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Time Independent Description of Rapidly Oscillating Potentials
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The classical and quantum dynamics in a high frequency field are found to be described by an
effective time independent Hamiltonian. It is calculated in a systematic expansion in the inverse of the
frequency (!) to order !�4. The work is an extension of the classical result for the Kapitza pendulum,
which was calculated in the past to order !�2. The analysis makes use of an implementation of the
method of separation of time scales and of a quantum gauge transformation in the framework of Floquet
theory. The effective time independent Hamiltonian enables one to explore the dynamics in the presence
of rapidly oscillating fields, in the framework of theories that were developed for systems with time
independent Hamiltonians. The results are relevant, in particular, for exploring the dynamics of cold
atoms.
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classical pendulum with a periodically moving point of is then computed perturbatively (to order !�4). It is
The classical and quantum dynamics of a particle in a
field that oscillates rapidly relative to the motion of the
particle will be studied. The variation of the field in space
is smooth but otherwise arbitrary. Such fields are applied
experimentally to cold atoms, where a very high degree of
control is possible. The exploration of the dynamics of
cold atoms in strong electromagnetic fields resulted in
many novel, interesting experimental observations [1–3].
The results of this Letter [4] are expected to enable
further discoveries in this field, as well as in related fields.

For atom optics, the effect of the internal degrees of
freedom on the center of mass motion is important. The
force on the center of mass due to the internal degrees of
freedom that couple to the external field is given approxi-
mately by a dipole force [2]. The motion of the atoms can
be manipulated by fields with amplitudes which vary
spatially, resulting in a force on the center of mass of
the atoms. In the present work, the effect of the laser on
the center of mass motion is modeled by a time dependent
potential. For some situations of physical interest, this
simpler model still describes the dynamics of the center
of mass without the need to specify the dynamics of the
internal degrees of freedom or the quantum aspects of the
light field. In the situation that is of interest for the Letter,
the frequency of this potential is large compared to the
inverse of the characteristic time scale of the center of
mass dynamics. An example of such systems that was
recently realized experimentally and that motivated the
present work is of atomic billiards [5,6]. The boundary of
the billiards is generated by a laser beam that rapidly
traverses a closed curve, which acts as the boundary of the
billiard, approximated by the time average of this beam.
The force applied by the boundary on the particles is
approximately the mean force applied by the beam.

The influence of a high frequency field on a classical
particle was derived by Landau and Lifshitz [7] general-
izing the work on the Kapitza pendulum [8], which is a
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suspension. The motion was separated into a slow part
and a fast part. The leading order (in the inverse fre-
quency) of the slow motion was calculated. This mecha-
nism is used to trap ions in electromagnetic fields. The
most notable example is the Paul trap [9] that can be
described approximately by a Hamiltonian of a time
dependent harmonic oscillator [10–12]. It is of interest
to solve more general problems even if only approxi-
mately. The work of Kapitza was first extended to quan-
tum mechanical systems in a pioneering paper by
Grozdanov and Raković [13]. They introduced a unitary
gauge transformation resulting in an effective Hamil-
tonian that describes the slow motion. In that paper, the
analysis is restricted to a driving potential that has a
particularly simple time dependence. Moreover, the final
results are restricted to forces that are uniform in space, a
situation natural in standard spectroscopy, but too restric-
tive for the interesting problems in atom optics. These
restrictions are avoided in the present work. Many inves-
tigations of periodically driven quantum systems were
performed [14–21].

In the present work, a coherent theoretical treatment of
the dynamics of classical and quantum high frequency
driven systems is presented. Classically the motion can be
considered approximately as one that consists of a rapid
oscillation around a slowly varying trajectory. Therefore
for the classical problem the motion is separated into a
‘‘slow’’ part and a ‘‘fast’’ part and a systematic perturba-
tion theory is developed for the motion of the slow part.
This slow motion is computed to order !�4 and demon-
strated to result from an effective Hamiltonian. It is an
extension of the order !�2 (that is presented in Ref. [7]).
Floquet theory is used to separate the slow and fast time
scales in the corresponding quantum problem. An effec-
tive (time independent) Hamiltonian operator is defined
following [13]. The eigenvalues of this operator are the
quasienergies of the system. This effective Hamiltonian
2003 The American Physical Society 110404-1
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FIG. 1. The lowest quasienergy resonance of the oscillating
Gaussian (3), E0 (solid line) and �0 (dashed line), as a function
of the driving frequency, compared to the lowest resonance of
the effective Hamiltonian (16), E0 (diamonds) and �0 (circles),
for 
 � 9 and � � 0:02 (in ‘‘atomic units’’ �h � m � e � 1).
Full symbols correspond to the effective Hamiltonian trun-
cated at order !�4 while empty symbols to order !�2. The
effective potential (7) is depicted in the inset, for ! � 1:5.
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obtained by a gauge transformation that is simply related
to the canonical transformation leading to the corre-
sponding classical effective Hamiltonian.

A model Hamiltonian for the motion in a periodic field
is

H � p2=2m� V0�x� � V1�x;!t�; (1)

leading to Newton’s equation,

m �xx � �V 0
0�x� � V 0

1�x;!t�; (2)

where V1 is a 2
 periodic function of !t and its aver-
age over a period vanishes. (We denote _XX � dX=dt, V 0

0 �
dV0=dx, etc.) An instructive example of such a system is

V0 � 0; V1 � 
e��x
2
cos�!t�: (3)

The system is of particular interest since (i) the time
average of the potential vanishes, consequently any in-
teresting effect is due to the rapidly oscillating potential;
(ii) when x! 1 the potential vanishes and therefore one
expects to find scattering quasienergy states.

We look for a solution of (2) that has the form

x�t� � X�t� � ��X; _XX;!t�; (4)

where X is the slow part, _XX � dX
dt while � is the fast part

which is periodic (in the variable !t) with vanishing
average. This determines uniquely the functions X and
�. One could use a different functional dependence of � on
X and its time derivatives, but such a change cannot affect
the dependence of the solution for � on time. Our method
of solution is to choose � so that (2) leads to an equation
for X which is explicitly time independent. An exact
solution using (4) is too complicated to obtain in general.
However, at high frequencies, one can determine � order
by order in 1=!, using

� �
X1
i�1

1

!i �i: (5)

The �i are chosen so that the equation for X does not
depend on � 	 !t. One may also expand X in powers of
1=! as X �

P
1
i�0 Xi=!

i. When one does so, the equation
of motion for X is replaced by a series of equations for Xi.
In this series of equations, each Xi can be determined
from the lower order terms Xj, where j < i. This is the
standard method of separation of time scales [22]. These
equations are equivalent, in any order, to the equation of
motion of the (unexpanded) X which will be used in what
follows. At a given order !�n of the present calculation,
all contributions that are found by the method of separa-
tion of time scales are included, but some of the higher
order terms are included as well.

The slow motion is found to be controlled by the
Hamiltonian [4]

Heff �
P2

2m
� Veff�X� �

1

!4 g�X�P
2 �O�!�5�; (6)
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where g�X� � 
3=�2m3���
R
�2��
V 00

1 ��
2 and P is the momen-

tum conjugate to X. We define the integrals
Z �j��


f� �
Z �

�
� � �

Z �

f� � � �

�
|�����������������{z�����������������}

j times

;

where f�x; �� �
P
n�0fn�x�e

in� and
R
�
f� 	

P
n�0

1
in


fnein�. The effective potential is found to be

Veff�X� 	 V0�X� � V2�X� � V4�X�: (7)

where V2�X� � 
1=�2m!2���
R
�
V 0

1��
2 and V4�X� �


1=�2m2!4��fV 00
1 �
R
�2��
V 0

1��
2 � V 00

0 �
R
�2��
V0

1��
2g. For ex-

ample, for the system with the potential (3), at the order
!0, where only the average of the potential over time is
taken into account, Veff � 0. The effective potential Veff

of (7) is plotted in the inset of Fig. 1. The leading order
(!�2) is V2�x� � 
��2
2x2�=�m!2��e�2�x2 , which is
clearly a double barrier. It is obvious that it traps the
particle. This potential is always positive since it is the
mean kinetic energy of the rapid oscillation around the
slow motion, an energy which is coordinate dependent.
For this it is instructive to note that V2 � m _��

2
=2 in the

leading order. In the order !�4, on the other hand, the
Hamiltonian cannot be expressed anymore in terms of an
effective potential and terms that mix coordinates and
momentum, such as g�X�P2, appear. Such terms result in
corrections increasing with energy. It is also more com-
plicated to understand terms of this order intuitively.

Consider a quantum system with a Hamiltonian that is
periodic in time, ĤH�t� T� � ĤH�t�. Such a system can be
treated using Floquet theory [23–25]. The symmetry
with respect to discrete time translations implies that
110404-2
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the solutions of the Schrödinger equation,

i �h
@
@t
 � ĤH ; (8)

are linear combinations of functions of the form

  � e�i� t= �h�u �x;!t�; (9)

where  are the quasienergies and the corresponding
quasienergy (or Floquet) states are u �x;!�t� T�� �
u �x;!t� with ! � 2
=T. This is the content of the
Bloch-Floquet theorem in time. The states u are the
eigenstates of the Floquet Hamiltonian,

ĤH F � �i �h
@
@t

� ĤH: (10)

These states have a natural separation into a slow part
e�i� t= �h� (with the natural choice 0 �  = �h � !), which
includes the information about the quasienergies, and a
fast part u �x;!t� that depends only on the fast time � 	
!t. In the following, an equation of motion for the slow
part of the dynamics is found as was done for classical
systems. It establishes a natural link between the separa-
tion into fast and slow motion in classical mechanics, that
can be formalized by the theory of separation of time
scales, and Bloch-Floquet theory in quantum mechan-
ics. For this purpose, following [13], we will look for a
unitary gauge transformation eiF̂F�t�, where F̂F�t� is a
Hermitian operator (function of x̂x and p̂p) defined at a
certain time t, which is a periodic function of time with
the same period as ĤH, such that in the new gauge the
Hamiltonian in the Schrödinger equation is time inde-
pendent. In terms of the functions in the new gauge # �
eiF̂F , the Schrödinger Eq. (8) is

i �h
@
@t
# � ĜG#; (11)

where the Hamiltonian is

ĜG � eiF̂FĤHe�iF̂F � i �h
�
@eiF̂F

@t



e�iF̂F: (12)

Assume that such an operator F̂F exists, so that ĜG is time
independent. Its eigenfunctions v �x� evolve as

# �t; x� � e�i� t= �h�v �x�: (13)

These states, in the original gauge, correspond to

  �t; x� � e�iF̂F# � e�i� t= �h�e�iF̂Fv �x�: (14)

The function e�iF̂Fv is periodic in time with the period of
ĤH, and therefore   of (9) is a Floquet state with quasi-
energy  (mod �h!), where u � e�iF̂Fv .

At high frequencies, F̂F is found to be small, of the order
of 1=!. We expand ĜG and F̂F in powers of 1=! and choose
F̂F so that ĜG is time independent in any given order. The
expansions are ĜG �

P
1
n�0 ĜGn=!

n and F̂F �
P

1
n�1 F̂Fn=!

n.
The calculation is performed by computing ĜGl in terms of
F̂F1; . . . ; F̂Fl�1 and then choosing F̂Fl�1 so that ĜGl is time
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independent. The terms in (12) are calculated with the
help of the operator expansion,

eiF̂FB̂Be�iF̂F � B̂B� i
F̂F; B̂B� �
1

2!

F̂F; 
F̂F; B̂B�� � � � ; (15)

where for the first term in (12) one takes B̂B � ĤH, while for
the second B̂B � @

@� .
The resulting time independent effective Hamiltonian

is [4]

ĜG �
p̂p2

2m
� V̂Veff�x� �

1

4!4 
p̂p
2g�x� � 2p̂pg�x�p̂p� g�x�p̂p2�

�
�h2

!4 V̂Vq �O�!�5�; (16)

where Veff�x� and g�x� are the classical terms [see (6) and

(7)], while V̂Vq �
1

8m3 �
R
�2��
V�3�

1 ��2 is a quantum correction
to the classical Hamiltonian that appears first in this
order. The Hamiltonian (16) is presented in a form which
is manifestly Hermitian.

The effective Hamiltonian (16) is the main result of
this work. Its classical limit is the classical effective
Hamiltonian (6) that can be obtained from (1) by the
canonical transformation that is the classical limit of
� �hF. It should be emphasized that in the derivation of
(16) no semiclassical approximation was made.

The perturbation theory that was developed here en-
ables one to calculate not only the quasienergies that are
the eigenvalues of ĜG but also the corresponding quasi-
energy states. If the eigenfunctions of ĜG are known, then
the quasienergy (or Floquet) states can be computed up to
order !�4 using Eq. (14) with

F̂F �
1

�h!

Z �

V1� �

i

m!2

Z �2��
�
1

2

V 00

1 � � 
V 0
1�
@
@x



�� � � ;

(17)

where the explicit expressions of terms of order !�3 and
!�4 will be given elsewhere [4].

The theory is demonstrated for the oscillating
Gaussian (3). The system demonstrates trapping by an
oscillating field, a phenomenon that is of physical interest.
For this problem, the effective potential (7), depicted in
the inset of Fig. 1, is a double barrier, therefore it exhibits
resonances. Each resonance is characterized by a complex
energy E� i�=2. (For a relevant review, see [26].) For
any resonance of (16), it is natural to look for the corre-
sponding resonance of the original time dependent
Hamiltonian (3). More precisely, one looks for the reso-
nances of the Floquet Hamiltonian (10) with ĤH of (3).
This is done numerically using a combination of the (t; t0)
method and complex scaling [26].

The energy E0 and the width �0 of the lowest (smallest
real part E0) quasienergy resonance of (3) are compared
with the lowest resonance of the corresponding effective
Hamiltonian (16) in Fig. 1. It is clear that for large
frequencies there is excellent agreement. The results for
110404-3
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the effective Hamiltonian truncated at orders !�4 and
!�2 are comparable at large frequencies. At low frequen-
cies, the results of order!�2 turn out to be more accurate,
indicating that the series do not converge at those fre-
quencies. For comparison, the characteristic frequency
for the slow motion of the particle is in the range 0.1–0.3.

It was found that the perturbation theory leads to a time
independent effective Hamiltonian. This effective
Hamiltonian may give physical insight, based on experi-
ence with time independent systems, which is absent
when examining the corresponding time dependent prob-
lem. For example, consider a system where the time
averaged potential consists of two barriers in addition
to some high frequency time dependent perturbation
(with vanishing average). If the perturbation is mainly
in the region of the barriers, one expects that the pertur-
bation slightly raises the barriers in the effective
Hamiltonian. In contrast, if the perturbation is in the
region between the barriers, it tends to raise the energy
of the resonance. Therefore one expects that applying a
time dependent perturbation in the region of the barriers
will tend to increase the lifetime of the resonance ( �h=�),
while applying it in between the barriers will tend to
decrease it. All the well-developed techniques for time
independent quantum systems can be used to compute the
eigenvalues of ĜG, in particular, in the case where the
eigenvalues and eigenstates of ĜG0 � p̂p2=�2m� � V0�x�
are known. The effective Hamiltonian can also be used
to predict trapping by oscillating potentials that were thus
far investigated mainly numerically [27].

We have investigated the dynamics of high frequency
driven general classical and quantum systems. High fre-
quency perturbation theory, which exploits the idea of
separation of time scales, was used to obtain an effective
time independent Hamiltonian for the slow part of the
classical and quantum motion. The spectrum of the ef-
fective quantum Hamiltonian is the quasienergy spec-
trum of the time dependent system. This effective
Hamiltonian is computed to order !�4 in a perturbation
theory. While in the order !�2 the effect of the rapid
oscillations around the slow motion could be expressed in
terms of a classical scalar potential, the order !�4 in-
volves both coordinates and momentum. Quantum cor-
rections to the Hamiltonian also appear at this order.

Some properties of the perturbation theory for F̂F and
ĜG, such as its convergence and validity, are not well
understood and should be further studied. For instance,
in one dimension the classical slow motion is integrable
while the exact time dependent dynamics may have cha-
otic regions in phase space. This may hint that the per-
turbation theory may describe correctly only part of the
phase space (whose fraction grows with !).
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