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Extended Inflationary Cosmology
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We present a new type of inflationary scenario based on metric formulations of gravity diA'erent from
that of Einstein, e.g. , a Brans-Dicke theory of gravity. Unlike previous inflation models, the inflationary
phase transition can be completed via bubble nucleation. Hence, the fine tuning of an effective potential
to obtain a slow-rollover transition is not required.

PACS numbers: 98.80.Cq, 04.50.+h

The inflationary-universe model is designed to resolve
a number of cosmological puzzles, including the horizon,
Aatness, and monopole problems. The key feature is a
brief, finite period of exponential expansion. Such ex-
pansion can occur if the Universe undergoes a strongly
first-order phase transition. As the Universe supercools
into a false-vacuum phase, the false-vacuum energy den-
sity acts as an effective cosmological constant which
triggers an epoch of de Sitter (exponential) expansion.
Resolution of the cosmological puzzles requires the
Robertson-Walker scale parameter to increase by a fac-
tor of e or more before the de Sitter expansion ends.

The Aaw in the original or "old inflation" model is
that the de Sitter expansion never ends. For a generic,
strongly first-order phase transition, there is a large ener-

gy barrier separating the false from the true phase.
Spontaneous nucleation of bubbles of true vacuum can-
not keep pace with the exponentially expanding false
phase. The Aaw is sometimes referred to as the "grace-
ful exit" problem.

"New inflation" achieves a graceful exit by fine tun-
ing the parameters in the effective potential so that the
barrier just disappears as the exponential expansion be-
gins. The result is sometimes called a slow-rollover tran-
sition: The false phase becomes unstable and evolves
continuously towards the true phase. If the effective po-
tential is su%ciently Aat near the false-phase extremum,
the Universe undergoes further inflation during the ini-
tial evolution towards the true phase. Although the
scenario is workable, the fine tuning of parameters to
achieve a slow-rollover transition is an unattractive
feature. Variants such a chaotic inAation and quantum
cosmology require similar fine tuning and/or exotic
quantum effects near the Planck scale that are not com-
pletely understood at present.

In this Letter, we suggest an "extended" inAationary
(EI) model that, in some ways, restores the spirit of the
old inflation model. The universe undergoes a generic,
strongly first-order phase transition associated with some
(unspecified) high-temperature particle-physics pheno-
enon (e.g. , gauge-symmetry breaking). That is, the
Universe supercools to a false phase that remains
separated by a large energy barrier from the true vacu-

um phase. As in the old inAation model, the energy scale
for the transition can be much lower than the Planck
scale so that quantum gravity effects can be ignored. In
the EI approach, though, graceful exit and successful
inAation are attainable through the introduction of a
metric theory of gravity different from that of Einstein.
A strong link between inAation and modified gravity
theories is thereby proposed, suggesting an added sig-
nificance for inflationary cosmology.

In this Letter, we will restrict attention to the Brans-
Dicke (BD) theory of gravity. The action is given by

A = d xdg —@R+co 6„@tI "N
+16ttL „„, , (1)

where + is the BD scalar field. We will presume that
matter, described by L,«„, includes a Higgs-type sector
which undergoes a strongly first-order phase transition at
high temperatures. During the transition, the vacuum
energy density changes from pf to p, . Of course, the
conventional BD model is highly constrained by experi-
ment to be very close to the Einstein form. The theory
is parametrized by a dimensionless constant m, where
co ~ as Brans-Dicke theory goes over to the Einstein
theory. Present limits based on time-delay experiments
require m & 500)) 1. Hence, one might suppose that any
deviation between Brans-Dicke and Einstein gravity is
negligible. However, our basic point is that this small
difference can have a dramatic effect in the course of the
strongly first-order phase transition, allowing a graceful
exit from the inflationary false-vacuum phase. A value
of co & 500 does not obstruct the graceful exit at all.

Perhaps it is also worth noting that, upon com-
pactification to four dimensions, string theories and
Kaluza-Klein theories' may lead to modified metric
theories of gravity closely akin to BD theory. Typically,
one finds co=1. For example, string theories produce
one or massless fields, including the dilaton and the
moduli, which appear to couple coherently to matter in a
way very similar to the BD scalar coupling.

Furthermore, the EI scenario may ensue under a range
of conditions for the scalar field. The analog of the BD
scalar field may be free, as in BD theory; or there may
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where p is the (matter) energy density, p is the pressure,
H=R/R, and k =0, +1, or —1 corresponds to a flat,
closed, or open universe. As the Universe supercools in

the false phase, the energy density approaches the false-
vacuum energy density pf, which acts as an eAective
cosmological constant. The conservation laws then imply
that p = —pf.

The solution to the BD equations when the equation of
state is p = —p = —pf and k =0 is '

C =m p'(1+ gt/a) ',
R(t) = (I +gt/a)"+'t',

(4)

where g =8ttpf/3m' is the square of the Hubble con-
stant in the Einstein theory, and a = (3+2'�)(5
+6')/12 approaches co for co» I. The constant mp is
an arbitrary integration constant corresponding to the
eflective (Planck mass) at the beginning of inflation,
t =0. The (Planck mass) today is @(ti,d,„).

For short times, gt & e, the BD solution approaches
the usual Einstein-de Sitter solution: + is nearly con-
stant and R(t) grows exponentially with time, R(t)
=exp(gt). If co&90, one obtains the 60 e foldings of
inAation necessary to solve the cosmological puzzles in
this first stage of inAation. We do not require such a
large value of N, though, since significant expansion
occurs during the second stage of inAation when gt ) a.
In the second stage, 4& = mt (gt/a) and R(t)

be a nonzero scalar potential'' [i.e., an added V(@) in

Eq. (1)]. In the true-vacuum phase, the scalar potential
may force the value of @ to settle at some large expecta-
tion value [e.g. , the value of the (Planck mass) today].
In this case, @ eventually ceases to vary with time in the
true-vacuum phase and the modified gravity theory then
becomes indistinguishable from the Einstein form. Al-
ternatively, the scalar potential may be such that @ con-
tinues to evolve with time ad infinitum. In any case, it
is sufhcient for the EI model that the scalar field evolves
with time during the inflationary transition (the false-
vacuum phase). This can be easily arranged, for exam-
ple, by choosing pf » V(N), so that the vacuum energy
dominates the equation of motion for @ in the false
phase. Hence, while we confine our discussion to the
conventional BD theory in the remainder of this Letter,
one can easily envisage a variety of scenarios which in-

corporate extended inAation.
The salient diff'erence between old inAation and the EI

model is the form of the cosmological expansion during
the inAationary phase. In BD theory, the equations of
motion for the Robertson-Walker scale factor R(t) and
the BD scalar &(t) are'

= (gt/a)"+'t, a power-law rather than exponential ex-
pansion. (Here, power-law expansion comes from the
extension of the de Sitter solution to BD theory. This
diff'ers from the "power-law" and "induced-gravity"
inflation models discussed previously, ' in which finely
tuned slow-rollover transitions are required. )

The crossover from exponential to power-law expan-
sion changes the rate at which bubble nucleation con-
verts the Universe from false- to true-vacuum phase. As
shown by Guth and Weinberg, the probability of a point
remaining in the false-vacuum phase during a bubble-
nucleation process beginning at time t~ is

3
4z ~' dt"

p(t) =exp —J, dt't(t')R'(t')

where X(t) is the nucleation rate per unit time per unit
volume, approximately constant during the inflationary
phase. For de Sitter expansion, the exponent is
= ——', tres(t —te), where e=k/g . The parameter e. is

calculable from the eA'ective potential and is typically
quite small (10 ' is even plausible). For small e, the
filling rate cannot keep up with the exponential expan-
sion of false vacuum, and one encounters the graceful
exit problem.

When the expansion crosses over to power law, the ex-
ponent in Eq. (6) becomes (tt/3)ego(y —yti), where y

gt/co & —l. (For simplicity, we assume for the rest of
this Letter that co»1, so a= co.) The filling of space
with true vacuum still occurs exponentially in time (the
exponent is quadratic rather than linear in time), but
now the expansion is only power law. At gt/co & (3/
ttcoe)'t4, p(t)«1, and p(t) is decreasing much faster
than the volume [a:R (t)] is increasing. The Universe
is dominated by true vacuum, and exit from the false
vacuum is achieved. '

When the bubbles are first nucleated, most of the
false-vacuum energy is converted into bubble-wall ener-

gy.
' As the bubbles fill the Universe, their walls collide.

The coherent wall energy is rapidly converted into a
thermal distribution of particles. The latent heat of the
transition is thereby released, producing a thermal ener-

gy density roughly equal to the false-vacuum energy den-
sity during the transition. Since the Universe is now in
the true-vacuum phase with zero cosmological constant,
subsequent evolution proceeds as in an ordinary
Friedmann-Robertson-Walker universe. From this point
onwards, provided that N is su%ciently large, the evolu-
tion is virtually indistinguishable from the usual hot-
big-bang model based on ordinary gravity. In the
matter-dominated era, ' N(t) ~t + " (compared
to & cx: t in the inflationary epoch), and R(t)
~ g

(2N+2)/(3 +4)
g

2/3

Several comments may prove useful in considering this
scenario:
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(1) Reviewing the analysis, one observes that the cru-
cial features of the EI model are the following: (a)
Newton's constant 6 is replaced by a time-dependent
scalar field, &b(t); and (b) although &b(t) varies very
slowly during a radiation- or matter-dominated epoch, it
varies rapidly (in this case, tx:t ) during the inAationary
epoch. The rapid variation of tlat(t) shows the inAation of
R(t) from exponential to power law. These properties
probably occur in a broad range of theories.

(2) A large value of to acts to increase the amount of
inflation during the exponential expansion stage. How-
ever, even if co is small, expansion of R(t) by e can
occur during the power-law infIation stage prior to grace-
ful exit provided that e is su%ciently small:
R(t, )/R(ttt) = (3/tttoe)", where we have estimated the
end of power-law inAation, t„ to be the time when the
exponent in Eq. (6) is of order unity. Hence, no strong
constraint on m is needed for inflation.

(3) We have only presented the solutions for k =0. To
resolve the fIatness problem, one should take k &0 initial-
ly. However, it is clear that the solution rapidly con-
verges to the k=0 solution. As R(t) increases, the spa-
tial curvature term in Eq. (2) decreases by @/R
ee (1/t) " ' compared to the false-vacuum energy-
density term. Once the transition starts, rapid expansion
of R(t) reduces the spatial curvature to a negligibly
small value.

Nevertheless, 0 =p/p, = 8ttp/3&H a l. The kinetic
energy of the BD scalar field in Eq. (2) makes a nonzero
(constant) contribution to A. Substituting Eqs. (4) and
(5) into Eq. (2), we find that (for cu» I)

0 = I +4/3',
at the end of the infIationary epoch; with use of the ex-
pressions for N(t) and R(t) from the matter-dominated
era, ' the value today (for to)) 1) is

In other words, if @ continues to evolve with time today,
the EI model predicts a diAerence between geometrical
versus dynamical measurements of A. For the particu-
lar case of BD theory, m is constrained to be very large,
and hence A —

1 is experimentally insignificant.
(4) In order to solve the monopole problem, the

inflationary phase transition must occur strictly after the
transition in which monopoles are produced. If they
were the same transition, the orientation of the Higgs
field in the bubbles would be uncorrelated, and a cosmo-
logically unacceptable number of monopoles would be
formed at the bubble intersections when they coalesced.

(5) Our initial analysis of gravitational wave Auctua-
tions in the EI model is essentially identical to the case
for power-law inflation models. ' For large m, the spec-
trum is nearly scale invariant and the induced-
microwave background Auctuations are ST/T = H, /Mp,
where both the Hubble constant H, and (Mp) =N are

evaluated near the end of inflation (Mp = Planck mass
today). This implies that 6T/T ( 10 provided pf( (10' GeV). However, there are the numerous new

subtleties to consider. For example, how do we follow
the production and evolution of fluctuations during the
bubble-coalescence process? How do deviations from
Einstein gravity aAect the time evolution of Auctuations?

Qur optimistic view is that this work suggests a new

and perhaps compelling link between inflationary
cosmology and theories of gravity that deviate from
Einstein s formulation. There is even the possibility in

some EI scenarios that the difrerence between geometri-
cal and dynamical measurements of A can serve as a
direct, cosmological probe to measure deviations from
Einstein gravity.
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