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Proper Definition of Spin Current in Spin-Orbit Coupled Systems
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The conventional definition of spin current is incomplete and unphysical in describing spin transport in
systems with spin-orbit coupling. A proper and measurable spin current is established in this study, which
fits well into the standard framework of near-equilibrium transport theory and has the desirable property to
vanish in insulators with localized orbitals. Experimental implications of our theory are discussed.
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FIG. 1. An example demonstrating the irrelevance of the con-
ventional spin current to spin transport. Left: A macroscopic
system consisting of a uniform distribution of microscopic boxes
(gray rectangles) in which an electron is confined. Right: The
inside structure of the box, where the walls flips the spin of
electron upon collision. When the system is driven to such a state
schematized at the right, the macroscopic average of the con-
ventional spin current is nonzero. However, because all electrons
are localized, no spin transport or boundary spin accumulation
can occur. T B denotes the total boundary spin torque due to the
spin-flip scattering. It is easy to show the corresponding spin
torque dipole P� � �T BlB exactly cancels the conventional
spin current. As a result, the spin current J s defined in Eq. (4)
is zero.
A central theme of spintronics research is on how to
generate and manipulate spin current as well as to exploit
its various effects [1,2]. In the ideal situation where spin (or
its projection along a direction) is conserved, spin current
is simply defined as the difference between the currents of
electrons in the two spin states. This concept has served
well in the early study of spin-dependent transport effects
in metals. The ubiquitous presence of spin-orbit coupling
inevitably makes the spin nonconserved, but this incon-
venience is usually put off by focusing one’s attention
within the so-called spin relaxation time. In recent years,
it has been found that one can make very good use of spin-
orbit coupling, realizing electric control of spin generation
and transport [3–9]. The question of how to define the spin
current properly in the general situation therefore becomes
urgent.

In most previous studies of bulk spin transport, it has
been conventional to define the spin current simply as the
expectation value of the product of spin and velocity ob-
servables. Unfortunately, no viable measurement is known
to be possible for this spin current. The recent spin-
accumulation experiments [8,9] do not directly determine
it, and there is no deterministic relation between this spin
current and the boundary spin accumulation, as demon-
strated in Fig. 1.

In fact, the conventional definition of spin current suffers
three critical flaws that prevent it from being relevant to
spin transport. First, this spin current is not conserved. This
issue alone has motivated a number of alternative defini-
tions recently [10–12]. Second, this spin current can even
be finite in insulators with localized eigenstates only, so it
cannot really describe transport [13]. Finally, there does
not exist a mechanical or thermodynamic force in conju-
gation with this current, so it cannot be fitted into the
standard near-equilibrium transport theory. One conse-
quence is that one cannot establish an Onsager relation
linking the spin current with other transport phenomena.

In this Letter, we try to establish a proper definition of
spin current free from all the above difficulties, which is
found to be possible for systems where spin generation in
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the bulk is absent due to symmetry reasons. Our new spin
current is given by the time derivative of the spin displace-
ment (product of spin and position observables), which
differs from the conventional definition by a torque dipole
term. The torque dipole term is first found in a semiclas-
sical theory [14], whose impact on spin transport has been
further analyzed to assess the importance of the intrinsic
spin-Hall effect [12]. In this Letter, we provide a quantum
mechanical description of this term within the linear re-
sponse theory for transport. Apart from showing its con-
sequence in making the spin current conserved, we also
reveal two additional properties: The new spin current
vanishes identically in insulators with localized orbitals,
and is in conjugation with a force given by the gradient of
the Zeeman field or spin-dependent chemical potential.
Together with conservation, these properties are crucial
to establish the new spin current as the proper description
for spin transport, and they also provide a firm foundation
for various methods for its measurement.
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Based on a general quantum mechanical principle, one
can derive a continuity equation relating the spin, current,
and torque densities as follows,

@Sz
@t
�r � Js � T z: (1)

The spin density for a particle in a (spinor) state  �r� is
defined by Sz�r� �  y�r�ŝz �r�, where ŝz is the spin op-
erator for a particular component (z here, to be specific).
The spin current density here is given by the conventional
definition Js�r� � Re y�r� 1

2 fv̂; ŝzg �r�, where v̂ is the ve-
locity operator, and f; g denotes the anticommutator. The
right-hand side of the continuity equation is the torque
density defined by T z�r� � Re y�r��̂ �r�, where �̂ �
dŝz=dt � �1=i@��ŝz; Ĥ	, and Ĥ is the Hamiltonian of the
system. These definitions can be easily restated in a many-
body language by regarding the wave functions as field
operators and by taking the expectation value in the quan-
tum state of the system. The presence of the torque density
T z reflects the fact that spin is not conserved microscopi-
cally in systems with spin-orbit coupling.

It often happens, due to symmetry reasons, that the
average torque vanishes for the bulk of the system, i.e.,
�1=V�

R
dVT z�r� � 0. This is true to first order in the

external electric field for any samples with inversion sym-
metry. Also, one is often interested in a particular compo-
nent of the spin, and the corresponding torque component
can vanish in the bulk on average even for samples without
the inversion symmetry. This is certainly true for the many
models used for the study of the spin-Hall effect [6,7,15],
and for the experimental systems used to detect the effect
so far [8,9]. For such systems, where the average spin
torque density vanishes in the bulk, we can write the torque
density as a divergence of a torque dipole density,

T z�r� � �r � P��r�: (2)

Moving it to the left-hand side of (1), we have

@Sz
@t
�r � �Js � P�� � 0; (3)

which is in the form of the standard sourceless continuity
equation. This shows that the spin in conserved on average
in such systems, and the corresponding transport current is

J s � Js � P�: (4)

We note that there is still an arbitrariness in defining the
effective spin current because Eq. (2) does not uniquely
determine the torque dipole density P� from the corre-
sponding torque density T z. We can eliminate this ambi-
guity by imposing the physical constraint that the torque
dipole density is a material property that should vanish
outside the sample. This implies, in particular, thatR
dVP� � �

R
dVrr � P� �

R
dVrT z�r�. It then follows

that, upon bulk average, the effective spin current density
can be written in the form of J s � Re 
�r�Ĵ s �r�, where
07660
Ĵ s �
d�r̂ŝz�
dt

(5)

is the effective spin current operator. Compared to the
conventional spin current operator, it has an extra term
r̂�dŝz=dt�, which accounts the contribution from the spin
torque.

Because the new spin current is given as a time deriva-
tive, it must vanish in an eigenenergy state in which the
spin displacement operator is well defined, which is the
case if the state is localized. Elementary perturbation the-
ory shows that the spin current vanishes in such a system
even in the presence of a weak electric field. Indeed, for
spatially localized eigenstates, we can evaluate the spin-
transport coefficient as,

�s � �e@
X
l�l0
fl

Imhljd�r̂ŝz�=dtjl0ihl0jv̂jli
��l � �l0 �2

� �e@
X
l

flhlj�r̂ŝz; r̂	jli � 0 (6)

where fl is the equilibrium occupation number in the lth
state. Here, we have used hljd�r̂ŝz�=dtjl0i � ��i=@���l0 �
�l�hljr̂ŝzjl0i and hl0jv̂jli � ��i=@���l � �l0 �hl0jr̂jli. The in-
volved matrix elements are all well defined between spa-
tially localized eigenstates.

Defined as a time derivative of the spin displacement
operator r̂ŝz, the new spin current has a natural conjugate
force Fs, the gradient of the Zeeman field or of a spin-
dependent chemical potential, which can be modeled as an
external perturbation V � �Fs � �r̂ŝz� [16]. The energy
dissipation rate for the spin transport can be written as
dQ=dt � J s � Fs. It immediately suggests a thermody-
namic way to determine the spin current by simultaneously
measuring the Zeeman field gradient (spin force) and the
heat generation.

Moreover, Onsager relations can now be established. For
example, in the presence of both electric and spin forces,
the linear response of spin and charge currents may be
written in the following manner,

J s

Jc

� �
�

�ss �sc

�cs �cc

� �
Fs
E

� �
; (7)

where J s is spin current and Jc denotes charge current. �ss

and �cc are the spin-spin and charge-charge conductivity
tensors, respectively. The off-diagonal block �sc denotes
spin current response to an electric field (spin-Hall effect),
and �cs denotes charge current response to a spin force
(inverse spin-Hall effect) [17]. The Onsager reciprocity
dictates a general relation between the off-diagonal blocks
(assuming time-reversal symmetry):

�sc
�� � ��

cs
��; (8)

where the extra minus sign originates from the odd time-
reversal parity of the spin displacement operator rsz [18].
We note that the Onsager relation Eq. (8) can only be
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established when the currents are defined in terms of the
time derivative of displacement operators conjugate to the
forces. In the case of spin force driving, we have the spin
displacement operator szr, whose time derivative corre-
sponds to our new spin current Eq. (5), not the conventional
spin current. This Onsager relation can also be directly
verified using the linear response theory.

The existence of the Onsager relations makes the elec-
tric measurement of the spin current viable. A previous
theoretical proposal had suggested that the spin current can
be determined by measuring the transverse voltage gener-
ated by a spin current passing through a spin-Hall device
[4,5,19]. However, to do that, the spin-Hall coefficient �sc

xy

of the measuring device must be known in prior because
the spin current is determined from J sx � �sc

xyEy. With the
Onsager relation, �sc

xy can be derived from the correspond-
ing inverse spin-Hall coefficient, and the latter can be
determined by a measurement of the charge current and
the Zeeman field gradient.

After these general considerations, we now show how to
evaluate the spin-Hall conductivity based on the new defi-
nition of spin current. The torque dipole density can be
determined unambiguously as a bulk property within the
theoretical framework of linear response. Consider the
torque response to an electric field at finite wave vector
q, T z�q� � ��q� �E�q�. Based on Eq. (2) which implies
T z�q� � �iq � P��q�, we can uniquely determine the dc
response (i.e., q! 0) of the spin torque dipole:

P � � Refirq���q� �E	gq�0: (9)

Here we have utilized the condition ��0� � 0, i.e., there is
no bulk spin generation by the electric field. Combining
Eqs. (4) and (9), we can then determine the electric-spin-
transport coefficients for the new definition of spin current:

�s�� � �s0�� � ����; (10)

where �s0�� is the conventional spin-transport coefficient
that is the focus of most of previous studies, and

���� � Re�i@q����q�	q�0 (11)

is the contribution from the spin torque dipole. Standard
Green function or many-body techniques can be used to
evaluate this linear response for systems with arbitrary
disorder and interactions between the carriers.

The spin-Hall coefficients for a few semiconductor mod-
els including effects of disorder are now considered by
Sugimoto et al. based on our new definition of spin current
[20]; they found results dramatically different from the
conventional spin-Hall conductivities. For example, it is
found that the spin-Hall conductivity depends explicitly on
the scattering potentials for the two dimensional Rashba
models with k-linear or k-cubic spin-orbit coupling. For the
k-cubic model, the conventional spin-Hall conductivity is
robust against disorder, but this is not so if the new spin
current definition is adopted. It then implies that at smooth
07660
boundaries, spin accumulation in such systems is of ex-
trinsic nature.

The conservation of our new spin current allows one to
consider spin transport in the bulk without the need of
laboring explicitly a spin torque (dipole density) which
may be generated by the electric field. One can think of
spin transport for systems with strong spin-orbit coupling
in the ‘‘usual’’ sense established for systems with weak
spin-orbit coupling. For example, it has been customary to
link spin density and spin current through the following
phenomenological equation of spin continuity,

@Sz
@t
�r � J s � �

Sz
�s
; (12)

where �s is the spin relaxation time, and the spin current
has the form J s � �E�DsrSz. This makes sense only if
our new spin current is used in the calculation of spin-Hall
conductivity �, otherwise an extra term of field-generated
spin torque must be added [21].

Equation (12) can serve as the basis to determine the
spin accumulation at a sample boundary, which is of much
current interest. Consider a system having a smooth bound-
ary produced by a slowly varying confining potential. We
assume that the length scale of variation is much larger
than the mean free path, so that the above continuity
equation may be applied locally. By integrating from the
interior to the outside of the sample boundary, we obtain a
spin accumulation per area with �Sz � J bulk

s �s [14], where
�s is the spin relaxation time. We emphasize that the
transport spin current responsible for the boundary spin
accumulation should be J s instead of the conventional
spin current Js.

For sharp boundaries, the spin continuity equation alone
cannot yield a unique relationship between the spin current
from the bulk and spin accumulation at the boundary. For a
perfectly reflecting sharp wall in the case of strong spin-
orbit coupling, the boundary spin accumulation seems to
be determined by the conventional spin current from the
bulk [22]. However, such a relationship is altered for other
boundary conditions [23]. This calls for well-controlled
experiments to explicitly eliminate the influence from the
boundary condition. On the other hand, for the generic
class of smooth boundaries discussed above, there is a
unique relationship between spin accumulation and the
spin current, provided one uses our new definition.

The real advantage of our new definition of spin current
lies in the fact that it provides a satisfactory description of
spin transport in the bulk. With our new spin current, one
can now use the spin continuity Eq. (12) to discuss spin
accumulation in the bulk, e.g., by generating a nonuniform
electric field or spatially modulating the spin-Hall conduc-
tivity. Our new spin current vanishes in Anderson insula-
tors either in equilibrium or in a weak electric field, which
enables us to predict zero spin accumulation in such sys-
tems. More importantly, it posses a conjugate force (spin
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force), so that spin transport can be fitted into the standard
formalism of near-equilibrium transport. The conventional
spin current does not have a conjugate force, so it makes no
sense even to talk about energy dissipation from that
current. The existence of a conjugate force is crucial for
the establishment of Onsager relations between spin trans-
port and other transport phenomena, and its measurement
will be important to thermodynamic and electric determi-
nation of the spin current.
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