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The equations of axion electrodynamics are studied. Variations in the axion field can give rise to
peculiar distributions of charge and current. These effects provide a simple understanding of the frac-
tional electric charge on dyons and of some recently discovered oddities in the electrodynamics of anti-
phase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in

other solids are presented.

PACS numbers: 14.80.Gt, 05.30.Fk, 14.80.Hv, 71.50.+t

Whether or not axions' have any physical reality, their
study can be a useful intellectual exercise. For by having
a field which modulates the effects of anomalies and in-
stantons and calculating the consequences of its variation
in space and time, we can get some intuitive feeling for
these important, but often subtle and obscure, things.
Also, it is (I shall argue) not beyond the realm of possi-
bility that fields whose properties partially mimic those
of axion fields can be realized in condensed-matter sys-
tems. In this spirit, I will consider in this paper two situ-
ations where the equations of axion electrodynamics
seem to illuminate otherwise surprising phenomena, and
then speculate briefly on potential generalizations.

To begin, let us recall the equations of axion electro-
dynamics. They are generated by adding to the ordinary
Maxwell Lagrangean an additional term

AL =xkaE-B, (1

where k is a coupling constant. The resulting equations
are

V-E=p—«Va'B, (2)
VxE= —0B/d¢, 3)
V-B=0, (4)
VxB=9E/d: +j+ x(aB+VaXxE), (5)

where p,j are the ordinary (nonaxion) charge and
current. We see that there is an extra charge density
proportional to —Va- B, and current density proportion-

al VaxE+aB. The form of these terms reflects the
discrete symmetries of a: a is P and T odd. Also, these
terms depend only on space-time gradients of the axion
field. This is because with @ =const, AL in Eq. (1) be-
comes a perfect derivative, and does not affect the equa-
tions of motion.

Dyon charge.— Consider a magnetic monopole sur-
rounded by a spherical ball in which @ =0, modulating
within a thin shell into @ =6 at large distances (Fig. 1).
Now because of the axion term in (2) one finds that the
domain wall carries electric charge density —«Va-B, or
charge/unit length — xVa® when integrated over direc-
tion, where @ is the magnetic flux. The total charge seen
by observers far from the monopole is

q=—Kk6d. (6)

The Witten effect,? that in a 6 vacuum magnetic mono-
poles become dyons with fractional charge to their mag-
netic charge and to 6, is essentially contained in (6). By
our introducing axions, and allowing 6 to become a

FIG. 1.
wall.

Monopole surrounded by a shell of axion domain
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dynamical variable, the physical origin of this remark-
able effect is illuminated. It arises because in an exter-
nal B field axions acquire an electric dipole moment.

Let us discuss the numerical value of x. The simplest
model in which to discuss monopoles is a gauge model in
which SU(2) is broken to U(1) by a triplet of Higgs
fields. Denote the electric charge of the W bosons by
+ 2e. Then a doublet will have charges Fe. The basic
monopole in the theory carries magnetic charge g =2x/e,
saturating the Dirac condition ge =2nxXinteger. The 6
term is conventionally introduced? in the form

AL =(0e*/4n*)trF,F,,
=(6e?27)(E-B+...), 7

where in the second equality the ordinary U(1) “elec-
tromagnetic” fields are isolated, as is appropriate for the
long-distance effective Lagrangean. With this normali-
zation, the theory is invariant under 6— 6+2x. With
the choice xk =e?/27? the axion field is numerically equal
to the properly normalized 6 parameter. The induced
charge on the dyon is therefore

— k0> =—(e2/272)0g = —eb/r. (8)

Now imagine changing 6— 6+ 2x, adiabatically. In
this process the charge of the dyon changes, formally, by
—2e. However, this does not imply that the theory has
changed, since there are monopole- W-boson composites
with the shifted quantum numbers. The states have
merely been relabeled.

Mass-phase walls.—Suppose that N Dirac fermions
interact with two real fields m,a according to the
effective Lagrangean

ALim=m(x)e " gl(1 —ys)/2ly+H.c. 9)

According to the anomaly equation,* this is equivalent to
having the interaction

ALinn=m(x)gy+[Ne?a(x)/47*]1E- B, (10)

with the electrodynamic consequences implied by Egs.
(2) and (5). (Strictly speaking, the equivalence is true
only in the limit m— o. There are additional terms
suppressed by powers of da/m.)

In particular, consider the properties of a domain wall
such that a changes by A from one side to the other. We
find that when a magnetic field B is applied perpendicu-
lar to the wall, charge per unit area

Q/A=Ne’BA/4rn? (1)

accumulates on the wall. Similarly, when an electric
field E is applied to the wall, we find that a current per
unit length

I/L=Ne’EA/4r? (12)

flows in the plane of the wall, perpendicular to E.
Fradkin, Dagotto, and Boyanovsky> have written a pa-
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per very relevant to this subject. They argue, first, that
the Lagrangean for electrons at the band edge in PbTe
can be rewritten in terms of four independent fermion
fields satisfying the relativistic (massive) Dirac equation.
These fermion fields are special linear combinations of
the electron field on different sites. They argue further
that at an antiphase boundary, where the lattice ordering
of Pb and Te is reversed, the sign of the mass changes.

If we do not look at the interior of the wall, but only at
its effect on boundary conditions, then it can be replaced
by an axion domain wall with A=z. So if this replace-
ment is legitimate (and I shall argue that it is) we should
expect that charge accumulates on the wall in a normal
magnetic field, and current flows in a tangential electric
field, according to Egs. (11) and (12) with N =4.

Fradkin, Dagotto, and Boyanovsky found these effects
by a different argument. They let m change sign
through real values (so that, in particular, there is a zero
of m within the wall). Then, as is well known, in the ab-
sence of electromagnetic fields there is a zero-energy
solution of the Dirac equation localized at the wall.®
The zero modes, or in other words midgap states, have
overlap ¥ with states that were negative energy without
the wall, and overlap § with states that were positive
without the wall. Since there is only one zero mode no
finite charge accumulates. In the presence of a normal
magnetic field, however, there is a whole Landau level of
zero modes with degeneracy Be/2m per unit area per
species of fermion. This represents charge = (e/2)
x (Be/2m) x4 per unit area relative to the Fermi sea for
no domain wall, the sign depending on whether the Fer-
mi level is above or below midgap. This result agrees,
modulo its sign ambiguity, with the previous one.

Actually the procedure used above, of replacing a soli-
ton field configuration by another more convenient one
which is equal to it at spatial infinity, is commonly used
in the computation of soliton quantum numbers.”® The
underlying idea is that the difference between the true
field configuration and the convenient one can be inter-
polated by fictitious localized intermediate fields. Such
fictitious fields do not induce current flow at infinity and
so the accumulated charge on the soliton is the same as
that of the convenient configuration.

In the case at hand, it is most convenient to consider
the class of models with both m(x) and a(x) variable,
i.e., a complex effective mass. It is not difficult to show,
following Ref. 7, that the charge accumulated by a
domain wall where the complex mass varies in an arbi-
trary way, provided only that it does not pass through
zero, is simply proportional to the change in its phase.

The case of a purely real mass, passing through zero,
is in a sense a degenerate limit. Tiny changes in the
imaginary part of the mass can make the accumulated
phase either = (Fig. 2). This instability reflects the
existence of the zero mode, and is related to the abrupt
change in the charge as the Fermi level sweeps through
it. Note that the magnitude of the charges and currents
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FIG. 2. Phase changes through * 7 depending on the sign
of the imaginary part.

will depend on small perturbations—including both
terms, such as Zeeman splitting, not retained in the mod-
el Lagrangean (9), and effects of impurities and doping
— when the Fermi level is near midgap.

For truly complex-valued masses the mechanism
whereby charges and currents are generated need not be
connected with the existence of O modes, or midgap
states. For instance, if |m(x)| is constant, and its
phase varies slowly in the sense that |dm/dx|/|m|
< |m|, then the local magnitude of the gap will remain
~2|m| everywhere. Nevertheless, the charges and
currents discussed above will be produced; they are asso-
ciated with the behavior of the Fermi sea as a whole.
Their magnitude in this case is robust.

The current associated with an electric field in the
plane of the wall is so remarkable that it deserves further
discussion. First, let us note its properties:

(i) Since j=E, the current is voltage controlled.

(ii) Since jLE, the current is nondissipative. Of
course I have ignored impurities, etc., so that this state-
ment is only approximate. At the level of analysis in this
paper many-body effects have been ignored, and the
current is not a supercurrent.

(iii) The direction of the current is determined by the
unit vector B/|B|. This form follows from time-reversal
symmetry. It indicates that the direction of current can
reverse, ideally, in response to changes in magnetic fields
of tiny magnitude. This peculiar dependence is associat-
ed, in the axion picture [Eq. (12)], with the fact that a
change in the sign of the mass is ambiguous; it can mean
A=+ ror —racross the wall.

And now let me discuss in more detail how these prop-
erties arise. I will first discuss the case where m is an
odd, real function of z and m(eo) is positive. I use the
conventions of Bjorken and Drell.® The zero-mode solu-
tions of the Dirac equation are then of the form

Y =exp [J;zm(z)dz] bt f(x,p)+2:8(x,p)]1,  (13a)

where
1 0
0 1
ll_ —i| 12— O . (l3b)
0 i

FIG. 3. Expectation of the current in a background field is
derived from the vacuum polarization.

Other modes have energy ~ |m()| and can be
neglected. The effective two-dimensional dynamics of
the low-energy modes are described by the effective
Hamiltonian

H=io30'9

acting on the two-component spinor r]=(£). A magnetic
field normal to the wall leads to a series of Landau levels
at energies n(eB/2x)'? with degeneracy eB/2r per unit
area. If the Fermi level is slightly above 0, then one has
charge accumulated on the wall, as discussed above, be-
cause the =0 mode is composed half of positive-energy
and half of negative-energy states relative to the free
(i.e., no domain wall) Hamiltonian. The independence
of the magnitude of j on the magnitude of B is now easi-
ly understood heuristically as follows. The basic phe-
nomena is a drift of the zero-mode plasma in crossed
electric and magnetic fields. In this situation, the drift
velocity of a charged particle is proportional to E and in-
versely proportional to B. But since the number of states
in the zero-mode plasma, as discussed above, is itself
proportional to B this dependence cancels out.

An infinitesimal complex (3+1)-dimensional mass,
i.e., an effective axion field, generates a (2+1)-dimen-
sional mass u, leading to similar results. Indeed, the
effect of the axion field in the z direction is simply to in-
duce an effective mass term

AH =puo;, pxA, (14)

as we see by sandwiching the effective coupling

o3 0
bl 0 — 03 630
in (15).

So in this case the interaction of the low-energy modes
with a planar electric field reduces to a problem in the
electrodynamics of (2+1)-dimensional massive fer-
mions. Now there is a peculiarity in the vacuum polar-
ization of (2+1)-dimensional electrodynamics that is
relevant here.'® That is, the current induced by an

external field, calculated from the Feynman diagram in
Fig. 3, is of the form

Jex (/| 1] €poiF o (15)
This gives us the current discussed above, with the prop-
erties (i)- (iii).

Note that the (2+ 1)-dimensional mass u is P and T
odd; it is this which explains how it can be proportional
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to a magnetic field, and which allows the peculiar-
looking equation (15) to be consistent with these discrete
symmetries. Similarly, there is no current in the absence
of a magnetic field (this point seems confused in Ref. 5).

All this analysis is based on a one-particle picture, and
requires modification if condensations among the zero
modes occur, as in the quantized Hall effect.!’ Such
condensation is not unlikely, since the dynamics within
the zero-mode plasma maps directly onto the usual two-
dimensional electron-gas problem (except for the factor
N=4 and e — ¢/2 in the current).

Generalizations.— s there a class of solids which real-
izes the Dirac equation with complex adjustable masses?
Unfortunately, the mapping leading from a standard
hopping Hamiltonian to effective Lagrangeans like (9) is
not very transparent, and I have not succeeded in finding
examples although I believe they exist. A relevant obser-
vation is that the complex mass terms violate P and T
symmetry, and so they will arise only where one has non-
trivial spin order in the solid.

More generally, as condensed-matter experimentalists
achieve ever more exquisite control over material fabri-
cation at the molecular level, it may be fruitful to consid-
er what other ‘artificial solitons,” with interesting or
useful electronic properties, can be manufactured.
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