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Orbital magnetic moments of phonons
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In ionic materials, circularly polarized phonons carry orbital magnetic moments that arise from circular
motions of the ions, and which interact with other magnetic moments or fields. Here, we calculate the orbital
magnetic moments of phonons in 35 different materials using density functional theory, and we identify the
factors that lead to, and materials that show, large responses. We compute the resulting macroscopic orbital
magnetic moments that can be induced by the excitation of coherent phonons using mid-infrared laser pulses,
and we evaluate the magnitudes of the phonon Zeeman effect in a strong magnetic field. Finally, we apply our
formalism to chiral phonons, in which the motions of the ions are intrinsically circular. The zoology presented
here may serve as a guide to identifying materials for phonon and spin-phonon driven phenomena.
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I. INTRODUCTION

When the atoms of a solid body move along the path of a
circularly polarized vibration mode, they form closed loops
and therefore carry angular momentum. In ionic materials,
the circular motions of the ions induce magnetic moments
that are reminiscent of atomistic electromagnetic coils, see
Fig. 1, and that are linked to the angular momentum via the
gyromagnetic ratio of the ions. As the ions have different
masses, they move on different orbital radii and consequently
produce magnetic moments that are unequal in size, leading
to a net orbital magnetic moment produced by the phonon
mode. While the concept of rotational and vibrational angular
momentum and magnetic moments has been discussed for
over 80 years in molecules [1–9], a rigorous microscopic
[10–14] and quantum mechanical [15–17] treatment for solids
has only been developed since the turn of the century.

In recent years, various physical phenomena have been
attributed to the angular momentum of acoustic and optical
phonons, such as the phonon Hall and phonon spin Hall
effects [18–20], a contribution to the Einstein-de Haas effect
[16,21–24] and to spin relaxation [22,25], the phonon ac Stark
effect [26], the phonon Edelstein effect [27], and the phonon
Zeeman effect [14,14]. Furthermore, terahertz sources are
now able to coherently excite optical phonons yielding large
vibrational amplitudes, so that the effects of phonon angular
momentum become visible on a macroscopic level, for ex-
ample, by interaction with the magnetic or valley degrees of
freedom of a material [28,29]. In order to predict the strength
of these effects accurately, it is necessary to calculate the
governing physical parameters from first principles.

In this study, we calculate the size of the orbital mag-
netic moments of phonons in 35 different materials using a

*Present address: Harvard John A. Paulson School of
Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA; dominik.juraschek@mat.ethz.ch;
djuraschek@seas.harvard.edu

recently established microscopic formalism of the dynamical
multiferroic effect [14]. The dynamical multiferroic effect de-
scribes in general the generation of magnetization from tem-
porally varying electric polarization, M ∝ P × ∂t P [14,30],
and P in our case corresponds to the dipole moment of an
infrared (IR)-active phonon mode. We simulate the resonant
excitation of coherent phonons with intense terahertz and
mid-infrared radiation and calculate the size of the macro-
scopically induced orbital magnetic moments. We further
compute the magnitude of the phonon Zeeman effect in an
external magnetic field. As the orbital magnetic moment of a
phonon is caused by the motion of the ions, we expect it to be
of the order of the nuclear magneton, μN ≈ 0.5 × 10−3μB,
which is roughly three orders of magnitude smaller than
the effects induced by electronic motion, for example, in
surface plasmon polaritons [31,32]. We therefore choose only
nonmagnetic compounds, so that the magnetic signature of
the material is caused entirely by the phonons. We choose sets
of materials with each of the rocksalt, wurtzite, zinc-blende,
and perovskite structures, to allow us to study trends within
and across material classes. As a special case, we investigate
a set of monolayer transition metal dichalcogenides, because
they have recently been predicted and observed to host chiral
phonons that are intrinsically circularly polarized [17,33].

Anion

Cation

|µA| > |µC|

FIG. 1. Schematic of the magnetic moments produced by the
circular motion of ions along the eigenvectors of a circularly polar-
ized optical phonon mode. Here, the lighter anion (drawn smaller)
generates a larger magnetic moment μA than the heavier cation
(drawn bigger) μC, which in a binary material leads to the orbital
magnetic moment of the phonon μph = μA + μC in the unit cell.
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II. THEORETICAL FORMALISM

A. Classical angular momentum and magnetic
moments of phonon modes

We begin by reviewing the microscopic expression for
the angular momentum L and the magnetic moment M of a
general elliptically polarized phonon mode, which is a super-
position of two orthogonal linearly polarized phonon modes.
This formalism has been developed recently, see Ref. [14],
and we summarize the formulas relevant to our present study
below. We focus on phonon modes at the Brillouin zone center
that can be excited with light and for which we may neglect
the momentum dependence. L and M, defined per unit cell,
are given by

L = Q × ∂t Q, (1)

M = γ L, (2)

where Q is the normal mode coordinate (or amplitude) vector
in units of Å

√
amu with amu being the atomic mass unit, and

γ is the gyromagnetic ratio of the phonon mode [10,11,14,16].
The amplitude vector can be written without loss of
generality as

Q(t ) =

⎛
⎜⎝

Qx(t )

Qy(t )

0

⎞
⎟⎠ =

⎛
⎜⎝

Qx sin(�xt + ϕ)

Qy sin(�yt )

0

⎞
⎟⎠, (3)

where �x,y are the eigenfrequencies of the two orthogonal
phonon modes, and ϕ is their relative phase shift. The angular
momentum and magnetic moment accordingly reduce to L =
Lẑ and M = Mẑ, and we will in the following always refer
to the z components L and M. The gyromagnetic ratio is
given by

γ =
∑

i

γi(qi,x × qi,y), (4)

where γi = eZ∗
i /(2Mi ) are the gyromagnetic ratios of the

ions i, Z∗
i are the Born effective charge tensors, Mi are

the masses, and qi,x/y are the unit eigenvectors of the two
superposed phonon modes [14]. e denotes the elementary
charge, and the index i runs over all atoms in the unit
cell.
Note that the gyromagnetic ratio can alternatively be evaluated
via a Berry phase formalism, which yields similar results, see
Refs. [10,11]. The time-dependent displacement di and the
magnetic moment Mi generated by the motion of ion i are
given by

di = (qi,xQx(t ) + qi,yQy(t ))
1√
Mi

, (5)

Mi = γi(qi,x × qi,y )L. (6)

For circularly polarized phonon modes, �x = �y ≡ �0, Qx =
Qy ≡ Q, ϕ = π/2, and the angular momentum in Eq. (1)
simplifies to L = Q × ∂t Q = �0Q2ẑ ≡ Lẑ.

B. Quantized angular momentum and magnetic
moments of phonons

When the lattice vibrations are quantized, the angular
momentum operator l̂ and orbital magnetic moment operator
m̂ replace the classical L and M discussed in the previous
section. We write the z components of these operators in
second quantization as l̂z = ih̄(a†

xay − a†
yax ) and m̂z = γ l̂z,

where a†
x/y and ax/y are the creation and annihilation operators

of phonons x and y at the Brillouin zone center, see, for
example, Ref. [15]. The definition of the gyromagnetic ratio
of the phonon γ in Eq. (4) remains unchanged, as only the
classical vibrational amplitude is translated to the creation
and annihilation operators in second-quantized form. The
eigenvalues of l̂z and m̂z are then

lph ≡ |lz| = h̄, (7)

μph ≡ |mz| = γ h̄. (8)

We see that the quantized angular momentum of a circularly
polarized phonon is equal to the reduced Planck constant,
lph = h̄ [16,17]. Its quantized orbital magnetic moment is
given by μph = γ lph = γ h̄, which we will refer to in the
following as the phonon magneton, by analogy to the Bohr
and nuclear magnetons. Note that previous publications some-
times called lph a “phonon spin” [17,25,34]. Since the phonon
is a quasiparticle and the angular momentum arises from cir-
cular (orbital) motion of the ions, we find it more appropriate
to refer to it as “phonon angular momentum” or “phonon
orbital angular momentum” [35,36].

The unit cell of the material only exhibits net orbital
angular momentum if the populations of right- (n+) and left-
handed (n−) circularly polarized phonons differ. Writing the
difference as N = |n+ − n−| > 0, the quantum-mechanical
expressions for the z components L and M are then

L = Nlph, (9)

M = Nμph. (10)

Such a population asymmetry can be induced by coherent
excitation of phonons, where the number of phonons with
constant phase relation is so large that we may set n− ≈ 0 and
n+ ≈ N without loss of generality. In this case, the dynamics
of the lattice can be described by the classical vibrational am-
plitude [37], and the classical harmonic vibrational energy per
unit cell Vvib of the two superposed phonon modes provides
a good estimate of the phonon population number N per unit
cell. With Vvib = �2

xQ2
x/2 + �2

yQ2
y/2 ≡ �2

0Q2, we obtain

N = Vvib

h̄�0
= �0

h̄
Q2. (11)

In this case, the classical Eq. (2) and quantum-mechanical
Eq. (10) are equivalent.

C. Oscillator model and ab initio calculations

We obtain the vibrational amplitude Q by numerically
solving the dynamical equation of motion

Q̈ + κQ̇ + ∂QV (Q) = F (t ). (12)
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For the effects that we investigate in this study, a minimal
model consists of a harmonic potential V (Q) = �2Q2/2,
zero damping κ = 0, and a resonant mid-infrared driving
force F (t ) = ZE (t ). Here, Z = ∑

i Z∗
i qi/

√
Mi is the mode

effective charge [38], which is nonzero only for IR-active
phonon modes, and we model the electric field of an ultra-
short mid-infrared laser pulse as E (t ) = E0exp{−(t − t0)2/

[2(τ/
√

8ln2)2]}cos(ω0t + φCEP), where E0 is the peak electric
field, τ is the full width at half maximum pulse duration,
ω0 is 2π times the center frequency, and φCEP is the carrier
envelope phase [39]. The amplitude and frequency of the co-
herently excited phonons can be affected by nonlinear phonon
couplings in the perovskites and by general anharmonicities
in all investigated compounds. In Ref. [39], it was shown
that the amplitudes of the IR-active phonon modes remain
mostly unchanged in the presence of anharmonicities, and we
therefore stay within the harmonic approximation.

We calculate the phonon eigenfrequencies �0, eigenvec-
tors qi, and the Born effective charge tensors Z∗

i from first
principles using the density functional theory formalism as
implemented in the Vienna ab initio simulation package
(VASP) [40,41], and the frozen-phonon method as imple-
mented in the phonopy package [42]. We use the default
VASP projector augmented wave (PAW) pseudopotentials for
every considered atom and converged the Hellmann-Feynman
forces to 50 μeV/Å. For the rocksalt, wurtzite, zinc-blende,
and perovskite structures we used plane-wave energy cutoffs
of 700, 750, 750, and 700 eV, and 15×15×15, 12×12×8,
12×12×12, and 8×8×8 k-point �-centered Monkhorst-Pack
meshes to sample the Brillouin zone, respectively [43]. For the
exchange-correlation functional, we chose the Perdew-Burke-
Ernzerhof revised for solids (PBEsol) form of the generalized
gradient approximation (GGA) [44].

III. RESULTS

A. Macroscopic and quantized orbital magnetic moments

We turn to the numerical results using the equations de-
rived in the previous section. In order to investigate compa-
rable excitation strengths in the different materials, we scale
the fluence of the laser pulse linearly with the energy h̄�0

of the resonantly driven IR-active phonons. We keep the
number of cycles of the simulated laser pulse constant by
fixing the ratio τ/ω0 = 2.5 × 2π , and we scale the peak elec-
tric field quadratically with the laser frequency, taking E0 =
15 MV/cm at ω0/(2π ) = 20 THz as our reference point, see
Fig. 2. We found this to be an appropriate way to scale
the electric field, as fixing the fluence instead leads to an
overproportional excitation of low-frequency phonon modes.

In Fig. 3, we show the time-dependent responses of the
atoms to the coherent excitation by the laser pulse; for the
3-THz mode in barium oxide (BaO) (upper row) and for
the 17-THz mode in lithium niobate (LiNbO3) (lower row).
Their crystal structures are shown in Fig. 3(a). We plot the
trajectories of the ions for the time interval {−1,1} ps around
the center of the laser pulse at t0 = 0. The displacement of the
ions is shown for the ab plane of the BaO crystal in Fig. 3(b)
and for the (111) plane of the LiNbO3 crystal in Figs. 3(d)
and 3(e). The displacements are shown with respect to the

FIG. 2. Dependence of the peak electric field E0 and of the full
width at half maximum pulse duration τ on the center frequency
ω0/(2π ). We used a quadratic variation of E0 and a variation of τ

according to the ratio τω0 = 2.5 × 2π in our calculations.

equilibrium positions of each ion, which are set to the origin
of the plots. We further show the time evolution of the orbital
magnetic moment M of the circularly polarized phonon mode
in Figs. 3(c) and 3(f), as well as the constituent magnetic
moments generated by the circular motion of each species of
ions, e.g., MO = ∑

i=O Mi. The envelope of the pulse is shown
schematically.

In BaO, the radius of the circular motion of barium is
small compared to that of oxygen, and the corresponding
magnetic moment MBa (scaling quadratically with the radius)
is negligible. M is therefore almost entirely generated by the
motion of the oxygen ions. Here (and in the binary compounds
in general), the magnetic moments of the anions and cations
have opposite signs. In LiNbO3, the differences between the
Born-effective-charge-to-mass ratios of the ions are not as
large as in BaO, and as a result the magnetic moments of the
cations MLi and MNb contribute non-negligibly to the orbital
magnetic moment of the phonon mode. Here, the eigenvector
of the circularly polarized phonon mode is such that the
magnetic moment of the cations and anions are cooperative.

In Tables I and II, we show the results of our calculations
for the binary and perovskite compounds, respectively. We
show the calculated phonon eigenfrequencies ν0 = �0/(2π )
and mode effective charges Z , the phonon magnetons μph ob-
tained using Eqs. (4) and (8), the phonon population numbers
N per unit cell obtained from Eqs. (12) and (11), and the
macroscopically induced orbital magnetic moment per unit
cell M obtained from Eq. (10). To check that the vibrational
response to the pulsed excitation is in a meaningful range,
we evaluate the Lindemann criterion for the induced atomic
displacements. According to the Lindemann criterion, melting
occurs when the root mean square displacement d of the
atoms reaches around 10%–20% of the interatomic distance
d0 [45,46]. We therefore evaluate d for the ion i with the
largest root mean square displacement d = maxi|di/

√
2|, and

we include the ratio d/d0 in the Tables I and II.
The phonon magneton is enhanced by high Born effective

charges and a small reduced mass of the system, as is apparent
from Eq. (4). As a result, we find the largest phonon mag-
netons of μph = 1.2 and 0.49 μN respectively in the hydride
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FIG. 3. Visualization of the coherent phonon dynamics of the 3-THz mode in BaO and the 17-THz mode in LiNbO3. All trajectories are
shown for the time interval {−1,1} ps around the center of the laser pulse at t0 = 0 and relative to their respective equilibrium positions (set
to the origin of the plot). (a) Crystal structures of BaO and LiNbO3. (b) Displacements of the barium and oxygen ions in the ab plane of the
BaO crystal. (c) Orbital magnetic moment M per unit cell of the 3 THz mode and magnetic moments produced by each of the ions MBa and
MO. The envelope of the pulse is shown schematically. (d) Displacements of the oxygen ions in the (111) plane of the LiNbO3 crystal. (e)
Displacements of the lithium and niobium ions in the (111) plane of the LiNbO3 crystal. (c) Orbital magnetic moment M per unit cell of the
17-THz mode and magnetic moments produced by each of the ions MLi, MNb, and MO. The envelope of the pulse is shown schematically.

compounds CsH and CuH, which have the smallest reduced
masses of the investigated compounds due to the light H atom.
Typical values for the other binary and perovskite compounds
range between μph ∼ 0.01 and 0.2 μN.

When looking at the experimental feasibility of inducing
large values of M, two factors in addition to the phonon
magneton have to be taken into account: the excitability of
the phonon mode and the limitation due to the Lindemann

TABLE I. Binary compounds: IR-active phonon frequencies ν0 = �0/(2π ) in terahertz (THz), mode effective charges Z in units of the
elementary charge, root mean square displacements d relative to the interatomic distances d0 in percent, phonon population numbers N per unit
cell, phonon magnetons μph and macroscopically induced orbital magnetic moments per unit cell M = Nμph in units of the nuclear magneton
μN, and phonon Zeeman splittings 
�/�0 in an external magnetic field of B = 50 T.

Compound ν0 Z d/d0 N μph M 
�/�0 Compound ν0 Z d/d0 N μph M 
�/�0

Rocksalt structurea Wurtzite structurec

BaO 3.0 0.7 9 6 0.15 1.0 0.0002 BN 31.8 1.1 4 13 0.05 0.7 6×10−6

CsF 3.6 0.3 3 1 0.06 0.1 0.00008 AlN 20.0 1.2 5 16 0.11 1.7 0.00002
CsH 11.9 1.1 25 15 1.12 16.8 0.0005 GaN 17.1 1.1 6 15 0.17 2.5 0.00005
LiI 4.8 0.5 7 3 0.18 0.5 0.0002 InN 14.7 1.2 6 16 0.2 3.2 0.00006
MgO 11.7 0.6 4 5 0.04 0.2 0.00002 BeO 21.9 1.1 7 13 0.1 1.3 0.00002
PbOb 7.7 1.2 7 16 0.13 2.1 0.00008 CuH 31.0 0.7 12 6 0.49 2.7 0.00008
PbS 2.2 0.8 8 8 0.12 1.0 0.0003 SiC 23.7 1.3 6 20 0.15 2.9 0.00003
PbSe 1.6 0.6 4 5 0.04 0.2 0.0001 Zinc-blende structured

PbTe 1.4 0.7 3 5 0.02 0.1 0.00006 BeS 17.3 0.6 5 4 0.13 0.5 0.00004
SnTe 1.0 1.0 5 13 0.004 0.1 0.00002 BeSe 15.3 0.5 5 3 0.15 0.5 0.00005

BeTe 14.1 0.4 4 2 0.14 0.3 0.00005
GaAs 7.9 0.4 1 2 0.002 0.004 1×10−6

aCubic (Fm3̄m); btetragonal (P4/nmm); chexagonal (P63cm); dcubic (F 4̄3m).
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TABLE II. Perovskites in their low-temperature structures: IR-active phonon frequencies ν0 = �0/(2π ) in terahertz (THz), mode effective
charges Z in units of the elementary charge, root mean square displacements d relative to the interatomic distances d0 in percent, phonon
population numbers N per unit cell, phonon magnetons μph and macroscopically induced orbital magnetic moments per unit cell M = Nμph

in units of the nuclear magneton μN, and phonon Zeeman splittings 
�/�0 in an external magnetic field of B = 50 T. We display a selection
of phonons with the largest values of ν0, N , μph, and M for each compound.

Compound ν0 Z d/d0 N μph M 
�/�0 Compound ν0 Z d/d0 N μph M 
�/�0

BaHfO3
a 15.7 0.8 5 8 0.04 0.3 0.00001 LiTaO3

b 17.4 1.5 5 25 0.04 1.0 0.00001
5.9 1.1 7 14 0.12 1.7 0.0001 10.9 0.9 8 10 0.13 1.3 0.00006

BaZrO3
a 15.0 0.9 6 10 0.04 0.4 0.00001 4.2 1.0 4 11 0.07 0.8 0.00008

5.8 1.0 5 12 0.04 0.4 0.00003 BaTiO3
c 14.1 0.8 3 8 0.03 0.3 0.00001

3.1 0.7 5 6 0.07 0.4 0.0001 8.9 0.01 – – 0.14 – 0.00007
KTaO3

a 15.8 1.0 6 12 0.003 0.04 9×10−7 6.5 2.2 9 58 0.02 1.0 0.00001
2.3 1.4 14 24 0.12 3.0 0.0003 KNbO3

c 15.2 1.7 7 35 0.01 0.5 5×10−6

BiAlO3
b 18.5 0.6 2 4 0.08 0.3 0.00002 8.1 0.02 – – 0.18 – 0.0001

12.8 0.1 – – 0.14 – 0.00005 6.0 2.2 10 55 0.13 7.0 0.0001
11.5 1.4 6 22 0.05 1.1 0.00002 PbTiO3

d 14.9 0.8 6 8 0.09 0.7 0.00003
3.9 1.1 6 14 0.05 0.7 0.00006 8.1 0.1 1 0.2 0.19 0.05 0.0001

CsPbF3
b 9.1 0.04 – – 0.001 3×10−7 2.6 0.8 7 7 0.08 0.6 0.0001

4.9 0.6 3 4 0.04 0.2 0.00004 SrTiO3
e 15.7 1.1 4 15 0.03 0.4 9×10−6

1.5 0.02 – – 0.04 – 0.0001 7.3 0.04 – – 0.18 – 0.0001
LiNbO3

b 17.0 1.6 6 32 0.04 1.4 0.00001 1.7 2.5 21 74 0.1 7.2 0.0003
10.6 0.8 7 7 0.13 0.9 0.00006
4.3 1.0 6 12 0.1 1.2 0.0001

aCubic (Pm3̄m); brhombohedral (R3c); crhombohedral (R3m); dtetragonal (P4mm); etetragonal (I4/mcm).

criterion. As we scale the fluence of the laser pulse with
the energy of the phonons, the mode effective charge Z is
the main factor in determining the excitability of the phonon
mode. It determines the amplitude of the driven phonon
mode according to Eq. (12), and consequently the population
number N per unit cell according to Eq. (11). For example, the
exceptionally large mode effective charges of Z > 2e of the 6-
THz modes in BaTiO3 and KNbO3 and the soft 1.7-THz mode
in SrTiO3 lead to high population numbers of >50 phonons
per unit cell under the pulsed excitation. This excitability is
however limited by the Lindemann criterion, which predicts
instability of the lattice due to melting for values of d/d0 >

10%. In most cases, we obtain vibrational amplitudes within
the stability limit, however the previous example shows that
while the phonon population in KNbO3 leads to d/d0 = 10%,
the corresponding excitation of the soft mode in SrTiO3 with
d/d0 = 21% would likely destroy the sample, and the peak
electric field E0 has to be scaled down accordingly. The most
convenient materials for achieving large M are therefore PbO,
AlN, GaN, InN, and SiC for the binary compounds (CsH
can be omitted for practical reasons, due to its instability
under air), in which values of M ∼ 1.7 to 3.2 μN should be
achievable. For the perovskites, we calculated values of M =
1.7 and 3.0 μN in BaHfO3 and KTaO3, and up to M ∼ 7 μN

for KNbO3 and SrTiO3, due to the presence of phonon modes
with both high excitability and large phonon magnetons.

B. Phonon Zeeman effect

The orbital magnetic moment of the phonon mode interacts
with an external magnetic field B = Bẑ via Zeeman coupling
of the form M · B = MB. This leads to a Zeeman splitting
of the phonon frequencies of the right (+) and left (–) handed
circular polarization of the phonon that is linear in the external

magnetic field [10,14]:

�± = �0 ± γ B. (13)

The relative splitting of the phonon frequency is hence given
by


�

�0
= 2γ B

�0
= 2μphB

h̄�0
. (14)

The effect can be derived from both classical and quantum
mechanical considerations and is independent of the classical
vibrational amplitude and the phonon population number,
respectively. We therefore have to compute only μph in order
to calculate the magnitude of the effect.

We show the calculated relative splittings of the binary
compounds in Table I, and of the perovskites in Table II, in an
external magnetic field of B = 50 T. The effect is strongest for
low-frequency phonons with high μph. The largest splittings
of 
�/�0 > 10−4 occur for BaO, CsH, LiI, PbS, PbSe for
the binary compounds, and are comparably big for most of the
perovskites, in which low-frequency phonons are generally
present.

C. Orbital magnetic moments of chiral phonons

We now discuss the orbital magnetic moments produced
by chiral phonons, which have recently been proposed and
observed in the valleys of the monolayer transition metal
dichalcogenide (TMD) WSe2 and other two-dimensional ma-
terials [17,33,47,48]. Chiral phonons describe nondegenerate
modes, in which the motion of the ions along the mode
eigenvectors is intrinsically circular and cannot be constructed
by a superposition of linearly polarized phonon modes. The
sense of circularity is opposite at the different valleys. (Note
that in recent literature on chiral phonons, the term degenerate
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TABLE III. Monolayer transition metal dichalcogenides
(TMDs): Chiral phonon frequencies ν0 in terahertz (THz), phonon
magnetons μph in units of the nuclear magneton μN, and phonon
Zeeman splittings 
�/�0 in an external magnetic field of B = 50 T
at the K/K ′ points of the Brillouin zone.

TMDa ν0 μph 
�/�0

WS2 6.7 0.0007 5×10−7

WSe2 6.4 0.0003 2×10−7

WTe2 6.0 0.0002 1×10−7

aHexagonal (P6̄m2).

chiral phonons has been used interchangeably with the term
circularly polarized phonons, as we use it throughout this
work [49]. We prefer to avoid the mixing of these two no-
tations.) Chiral phonons are generated through the decay of
an exciton state, in which a hole scatters between the different
K/K ′ points (valleys) of the Brillouin zone under emission of
a chiral phonon. Because they occur at nonzero wave vectors,
they cannot be coherently excited via IR-absorption, which is
only possible for modes at the center of the Brillouin zone.

The calculation of μph = γ h̄ using Eq. (4) has to be
adjusted: the eigenvectors qi,x and qi,y no longer correspond
to the eigenvectors of two superposed phonon modes, but to
the real and imaginary parts Re[qi,chiral] and Im[qi,chiral] of the
eigenvector that defines the circular motions of the ions in the
chiral phonon modes. Here, the transition metal stands still,
while the entire vibrational motion is made by the respective
chalcogen ions. We calculated the phonon magnetons μph for
the series of WS2, WSe2, and WTe2, and we list the values

in Table III. We further show the phonon Zeeman splittings
between chiral phonons at the different K/K ′ points in an
external magnetic field of B = 50 T. The phonon magnetons
with a maximum value of M = 0.0007 μN for WS2 are small
compared to the other material classes, because the chalcogen
ions that make the circular motion possess only small Born ef-
fective charges of Z∗

i ∼ 0.3 to 1.3e. Accordingly, the phonon
Zeeman splittings between chiral phonons at the different
K/K ′ points are small and of the order of 
�/�0 ∼ 10−7.

D. Simple estimate of the phonon magneton

Last, we investigate whether it is possible to derive a simple
estimate of the magnitude of the phonon magneton without
detailed knowledge about the phonon eigenvectors. If we
write the phonon magneton as given by Eq. (4) in units of
the nuclear magneton μN = eh̄/(2MP), with the proton mass
MP ≈ 1 amu, we remain with μph = ∑

i Z∗
i /Mi(qi,x × qi,y ).

Therefore, poor-man’s estimates, which we denote S and in
which we ignore the contribution of the phonon eigenvectors,
can be written as

SBEC/M =
∑

i

Tr[Z∗
i ]

3Mi
, (15)

SFC/M =
∑

i

Z (f)
i

Mi
. (16)

Both estimates consist of a sum of the charge-to-mass ratio
of the ions. In SBEC/M, we take the average trace Tr[Z∗

i ]/3
of the Born effective charge (BEC) tensor, for which litera-
ture values are often available and density functional theory

FIG. 4. Calculated values of the phonon magneton μph and estimated values using the Born effective charge (BEC) and formal charge
(FC) to mass ratio. (a) Rocksalt, (b) wurtzite, (c) zinc-blende compounds, (d) perovskites, and (e) monolayer transition metal dichalcogenides
(TMDs). For the perovskites in (d), we show the phonon modes displaying the highest μph for each compound.
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calculations are inexpensive. In SFC/M, we simply use the
formal charges (FC) Z (f)

i , where the entire information can be
extracted from the periodic table of the elements.

In Fig. 4, we show a comparison of the estimates SBEC/M

and SFC/M to the calculated values of μph for each of the ma-
terials classes rocksalt, wurtzite, zinc-blende, perovskite, and
monolayer transition metal dichalcogenides. For the materials
with diatomic unit cells (rocksalt and zinc-blende structures),
the estimate from the sum over the Born effective charge
to mass ratio SBEC/M is in excellent agreement with the
calculated values, see Figs. 4(a) and 4(c). For the materials
with four-atom unit cells (wurtzite structure and PbO), SBEC/M

deviates from the calculated value by a significant margin—it
does however capture the relative trend within the materials
class and can be used to estimate an upper boundary for μph,
see Fig. 4(b). For the perovskites with unit cells consisting
of 5 or 10 atoms, SBEC/M is no longer a good predictor,
see Fig. 4(d), because the vector product of the phonon
eigenvectors qi,x × qi,y is different for each of the sets of
degenerate IR-active phonon modes. Furthermore, the shape
of the Born effective charge tensors with their inhomogeneous
diagonal and nonzero off-diagonal components can no longer
be accounted for. A similar analysis can be applied to the
monolayer transition metal dichalcogenides with three-atom
unit cells, in which the trend across the series is captured, but
μph is strongly overestimated due to the large inhomogeneity
of the diagonal Born effective charges between components
parallel and normal to the two-dimensional surface. Finally,
the sum over the formal charge to mass ratio SFC/M predicts
neither the magnitude of μph, nor the trends within materials
classes, which emphasizes the importance of using the Born

effective charge formalism to include the electronic rehy-
bridization contribution to the electric dipole moment of the
IR-active phonon modes.

IV. CONCLUSION

In summary, we find the quantized orbital moments of
circularly polarized phonons, which we call phonon mag-
netons, to be in the order of 10−4μB, and the macroscopi-
cally induced orbital magnetic moments of coherent phonons
generated from pulsed mid-IR excitation to reach the or-
der of 10−3μB per unit cell. The phonon Zeeman splittings
in an external magnetic field of 50 T reach the order of
10−4 of the phonon frequency. We expect that the orbital
magnetic moments of phonons should be observable with
modern experimental techniques, for example via Faraday
rotation measurements that are able to detect small changes
in electronic magnetic order [28], or via nitrogen-vacancy
center magnetometry [50–53]. We hope that our analysis of
the information generated from our database will stimulate
and guide future experimental studies in the field of optical
phononics.
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