transition-metal alloys.

Analytic bond-order potentials (BOPs) are an electronic
structure method derived from quantum mechanics with an
explicit treatment of magnetism [25,26]. Analytic BOPs and
the underlying tight-binding bond model have shown their
applicability to nonmagnetic transition metals, such as Ta, W,
Nb, Mo [27], and Ti [28], as well as the magnetic transition
metals Mn [29] and Fe [30–32]. BOP was also successfully
used to study iron’s magnetic [33] and structural [34] phase
transitions at finite temperatures. At the same time, analytic
BOPs are efficient enough for simulations with millions of
atoms [35,36].

In this work we present an analytic BOP for Fe-Co alloys.
We discuss in detail the parametrization procedure, including
reference data, fitting process, and validation strategies. We
further validate the BOP by comparing central material prop-
erties such as energy-volume curves, phonons, the electronic
density of states, defect formation energies, and elastic con-
stants with DFT and experimental data. We further compute
the convex hull of Fe-Co across the whole composition range
and find that it contains a dense sequence of ordered, stable
phases in excellent agreement with DFT calculations.

II. ANALYTIC BOND-ORDER POTENTIALS

Analytic bond-order potentials are interatomic potentials
derived from quantum mechanics by a two-step coarse grain-
ing from DFT to a tight-binding (TB) bond model [37] and
from TB to BOPs [26,38]. The BOPs transparently describe
the interatomic interactions and scale linearly with the system
size [39]. As a result, BOPs allow simulations of systems with
millions of atoms [35,36].
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The total binding energy of the BOP is given as

Etot = Ebond + Eemb + Emag + Erep, (1)

with the bond energy Ebond, the embedding energy Eemb, the
magnetic energy Emag, and the repulsive energy Erep, just as in
the TB bond model.

The bond energy Ebond results from the formation of chem-
ical bonds of the atom-centered orbitals of neighboring atoms.
It is determined by integrating the local density of states
(DOS) nIα,s up to the Fermi energy EF,

Ebond =
∑
Iα,s

∫ EF

(E − EIα )nIα,s(E )dE , (2)

of orbitals α of atom I with onsite levels EIα and s is either
spin-up or spin-down. The onsite levels EIα are obtained in a
self-consistency loop that minimizes the total energy Etot with
respect to EIα (see Ref. [39] for details). In TB, the DOS is
computed by diagonalization of the system-wide Hamiltonian
Ĥ , while in analytic BOP, from the moments of the local DOS,

μ
(p)
Iα =

∫
E pnIα (E )dE , (3)

for the nonmagnetic case, where μ
(p)
Iα is the pth moment of the

DOS of orbital α of atom I . We can also compute moments
from all self-returning hopping paths of length p that start and
end at |Iα〉 as

μ
(p)
Iα = 〈Iα|Ĥ p|Iα〉

=
∑

JβKγ ...

〈Iα|Ĥ |Jβ〉〈Jβ|Ĥ |Kγ 〉〈Kγ |Ĥ |...〉...〈...|Ĥ |Iα〉

=
∑

JβKγ ...

HIαJβHJβKγ HKγ ......H...Iα, (4)

with the Hamiltonian matrix elements HIαJβ between pairs of
orbitals α and β on atoms I and J . For the magnetic case, we
need to evaluate moments in Eqs. (3) and (4) separately for
spin-up and spin-down and then sum them up (see Ref. [26]
for details). Nondiagonal matrix elements HIαJβ in Eq. (4),
also known as hopping or bond integrals, are distance de-
pendent. We can represent them in the parameterized form
[Eq. (5)] to later fit parameters to reference data, as discussed
in Sec. III. The equality of Eqs. (3) and (4) directly relates
the electronic structure (DOS) to the atomic structure (self-
returning hopping paths). It is a core feature of the BOP
methodology [40].

Higher moments [with a higher value of p in Eq. (3)] cor-
respond to longer hopping paths and hence a more far-sighted
exploration of the local atomic environment. Four moments
are sufficient to distinguish fcc and bcc structures in transition
metals [41]. Six moments are needed to capture the trend
of structural stability hcp → bcc → hcp → fcc across the 4d
and 5d transition-metal series [25]. In the limit of an infinite
number of moments, we would recover the TB solution. For
our Fe-Co BOP, we used nine moments as in an existing BOP
for iron [32] that showed that nine moments are an appropriate
trade-off between computational efficiency and accuracy. We
employed the Jackson kernel with 200 extended moments to
smoothen the truncation of the BOP expansion with a con-
stant terminator as described in Refs. [39,42]. The analytic

BOP calculations in this work are performed with the BOPfox
software package [39].

The setup of the pairwise Hamiltonian HIαJβ for TB/BOP
calculations depends on the system. Both s and d electrons
in Fe and Co contribute to bond formation. We approxi-
mate the interatomic interaction with an orthogonal, d-valent
Hamiltonian in a two-center approximation. Cawkwell et al.
showed that neglecting sp and sd interactions is an excel-
lent approximation for iridium [43]; therefore, it is justified
for Fe-Co with similar band filling. The resulting 5 × 5
Hamiltonian of two interacting d-valent atoms I and J at a
distance R contains three independent bond integrals ddσ ,
ddπ , and ddδ, which we represent as a sum of exponential
functions

β(R) =
kmax∑
k=1

ck exp(−λkRnk ), (5)

where ck , λk , and nk are the parameters to fit. This simple
functional form has been used successfully for the bond in-
tegrals obtained from projecting the DFT eigenstates onto an
orthogonal TB basis [44]. For Fe-Co BOP, we found that three
exponentials (kmax = 3) for the ddσ bond and two (kmax = 2)
for ddπ and ddδ provide a numerically robust optimization
and sufficient flexibility to reach the target precision.

Omitting the s electrons is compensated by the embedding
energy Eemb in Eq. (1). Following the second-moment approx-
imation of TB, where the cohesive energy of an atom i scales
as the square root of the densities of the surrounding atoms,
we express the embedding energy as

Eemb = −
∑

i

√∑
j �=i

ρ(ri j ), (6)

where the electron density ρ(ri j ) is represented as

ρ(ri j ) = p1 exp[−p2(ri j − p3)2], (7)

with the parameters p1, p2, and p3 to be optimized.
The magnetic energy in Eq. (1) is given by the Stoner

model for ferromagnetism [45],

Emag = −1

4

∑
i

Iimi
2, (8)

where Ii is the Stoner exchange integral on atom i. The
magnetic moment on atom i is the difference in the number
of spin-up and spin-down electrons, mi = Ni

↑ − Ni
↓, after

the self-consistent solution is obtained [see description of
Eq. (2)].

The repulsive energy in Eq. (1) has two main components
in our model. The first is a pairwise repulsion with the same
functional form as the binding energy [Eq. (5)]. In particular,
we used one exponential [kmax = 1 in Eq. (5)] for all inter-
actions (Fe-Fe, Co-Co, and Fe-Co), which is sufficient for the
pairwise repulsion as shown in previous parametrizations. The
second component of the repulsive energy for our model is a
short-range core repulsion of the form

Ecore(ri j ) = p2(p1 − ri j )
3/ri j exp(p1 − ri j ), (9)

where ri j is the distance between atoms i and j. The param-
eters p1 and p2 are set to 1.5 and 100, respectively, to ensure
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that the atoms are strongly repulsive at a distance shorter than
1.5 Å.

For reproducing the elastic constant C44 for elemental Fe,
we also used an environment-dependent Yukawa repulsion for
Fe-Fe interactions:

EYuk = 1

2

∑
i,i �= j

B

ri j
exp[−λi j (ri j − 2rcore )], (10)

where

λi j = 1
2 (λi + λ j ), (11)

and

λi = λ0 +
⎡
⎣∑

l �=i

Cexp(−υril )

⎤
⎦

1/m

, (12)

where B, rcore, λ0, C, υ and m are parameters to fit; ri j and
ril are the separations between atoms i and j, or i and l ,
respectively. Znam et al. [46] successfully used environment-
dependent repulsion of this form in TiAl BOP to reproduce
Cauchy pressures.

The interaction range of the BOP is limited to rc by cutoff
functions:

f (r) =
⎧⎨
⎩

1 if r < (rc − dc),
0 if r > rc,
1
2

(
cos

〈
π

[ r−(rc−dc )
dc

]〉 + 1
)

else,
(13)

that act on the bond integrals, embedding energy, and repul-
sive energy. dc is the length over which these terms go from
their value at r = rc − dc to zero at r = rc.

III. PARAMETERIZATION

A. Reference data

We fitted the Fe-Co BOP to DFT reference data. The
physical model underlying the analytic BOPs allows us to
work with small reference data sets. For the Fe-Fe and Co-Co
interactions, we used as a reference the energy-volume (E-V)
curves of ferromagnetic (FM) and nonmagnetic (NM) bcc,
fcc, and hcp structures which appear in the Fe-Co phase dia-
gram [47]. For the Fe-Fe interaction, we also included several
sheared structures of FM bcc to get a better value of the elastic
constant C44 of elemental Fe. For the Fe-Co interaction, we
used the E-V curves of FM B2 (CsCl) as the most stable phase
at 1:1 composition at low temperatures and NM B2 to cover
the energy difference between FM and NM structures. We also
included an FM B32 (NaTi), which is slightly higher in en-
ergy than B2, and the bcc-based ordered L60-Fe3Co (Ti3Cu)
as the most stable Fe3Co structure according to DFT (with
marginally lower energy than D03) [48,49]. The DFT E-V
curves that were used to parametrize the Fe-Co interaction are
shown in Fig. 4.

We performed DFT calculations using the VASP software
package [50–52] with the projector augmented wave method
(PAW) for pseudopotentials [53] and the PBE (Perdew-Burke-
Ernzerhof) [54] exchange-correlation functional. We used
dense Monkhorst-Pack k-point meshes [55] and 400 eV as
energy cutoff.

FIG. 1. Bond integrals for Fe-Co as obtained from downfolding
the DFT wave function of a dimer onto an orthogonal TB basis
[44] (dashed lines) and after our BOP optimization (solid lines) as
a function of distance. A dotted gray line indicates the first-nearest-
neighbor distance in ferromagnetic (FM) B2 FeCo.

B. Fitting

We constructed the BOP for the Fe-Co in two stages. At
first, using unary reference data, we parameterized the Fe-Fe
and Co-Co interactions. Then we fixed these elemental inter-
actions and parameterized the Fe-Co interaction with binary
reference data. We fit the parameters of the Fe-Fe, Co-Co, and
Fe-Co interactions to the corresponding E-V curves using the
least-squares method, with higher weights for the most stable
phases of Fe, Co, and Fe-Co. We optimized the parameters of
our model with the BOPcat software package [56] using the
Levenberg-Marquardt method [57,58].

We chose initial guesses for the bond integrals [Eq. (5)]
for Fe-Fe and Co-Co interactions based on a previous
parametrization [59]. For Fe-Co, we took the initial guess as
the average of the optimized Fe-Fe and Co-Co bond integrals
because the TB bond integrals of the Fe-Co dimer are be-
tween those of the Fe-Fe and Co-Co dimers (see discussion
in Ref. [44]).

The number of valence electrons and the Stoner exchange
integral are continuous parameters in the TB/BOP [26] for-
malism. We chose the number of valence d electrons as 6.98
for Fe and 8.20 for Co to reproduce the FM bcc and FM
hcp as the ground-state structures, respectively. By setting the
Stoner exchange integrals to 0.751 eV and 0.841 eV for Fe
and Co, we captured energy differences between magnetic and
nonmagnetic structures for elemental Fe and Co (see Fig. 2 in
Supplemental Material [60]).

We optimized the initial parameters of energy contributions
in Eq. (1) to achieve the best agreement with the reference
data. The resulting parameters are compiled in Table 1 in the
Supplemental Material [60]. Figure 1 shows the optimized
bond integrals ddσ , ddπ , and ddδ as a function of distance
R [see Eq. (5)] for the Fe-Co interaction compared with the
bond integrals obtained by projecting the DFT eigenstates of

044403-3



ALEKSEI EGOROV et al. PHYSICAL REVIEW MATERIALS 7, 044403 (2023)

FIG. 2. Contributions to the total binding energy [Eq. (1)] of
the parameterized BOP for ferromagnetic (FM) B2 FeCo. The BOP
total binding energy curve is compared with corresponding DFT
results. The dotted gray lines indicate the range of volumes that we
considered in the parametrization.

the Fe-Co dimer onto an orthogonal TB basis [44]. The Fe-Co
bond integrals optimized for bulk reference data are close to
the bond integrals for the dimer. They differ visually because
the surrounding atoms screen the bond between two atoms in
a solid [61], which is not the case for a dimer. The resulting
bond integrals for the Fe-Fe and Co-Co interactions are shown
in Fig. 1 in the Supplemental Material [60]. Figure 2 shows the
contributions of the different terms to the total binding energy
[Eq. (1)] for FM B2 FeCo for the optimized BOP. The em-
bedding energy Eemb that mimics the binding from s electrons
and the bond energy Ebond from the d electrons are attractive
for all volumes and counteracted by the repulsive energy Erep.
The magnetic energy Emag delivers a nearly constant energy
gain that vanishes at small volumes when the magnetic mo-
ment starts to collapse. The core repulsion [Eq. (9)] is short
range and not seen in this graph. The total binding energy
agrees with DFT results for volumes far beyond those we
used as a reference. This is due to the underlying physical
model, which leads to high transferability. In the following
section we validate the Fe-Co BOP by computing the elec-
tronic structure, structural stability, structural transformations,
elastic constants, phonons, point and planar defects, and for-
mation energies of Fe-Co alloys. The elemental Fe and Co
BOP validation are compiled in the Supplemental Material
[60] (see, also, Refs. [62–64] therein). It is worth noting
that our Fe BOP shows improvements compared to exist-
ing BOP parametrizations [30,32], e.g., for the fcc and hcp
structures.

IV. VALIDATION

A. Electronic structure and magnetism of B2 FeCo

The BOP model is based on a coarse-grained description
of the electronic structure. Therefore a direct and intuitive

FIG. 3. Electronic DOS of nonmagnetic (NM) and ferromagnetic
(FM) B2 FeCo obtained with DFT (left) and BOP (right). For the
DFT-DOS, the projection on d orbitals is plotted for consistent com-
parison with d-valent BOP. The Fermi energy is taken as 0 eV.

test compares the electronic DOS predicted with BOP and the
DOS obtained with DFT. In Fig. 3 we compare them for B2
FeCo, the ground-state structure at 1:1 composition, for NM
and FM configurations. The DOS is split into the contributions
from Fe and Co atoms in both BOP and DFT. For a consistent
comparison with our d-valent BOP, we consider only the
projection of the DFT-DOS on d orbitals.

The BOP-DOS is well-matched with the DFT-DOS for
both NM and FM configurations. It is smoother overall due
to the chosen low number of moments (see Sec. II), but it
captures the positions and height of the main features and
the bandwidth. The BOP captures the peak at the Fermi level
for the NM configuration, fulfilling the Stoner criterion and
stabilizing the FM B2 phase. It also correctly describes the
relative weight of the Fe and Co atoms. In general, an ac-
curate description of the DOS means that the BOP captures
the physics of magnetism in the interaction of Fe and Co
atoms. We can obtain the BOP-DOS that agrees better with
DFT if we use not nine but more moments. However, this
will increase the computational cost of calculations. Figure 4
in the Supplemental Material [60] shows an example of the
BOP-DOS for FM B2 FeCo computed with 25 moments that
reproduces more features of the DFT-DOS.

The electronic DOS of magnetic B2 FeCo obtained with
our BOP (Fig. 3) results in magnetic moments of 3.01μB for
Fe and 1.81μB for Co atoms. For elemental bcc Fe and bcc
Co, our BOP gives 2.88μB and 1.80μB, respectively. Thus the
magnetic moments are almost the same for Co atoms, while
they are significantly higher for Fe atoms in the B2 phase
compared to elemental bcc. This behavior of the Fe and Co
magnetic moments is consistent with DFT calculations. The
DFT results in B2 are 2.80μB for Fe atoms and 1.81μB for
Co. For elemental bcc, DFT magnetic moments are 2.24μB

and 1.82μB, respectively [65].
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FIG. 4. Comparison of energy-volume (E-V) curves of Fe-Co
BOP (lines) and all DFT reference data points we used in the
parametrization of Fe-Co interaction (circles).

B. Energy-volume curves of ordered Fe-Co alloys

We further validate the Fe-Co BOP by assessing the total
binding energy Etot [Eq. (1)]. Figure 4 compares BOP and
DFT E-V curves for the complete set of Fe-Co reference
data we used. The BOP perfectly reproduces the DFT E-V
curve for FM B2, the most stable phase at 1:1 composition,
while the E-V curve of NM B2, which has higher energy,
also agrees well, given that we gave it lower weights during
fitting. The basis for capturing this energy difference between
magnetic and nonmagnetic B2 is the accurate description of
the underlying electronic structure, as shown in Fig. 3.

C. Structural stability across chemical compositions

To assess the reliability of the Fe-Co BOP for various
chemical compositions, we determined the convex hull of the
formation energies at 0 K. The convex hull of the Fe-Co
system, in addition to B2, exhibits a dense set of ordered
bcc-based stable structures for Fe-rich compositions in regular
composition steps of 1/16 [48]. In contrast, all structures on
the Co-rich side lie above or close to the tie line connecting
B2 and hcp Co.

To compare our BOP with DFT, we computed energies of
formation of the Fe-Co binary alloys as

E f = E (FexCoy) − xE (Fe) − yE (Co)

x + y
, (14)

where E (FexCoy) is the total energy of a given alloy’s su-
percell, and E (Fe) and E (Co) are total energies per atom of
the elemental ground states bcc Fe and hcp Co. The crystal

FIG. 5. Energies of formation for ordered bcc-based Fe-Co struc-
tures (circles) at various concentrations calculated with BOP, DFT
[49], and MEAM [66]. Lines connect the stable structures, forming
a convex hull.

structures from the convex hull are given in the Appendix of
Ref. [49].

Figure 5 compares the energies of formation calculated
with DFT [49], BOP, and modified embedded atom method
(MEAM) [66]. The BOP reproduces the dense set of sta-
ble structures for Fe-rich compositions with an accuracy of
approximately 10 meV/atom. The Fe9Co7 and Fe11Co5 struc-
tures are not on the BOP convex hull but close within less
than 3 meV, which seems remarkable as only two stable struc-
tures, B2 and L60, were included in the reference data. DFT
and BOP B2 energies differ because the DFT data was ob-
tained with the mixed-basis pseudopotential (MBPP) method,
whereas we fitted the BOP to DFT obtained with PAW (cf.
Table II in Ref. [49]). The difference between MEAM and
DFT is significant and may be due to the choice of reference
data in the construction of the MEAM.

D. Structural stability of disordered Fe-Co alloys

Fe-Co at 1:1 composition transforms from ordered B2 to
disordered bcc (A2) at around 1000 K and further to disor-
dered fcc (A1) above 1200 K [47]. To assess whether our
BOP may reproduce these phase transitions, we determined
the relative stability of A1, A2, and B2 at 1:1 composition
at 0 K as a precursor for predicting the phase transitions
[67]. We considered FM and NM configurations as the A2-A1
transition temperature coincides with the Curie temperature.
We represented the bcc and fcc solid solutions by special
quasirandom structures (SQS) [68] with 16-atom cells from
Refs. [69] and [70], respectively.

The comparison to DFT (and also MEAM) results in Fig. 6
shows that the BOP accurately predicts the sequence of struc-
tural stability from ordered B2-FM to disordered A2-FM to
disordered A1-FM. It also predicts the correct sequence for
the energetically higher NM configurations with the most
significant deviation for A2-NM. Thus we see that BOP has
strong predictive power for disordered phases that were not
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FIG. 6. Structural stability of B2, disordered bcc (A2), and fcc
(A1) phases in ferromagnetic (FM) and nonmagnetic (NM) configu-
rations relative to FM B2 computed with BOP, DFT, and MEAM.

part of the reference data. Our results also confirm the conclu-
sions of Abrikosov et al. [8], made with DFT using coherent
potential approximation (CPA), that magnetism is crucial for
stabilizing B2 relative to disordered phases. We should note
that the MEAM results in Fig. 6 are given only for the FM
configuration, as it was fitted to FM reference data, and mag-
netism is not included in this potential explicitly.

E. Elastic constants of B2 FeCo

To test the mechanical properties, we compared the bulk
modulus (B), elastic constants (C11, C12, C44), and tetragonal
shear constant (C′) computed with BOP to values calculated
with DFT, the embedded atom method (EAM) [71], and mod-
ified EAM (MEAM) [72–74] potentials, as well as available
experimental data (see Table I). The BOP values for bulk
modulus, C11, C12, and C′ elastic constants, agree with the
DFT results. BOP underestimates C44 due to the absence of
sheared Fe-Co structures in the reference data.

F. Phonon spectrum of B2 FeCo

Existing TB/BOP models for Fe [30–32] have captured
magnetic [33] and structural [34] phase transitions at finite
temperatures. Interatomic potential should accurately describe
lattice vibrations to achieve transferability beyond the 0 K
reference data. In Fig. 7 we compare the phonon DOS of
FM B2 FeCo calculated with BOP, DFT, and MEAM [66].
We used the PHONOPY package to compute the phonon DOS
[81]. BOP reproduces the main features of the DOS with two
prominent peaks and an intermediate peak in between, while
the MEAM produces a different shape. Our BOP slightly
underestimates the frequency width of the DOS, but overall
the BOP predictions are convincing, given that the reference
data did not include forces.

TABLE I. Bulk modulus and elastic constants for ferromagnetic
(FM) B2 FeCo obtained using BOP, DFT, experiment, and empirical
interatomic potentials. All values are in GPa.

B C11 C12 C44 C′

BOPa 190 268 153 85 58
DFTa 191 271 155 128 58
DFTb 188 263 152 108 56
DFTc 189 259 154 131 53
MEAMd 196 268 179 138 27
EAMe 187 226 168 136 29
MEAMf 188 261 151 127 55
Exp. 188g 61h

aThis work.
bReference [75].
cReference [76].
dReference [66].
eReference [77].
fReference [78].
gReference [79], measured at 300 K.
hReference [80], measured at 61 K.

G. Point defects in B2 FeCo

Point defects play a crucial role in Fe-Co and largely de-
termine the stability of the ordered B2 phase [9]. For this
reason we calculated the formation energies of vacancies
and antisite defects for B2 with a 1:1 composition at 0 K
with our BOP. We computed approximate formation energies
following derivations of Meyer and Fähnle for antistructure-
type systems (Eq. (A7) in Ref. [82]). They assumed that for
such systems, the formation energies of antisites of different
species are equal. In the Supplemental Material [60] (see, also,
Refs. [83,84] therein), we calculated the formation energies
differently and confirmed that our BOP predicts the assumed
antistructure type of B2 FeCo. Figure 8 compares the forma-
tion energies of vacancies and antisite defects obtained using
BOP, DFT [9,85], and MEAM [66]. Even though the BOP

FIG. 7. Phonon DOS of ferromagnetic (FM) B2 FeCo obtained
using DFT, BOP, and MEAM [66].
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FIG. 8. Defect formation energies for Fe and Co vacancies and
antisites in ferromagnetic (FM) B2 FeCo at 1:1 composition at 0 K
computed using BOP, DFT [9,85], and MEAM [66]. The formation
energies of Fe and Co antisites are the same (according to Eq. (A7)
in Ref. [82]; see details in Sec. IV G).

value for a Co vacancy is slightly higher than the DFT, overall,
BOP correctly predicts that the formation energies of vacan-
cies are much higher than of antisite defects, making the latter
the dominant defects in B2 FeCo. The small but still positive
formation energy of antisite defects prevents the spontaneous
exchange of Fe and Co atoms and hence stabilizes the B2
phase relative to disordered bcc. The formation energies of
defects were not part of the reference data for our BOP, and
their correct reproduction demonstrates the transferability of
the potential.

H. B2-L10 transformation path

DFT predicts that the tetragonal distortion by increasing
the c/a ratio of the lattice parameters of B2 FeCo will pro-
duce magnetic properties desirable for storage devices: high
magnetic saturation moment and giant magnetic anisotropy
[86]. Such a distortion is feasible in practice, for example,
in L10 FeCo, which can be grown as a thin film on Cu sub-
strates [87]. For this reason and to validate our BOP against
atomic environments that differ from bcc, we computed the
transformation path from bcc-based B2 to fcc-based L10 by
continuous variation of the c/a ratio. The results of BOP, DFT,
and MEAM [66] for FM and NM (not applicable for MEAM;
see Sec. IV D) configurations are compiled in Fig. 9 using the
standard Bain path notation, with c/a = 1 for B2 and c/a =
1.41 for L10. Overall the BOP precisely reproduces the DFT
transformation path for both FM and NM configurations. The
agreement for the NM case is particularly striking, because
even the only reference structure along the transition path, B2,
had a low weight during the fitting. This finding highlights the
predictive power of the Fe-Co BOP to atomic environments
beyond the reference data that included only structures with
c/a = 1.

FIG. 9. Transformation path from bcc-based B2 to fcc-based L10

phase for ferromagnetic (FM) and nonmagnetic (NM) configurations
obtained with BOP, DFT, and MEAM [66].

I. Grain-boundary energies

To test atomic environments with bond angles and nearest-
neighbor coordination different from ideal crystal structures,
we investigated three typical grain boundaries (GBs) in B2
FeCo. We considered the �5[001](001) and �3[011](011)
twist GBs as well as the �3[011](1-11) tilt GB with rota-
tion angles of 36.87◦, 70.53◦, and 70.53◦, respectively. We
constructed the corresponding supercells with 120, 144, and
72 atoms and six B2 unit-cell distances between two adjacent
GB planes with the AIMSGB package [88]. We computed the
GB energy, γGB, by DFT, BOP, and MEAM with complete

FIG. 10. Energies of two twist and one tilt grain boundaries
(GBs) in the ferromagnetic (FM) B2 phase computed using BOP,
DFT, and MEAM [66].
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relaxation of atomic positions as

γGB = EGB − Ebulk

2AGB
, (15)

where EGB is the energy of a supercell with GB of area AGB

and Ebulk is the energy of a bulk supercell with the same
number of atoms.

The comparison in Fig. 10 shows that MEAM [66] and
BOP reproduce the energetic ordering of the GBs. BOP ac-
curately captures the energies of the �3-twist and the �3-tilt
GBs while slightly underestimating the �5-twist GB. As we
see, our BOP shows considerable transferability to complex
atomic environments such as GBs.

V. CONCLUSIONS

We developed an analytic bond-order potential for Fe-Co
alloys that includes an explicit treatment of magnetism. We
use a d-valent orthogonal tight-binding Hamiltonian in two-
center approximation and employ an embedding function to
account for the s electrons. The functional form is physically
transparent and, for this reason, requires only a small set
of reference data. At the same time, the underlying physics
ensures robust predictions of Fe-Co properties that we did not
include in the fit. We demonstrate the transferability of our

potential to various material properties: structural stability of
ordered and disordered phases, elastic constants and phonons,
point defects, structural transformations, and planar defects.
Due to the explicit treatment of magnetism, our BOP repro-
duces the main features of the DFT electronic structure for
magnetic and nonmagnetic phases. Further, the BOP repro-
duces the dense sequence of stable phases for Fe-rich Fe-Co
alloys with an accuracy of about 10 meV to DFT results
and the B2 stability against disordered phases provided by
magnetism. The analytic BOP for Fe-Co paves the way to
atomistic simulations of Fe-Co alloys with a reliable treatment
of magnetism at length- and timescales inaccessible with DFT.
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