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We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer

transition metal dichalcogenides (e.g., WSe,) in the presence of an out-of-plane electric field. Using

renormalization group analysis, we show that superconductivity survives even with the conventional van
Hove singularities. We find that topological chiral superconducting states with Chern number ' = 1, 2, 4
(namely, p + ip, d + id, and g 4 ig) appear over a large parameter region with a moiré filling factor around
n = 1. At some special values of applied electric field and in the presence of a weak out-of-plane Zeeman
field, spin-polarized pair-density-wave (PDW) superconductivity can emerge. This spin-polarized PDW
state can be probed by experiments such as spin-polarized STM measuring spin-resolved pairing gap and
quasiparticle interference. Moreover, the spin-polarized PDW could lead to a spin-polarized super-

conducting diode effect.

DOI: 10.1103/PhysRevLett.130.126001

Introduction.—The advent of engineering moiré struc-
tures from stacking 2D materials starts an exciting path for
studying intriguing electronic properties in quantum mate-
rials. Through interlayer van der Waals coupling, the spatial
moiré potential profoundly modifies electronic band struc-
tures and in certain circumstances results in low-energy
isolated narrow or even flat bands (moiré bands) [1-12],
where interactions play a vital role in low-energy physics.
From the experimental aspect, various phases have been
found in magic-angle twisted bilayer graphene (TBG),
including correlated insulators [13—17], superconductors
[13,18-20], strange metal [21-23], magnetic phases
[24-27], and quantum anomalous Hall states [28,29].
Soon after this, similar phases were also found in other
forms of moiré structures including twisted double bilayer
and trilayer graphene systems [30-38].

Twisted bilayer transition metal dichalcogenides
(TMDs) were recently shown to be another promising
and advantageous platform for simulating various corre-
lated and topological states [39-51]. Monolayer TMD is a
semiconductor with strong spin-orbit coupling [52-57].
The spin splitting in its valence band is much larger than
that in the conduction band so that the topmost valence
band can be used as a model for spin-polarized fermions on
a Fermi surface [58]. Moreover, the finite energy gap in
monolayer TMD allows for a continuous variation of the
bandwidth with the twisted angle, implying a great tuna-
bility of moiré flat bands in this system compared to TBG
[59]. Phases such as correlated insulators, antiferromag-
netism, and stripe order have been observed in WSe, /WS,
heterostructure [60-64], and, in MoTe,/WSe, moiré
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heterostructures, a metal-insulator transition was realized
[65]. For twisted bilayer WSe, (tWSe,), many interesting
phenomena including metal-insulator transition, quantum
critical behavior, and possible superconductivity (SC) were
also found [66,67].

In this Letter, we explore possible orders in tWSe, with
weak repulsive interactions and an electric-field-induced
phase flux ¢. Our results are presented in Fig. 1. We find
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FIG. 1. Phase diagram for twisted WSe,. At ¢ = /3, there is

an emergent spin-polarized PDW with Q@ = +K at small and
large n. Centered around n = 1, there exist different chiral SC
states which we identify as p + ip, d 4 id, and g + ig based on
their Chern numbers. At large or small n, a six-node or nodeless
SC state dominates, which we denote by f or f” wave according
to their representation [A; (B;,) or A, (B,,) of Cs, (Dgj,) when
¢ > 0(¢p =0)]. At — 0, /3, there are tiny regimes of 12-node
SC states (i and i’ wave differ in their representations). The white
dashed curve shows the locations of the CVHSs. ¢ = z/6 and
n = 1 is the location of the HOVHS, where the ground state is a
gapless metal.
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(a) Formation of the moiré Brillouin zone in twisted homobilayer WSe,. In the upper left and right insets, we show two

schematic plots for both the monolayer conduction and valence band structures near £K,,. (b) Twofold degeneracy of the topmost moiré
valence band, which can be lifted by an out-of-plane electric field (c). (d) The electric field effectively induces a stagger phase factor +¢
on the bonds, leading to an accumulated flux +3¢ on each triangular plaquette. (e) The physical bond phase ¢ as a function of V, from
Ref. [88]. (f)—(i) Various types of Fermi surfaces in the first Brillouin zone. Depending on the parameters, there can be electron or hole
pockets, disjoint Fermi surfaces, six CVHSs, and two HOVHSs. The arrows in the last two figures are the nesting vectors. In the case of
CVHS, there are two sets of nonequivalent nesting vectors Q@ and Q'.

that there exist chiral SC states with Chern numbers
N =1, 2, 4, corresponding to p +ip, d + id, and g+
ig states, respectively. For small and large filling n, the
ground state is an either f- or f’-wave SC state, corre-
sponding to A; or A, representation of the underlying C;,
group (or emergent Dg;, when ¢p = 0). The i- and i’-wave
pairing states with 12 nodes belonging to different repre-
sentations are also obtained. Intriguingly, at ¢p = /3 and
for small or large n, the ground state features pair-density-
wave (PDW) superconductivity [68—84] with equal-spin
pairing. This spin-polarized PDW is degenerate with uni-
form SC but can become leading once a weak out-of-plane
Zeeman field is applied. We argue that this PDW state can
be probed by either spin-polarized STM or transport
measurement of a superconducting diode effect (SDE).
These SC orders survive even approaching the conventional
van Hove singularities (CVHSs), shown as the white
dashed curve in Fig. 1. The special point at n = 1,¢ =
7/6 is the higher-order van Hove singularity (HOVHS)
where the fermion density of states has a power-law
divergence. We find the ground state there is a metal
without symmetry breaking.

Model.—The monolayer WSe, is a triangular lattice
semiconductor with broken inversion symmetry [52]. The
valence band top is located at K, as shown in Fig. 2(a).
Because of strong spin-orbit coupling, single-particle states
near K, and —K, have opposite spin polarization. When
two layers of WSe, are AA stacked together and twisted by
a small angle, a moiré pattern and a moiré Brillouin zone
develop [39,40,85-87], as shown in Fig. 2(a). The spin-up
states in the top (bottom) layer near the K, points are
mapped to the states near K (—K) in the moiré Brillouin
zone, while the spin-down states in the top (bottom) layer
near —K, are mapped to the states near —K (K). The
interlayer coupling leads to a narrow moiré band, as shown
in Fig. 2(b).

The presence of an emergent inversion symmetry and the
time-reversal symmetry give rise to double degeneracy for
each band. This degeneracy can be lifted by a finite out-of-
plane electric field [see Fig. 2(c)] through the gating voltage
V. which explicitly breaks the inversion symmetry. A tight
binding model for the moiré band can be obtained by
constructing a set of Wannier states and fitting with density-
functional theory calculations [40,66,88]. The hopping
parameter 7;; of electrons with spin polarization ¢ between
moiré lattice sites with V # 0 picks up a nontrivial phase:

1= |tl~j|ei‘l)?f and ¢;7 = —¢7; due to time-reversal sym-
metry. The amplitude |7;;| decays exponentially with dis-
tance between i and j, which allows for a nearest-neighbor
(NN) hopping approximation; namely, we can set |t;;| = ¢
on NN bonds and zero otherwise. The spin-dependent
phase on NN bonds is ¢, leading to an accumulated flux
43¢ on each triangular plaquette, as shown in Fig. 2(d).
The magnitudes of ¢ depends on V, monotonically [88],
which we show in Fig. 2(e) for clarity. Moreover, it is found
the on-site Coulomb repulsion is much larger than the NN
interaction [66,88]. This validates the following triangular-
lattice Hubbard model description:

H = Z e,‘;c,tack,, + UZI’lian, (1)
k.o=+ i

where the single-particle dispersion is given by €7 =
=2ty _, cos(k-a, + o¢). Hereafter, we set a; = (1,0),
a, = (=1/2,4/3/2), and a5 = (=1/2,—+/3/2) in units of
moiré lattice constant. For generic ¢ # 0, the model
respects time-reversal symmetry, spin-rotational symmetry
along the 7z axis, and lattice symmetry Cs, (emergent D,
for ¢ = 0). Moreover, the model has the following sym-
metries regarding ¢. First, the model is invariant by
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interchanging spin polarizations and changing ¢ to —¢. In
addition, changing the total flux on each triangular pla-
quette by 2z should leave the phase diagram invariant, and
this corresponds to shifting ¢» by +27/3. Finally, particle-
hole transformation leads to n - 2 —n and ¢ - 7 — ¢.
Consequently, the ground state phase diagram of the model
is symmetric under ¢ - ¢ + /3 and n — 2 —n [89].

Competing orders.—¢ # /6, there are three nonequiva-
lent CVHSs for each spin [Fig. 2(h)], which merge into a
single HOVHS at ¢) = /6 [Fig. 2(i)]. The perfectly nested
FS and divergent DOS promote the density waves (DWs) as
competing orders as opposed to the SC order. To identify
the leading instability in the low-energy limit, we employ
the unbiased renormalization group (RG) [90-95] analysis.
Since the DOS is divergent at the VHSs, it suffices to look
into the small patches around them.

For the CVHS, there are six such patches, and both the
bare particle-hole (ph) susceptibilities IT,,, (@) and IT,,,,(Q")
and the particle-particle (pp) susceptibility IT,,,(0) scale as
log?(A/T), where A is the ultraviolet cutoff. We use y =
I1,,(0) as the running parameter and define d; =
d1l,,(Q)/dy and d, = dIl,,,(Q")/dy as the nesting param-
eters. For hexagonal lattices, the maximum value of d at
perfect nesting is 1/2 [94]. Taking the Hubbard interaction
U = 1t as the initial input, we find there is a critical value y,
where all the interactions flow to strong coupling. Near this
critical point, the susceptibilities for various orders scale as
x ~ (v — y.)% which signals the onset of some order only if
a < 0, and the most negative a corresponds to the leading
order. In Fig. 3(a), we plot « for different competing orders
as a function of d(y.) = d;(y.) = d»(y.). In all ranges of
d(y.), the p/d/g-wave SC, which belongs to E represen-
tation, is the only possible order in the low 7" limit. Our
result is consistent with the ¢» — 0 limit shown in Ref. [93].

For the HOVHS, there are only two patches, but all
11,,(0), I1,,(0), and I1,,(Q) scale as 1/T"/3. We again use
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FIG. 3. (a) RG results for the CVHS near perfect nesting. The

susceptibility for each order has a scaling form y ~ (y — y.)%.
Therefore, SC(p/d/ g) is the only possible order in the low 7 limit
(&£ in DW= means even and odd parity). (b) Two-loop RG results
of HOVHS at ¢ = z/6. There is no symmetry breaking near
perfect nesting, which is characterized by an interacting RG fixed
point (“supermetal” in Ref. [96]). DW wins over SC at small
nesting beyond a critical interaction, but SC is the only instability
in weak coupling limit.

y =11,,(0) as the running parameter for the RG analysis
and define d; =11,,(Q)/y and d, ~3I1,,(0)/y as the
nesting parameters (d; = d, = 1 for perfect nesting). The
only interaction involved in this case is the intervalley
density interaction. At perfect nesting, the one-loop RG
equation vanishes, and, at two-loop level, the system with
repulsion does not flow to strong coupling, implying no
symmetry breaking [97]. In fact, there is an interacting
fixed point with d; = 1, which is a non-Fermi liquid and
was dubbed as supermetal in Ref. [96]. The system
becomes Fermi liquid when doped away from van Hove
filling but still in the gapless regime. The phase diagram is
shown in Fig. 3(b). When the nesting is not perfect
(d; £0.25), DW wins over SC beyond a critical interac-
tion, while SC is leading for weak interaction.

Away from van Hove filling, SC is the only instability in
the weak coupling regime; thus, we can focus only on the
SC order and employ the Raghu-Kivelson-Scalapino RG
analysis [97-99] to identify the leading pairing channel, as
summarized in Fig. 1. Below, we discuss two particularly
interesting cases: pair-density-wave and chiral supercon-
ductivity, respectively.

Pair-density-wave.—For the particular case ¢ = z/3
(more generally, +7/3 modulo z), both spin-up and
spin-down FSs are nested in the pp channel: FSs for each
spin are symmetric with respect to +K/2 [shown as blue
and red points in Figs. 4(a) and 4(b)], leading to possible
spin-polarized Cooper pairs with finite Q = +K. Indeed,
for 0 <n<0.5 054 <n<0.68, and 1.29 < n < 2, our
RG results show that the ground state features degenerate
same-spin pairing at Q = =K and opposite-spin pairing
at Q =0.
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FIG. 4. (a),(b) Emergence of finite Q pairing at ¢ = z/3.
(c) Fermi surface with an out-of-plane Zeeman field at
¢ = n/3. (d) Pairing strength of the PDW and uniform SC order.
Dashed lines are their phase boundaries. (e) Experimental setup
for measuring the spin-polarized SDE. An external Zeeman field
is applied to favor the spin-polarized PDW. The critical currents
parallel or antiparallel to Q have different magnitudes j., and
Jc—. The applied current with magnitude between j._ and j., will
be Ohmic current in one direction and supercurrent in the
opposite direction.
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The emergence of the spin-polarized PDW order at ¢p =
7/3 is actually no surprise, because this particular ¢p = z/3
is related to ¢p = 0 by symmetry transformation: a particle-
hole transformation plus a local gauge transformation
which changes ¢ - ¢ £ z/3 and n — 2 — n. Under this
transformation, a triplet pairing with total $° = £1 at ¢ =
0 and 2 —n is mapped to a PDW order at z/3 and n.
Specifically, the uniform triplet pairing ($° = +1)at¢ =0
can be written as Ay (R,r)cipcip [R= (r; +r;)/2 the
position of the center of mass, and r = r; —r; the relative
position]. Since @ =0, A4 (R.r) is independent of R.
After the particle-hole transformation (c;, — cja) and a lo-
cal gauge transformation (c;, — elic jo With n; = K - r)),
the corresponding order parameter acquires a spatial phase
modulation, namely,

App(r) = Agy(r)et) = Agy (n)e’®. (2)

where Q = K = ((47/3),0). For pairing between two
spin-down fermions, the argument is completely parallel,
but we will have Q = —K instead. One can further see that
the opposite-spin pairing (S* = 0) at ¢p = 0 is mapped to
usual zero-momentum paring at ¢p = z/3. This is because
spin-up and spin-down sectors transform in opposite
directions, Ay (r) = Ay (r)e'™=1) ~ Ay (r), which does
not lead to nontrivial R dependence. Therefore, only triplet
pairing state with §* = £1 at ¢ = O transforms intoa S, =
+1 PDW order at ¢ = /3.

Since at ¢ = 0 the S° = =£1 triplet pairing is degenerate
with the §¢ = 0 triplet pairing due to the full spin SU(2)
rotational symmetry, the system at ¢y = z/3 also maintains
this degeneracy between the same-spin PDW order and the
opposite-spin uniform pairing. This degeneracy can be
lifted by applying a weak out-of-plane magnetic field,
which generates a Zeeman coupling to the spins while
keeping the system in the superconducting state. Moreover,
for the twisted angle 6 = 3°, the orbital effect from the
magnetic field can be neglected [89], leaving the Zeeman
coupling the only dominant effect. In Fig. 4(c), we draw as
an example the FS configurations with a finite Zeeman
coupling, which differentiates the sizes of the spin-up and
spin-down FSs. As a result, the Q = 0 pairing between k
and —k is suppressed, and the PDW becomes the unique
ground state. Moreover, the degeneracy between spin-up
and spin-down PDWs is also lifted by the Zeeman field:
Fermions with the larger FS tend to have a stronger pairing
strength and, hence, a higher T',.. To show the competition
between the spin-polarized PDW and the Q = 0 SC state, in
Fig. 4(d) we plot the dimensionless pairing strength Vg
for the PDW order as well as the @ =0 SC state in a
weak magnetic field. V. is defined such that T, =
Wexp|—1/(V.;U?/1?)]. For an estimation, we take ¢ =
SmeVa58 K, W=09¢ and U = 2.5¢; then T, ranges
from 0.18 to 9.56 K when V4 € (0.02,0.04). We see that,

at small n, T is much larger and, hence, more promising to
be observed. The large n limit PDW is similar to that
studied in a monolayer system [100].

This spin-polarized PDW state has the superconducting
diode effect (SDE) due to the absence of inversion and
time-reversal symmetry [see Fig. 4(e) for clarity], similar to
that of the Fulde-Ferrell state [101]. The critical current
parallel to the direction of @ is different from that in the
opposite direction. As a result, an external depairing current
can induce Ohmic current in one direction but remain
supercurrent in the opposite direction.

Chiral superconductivity.—For the two-dimensional E
representation, the gap function is A(k) = A v, (k)+
A,v,(k), where vy and v, are two real orthonormal basis,
and the Ginzburg-Landau free energy is given by

FlAL Ay = a(T =T )(JA* + A7)
+ B1(|A[F + M) + po]AT 4+ A2, (3)

where a is a positive constant and 3, , > 0 depends on T
[97]. This free energy is minimized when A; = iA,,
corresponding to a chiral SC state: The phase of pairing
¢ = arg[A(k)] winds up multiple times of 2z when k goes
around the whole FS, while the amplitude |A (k)| remains
nonzero on the FS (nodeless).

The nodeless chiral superconductor is topological, which
supports chiral fermionic modes on edges of the system.
The topological invariant is characterized by the Chern
number defined as

N _ i/ dk[ﬁ . (akxil X 0;{),;1)], (4)
BZ

T

h = {Re[A(K)],Im[A(K)], &}/E;  and  Ej =
& + A%(k). 2zN is the Berry flux of the two-level

~

Hamiltonian 4, = h(k) - 6, or the monopole charge located
at the torus center, which is just the line integral of a gauge
transformation on the FS, according to the Stokes theorem.
In other words, Eq. (4) is the same as the winding numbers
defined by the number of times that the SC phase ¢ slips 27

where
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FIG. 5. SC phase variation along the FS parametrized by the
angle J. Distinct topological phases are characterized by the
number of 2z slips when moving around the FS in a full circle.
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when k sweeps around the FS [102]. There will be 2\
chiral Majorana edge modes or N chiral complex fermion
edge modes [102-105]. In Fig. 5, we show some examples
of the chiral SC states obtained in our model. We plot the
SC phase ¢ as a function of the FS parameter 9. Since the
FS here forms a closed loop (centered at either the I" point
or =K point), we can parametrize the points on FS by the
angle J formed by ky (or kr + K) and X.

Concluding remarks.—We have shown that an out-of-
plane electric field and magnetic field induced spin-
polarized PDW order can arise in the twisted bilayer
TMD system, which supports nonzero spin-polarized SC
diode current, and can be directly probed using the SDE
experiment [106-108]. We also find various topological
chiral SC states with Chern numbers |N| =1, 2, 4. As
disorder usually tends to suppress unconventional SC
orders, sufficiently clean systems should be needed to
experimentally access the exotic SC phases we obtained in
the model of the twisted TMD. Various other exciting
physics, such as the charge-4e superconductor or possible
quantum critical behavior tuned by fields, is left for
future study.
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