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Unravelling competing orders emergent in doped Mott insulators and their interplay with unconven-
tional superconductivity is one of the major challenges in condensed matter physics. To explore the
possible superconducting state in a doped Mott insulator, we study the square-lattice t-J model with both
the nearest-neighbor and next-nearest-neighbor electron hoppings and spin interactions. By using the state-
of-the-art density matrix renormalization group calculation with imposing charge Uð1Þ and spin SUð2Þ
symmetries on the six-leg cylinders, we establish a quantum phase diagram including three phases: a stripe
charge density wave phase, a superconducting phase without static charge order, and a superconducting
phase coexistent with a weak charge stripe order. Crucially, we demonstrate that the superconducting phase
has a power-law pairing correlation that decays much slower than the charge density and spin correlations,
which is a quasi-1D descendant of the uniform d-wave superconductor in two dimensions. These findings
reveal that enhanced charge and spin fluctuations with optimal doping is able to produce robust d-wave
superconductivity in doped Mott insulators, providing a foundation for connecting theories of super-
conductivity to models of strongly correlated systems.
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Introduction.—To understand the emergence of uncon-
ventional superconductivity (SC) is one of the major
challenges of modern physics [1,2]. Despite intensive
studies in the past 30 years, it remains elusive if a robust
SC state can emerge in the electron systems with strong
repulsive interaction. Since the SC phase is usually realized
by doping the parent antiferromagnetic compounds such as
cuprate-based materials, the Hubbard model and the closely
related t-J model are taken as canonical models for
studying SC in strongly correlated systems [1–5].
Lacking of well controlled analytical solutions in two
dimensions (2D), unbiased computational studies play an
important role in establishing the quantum phases in such
models. So far, the common consensus is that charge and
spin intertwined orders are dominant in lightly doped
Hubbard and t-J models on the square lattice, while SC
correlations are relatively weak on wider systems [6–19].
The inconsistency of these results with the insight from
experimental observations, i.e., a SC “dome” throughout a
range of doping parent antiferromagnetic compounds,
poses a fundamental challenge to our understanding of
strongly correlated electron systems [1,2].
Intuitively, introducing the next-nearest-neighbor hop-

ping t2 to the basic Hubbard or t-J models should be more
realistic for describing materials [20–22], which may help
to weaken charge order and enhance SC [7,17,23–27].
Specifically, recent studies of the t1-t2 Hubbard model on

the width-4 cylinder observed a quasi-long-range SC
correlation [28–30], which coexists with the power-law
charge density correlation in the form of the Luther-Emery
liquid [31–35]. However, a more recent numerical study
suggested that there can be different d-wave symmetries in
such a system, and a plaquette d-wave correlation may be
favored on the width-4 cylinder, which does not represent a
true d-wave SC order in the 2D limit [36]. This work also
highlights the importance of going to wider systems, which
is an essential step towards understanding the competing
orders in the 2D limit.
To make significant progress towards understanding SC

in 2D strongly correlated systems, we study the quantum
phases in a lightly doped square-lattice t-J model using the
state-of-the-art density matrix renormalization group
(DMRG) [37,38], and demonstrate a global phase diagram
on the width-6 cylinder by tuning doping level δ and
hopping ratio t2=t1. We identify three distinct phases: a
stripe charge density wave (CDW) phase, a uniform d-wave
SC phase, and a SC phase coexistent with a weak CDW
order. The intermediate uniform SC phase occupies a large
portion of the phase diagram upon increasing the doping
level. The SC correlation has a power-law quasi-long-range
order with the Luttinger exponent reaching a small value
KSC ≈ 0.36 and the ordinary d-wave symmetry, which
dominates over other correlations. Crucially, through a
rigorous bond-dimension scaling, we provide compelling
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evidence that the SC phase is the quasi-1D descendant of a
robust 2D superconductor. These results offer strong
evidence that SC order can overtake the tendency of other
orderings in a doped Mott insulator, based on which we
discuss some insight for doping-induced quantum phase
transitions and compare with experimental observations in
the cuprate systems.
Solving the t-J model with DMRG.—The extended t-J

model is defined as

H ¼ −
X

fijg;σ
tijðĉ†i;σ ĉj;σ þ H:c:Þ þ

X

fijg
Jij

�
Ŝi · Ŝj −

1

4
n̂in̂j

�
;

where ĉ†i;σ and ĉi;σ are the creation and annihilation
operators for the electron with spin σ (σ ¼ �1=2) at the
site i, Ŝi is the spin-1=2 operator, and n̂i ≡P

σ ĉ
†
i;σ ĉi;σ is the

electron number operator. We consider the nearest-neigh-
bor (NN) and next-nearest-neighbor (NNN) hoppings (t1
and t2) and interactions (J1 and J2), as shown in Fig. 1(a).
We choose t1=J1 ¼ 3.0, J2=J1 ¼ ðt2=t1Þ2 [30], and focus
on the region with 0 ≤ t2=t1 ≤ 0.32 and hole doping level
1=24 ≤ δ ≤ 1=6 which is the optimal region for the SC in
the cuprates [20–22].

By advancing the DMRG simulations with Uð1Þ ×
SUð2Þ symmetries [39] (also see Supplemental Material
[40]), we study the system on a cylinder with the periodic
boundary conditions along the circumference direction (y)
and the open boundary along the axis direction (x), where
Ly and Lx denote the lattice sites along these two
directions. We keep the bond dimensions up to D ¼
20 000 SUð2Þ multiplets, which is equivalent to about
60 000 Uð1Þ states (it is about double of the previous
standard in the literatures for the t-J model [18,30]) and
thus allows us to obtain accurate results on the Ly ¼ 6

cylinder with the truncation error near 1 × 10−6 [40].
Quantum phase diagram.—Figure 1 presents the phase

diagram as a function of t2=t1 and doping level δ based on
comprehensive simulations of cylinder systems with
Lx ¼ 48, 64 and Ly ¼ 6. We identify three phases with
different charge density distributions: a CDW phase (light
purple), a d-wave SC phase without static charge order
(red), and a SCþ CDW coexistent phase (green). In the
CDW phase, we identify stripe orders with wavelength λ ≃
4=ðLyδÞ depending on the doping level [Fig. 2(a)], con-
sistent with previous results [13,16,17]. Meanwhile, SC
pairing correlations are weak and become very small at
long distance near t2 ¼ 0 [Fig. 3(b)]. In the SC phase, we
find a uniform charge density without static charge order
[Fig. 2(b)], but with a strong quasi-long-range SC order of
the ordinary d-wave symmetry [Fig. 3(a)]. For the coex-
istent phase, we also find a dominant quasi-long-range SC

FIG. 1. Global quantum phase diagram. (a) Schematic plot of
the t-J model on the square lattice, where arrows and circles,
respectively, denote electrons and doped holes. The model has
both the nearest-neighbor and the next-nearest-neighbor hop-
pings (t1 and t2) and spin exchange (J1 and J2) interactions.
(b) Quantum phase diagram of the model obtained on the Ly ¼ 6

cylinder based on the static charge density pattern shown in
Fig. 2. For 0 ≤ t2=t1 ≤ 0.32 and doping level 1=24 ≤ δ ≤ 1=6,
we identify a CDW phase, a uniform d-wave SC phase, and a
coexistent d-wave SC and CDW (SCþ CDW) phase. The
Luttinger exponents of SC pairing and density correlations cross
over between different phases. Momentum distribution functions
nðkÞ for (c) the CDW phase, (d) uniform SC phase, and
(e) SCþ CDW coexistent phase.

FIG. 2. Charge density profiles. The charge density distributions

nx ¼
PLy

y¼1hn̂x;yi=Ly on the Lx ¼ 64, Ly ¼ 6 cylinder for (a) the
CDW phase, (b) SC phase, and (c) SCþ CDW phase. The blue
lines are fitting curves to the function nx¼n0þACDWcosðQxþϕÞ,
where ACDW ¼ A0½x−Kc=2 þ ðLx þ 1 − xÞ−Kc=2� and Q are the
CDW amplitude and wave vector, respectively. ϕ is a phase shift.
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order [Fig. 3(b)], which cooperates with a weak stripe order
with wavelength λ ≃ 2=ðLyδÞ [Fig. 2(c)].
The intermediate uniform SC phase is the key finding in

this Letter. Interestingly, the window of the d-wave SC
phase gradually spans with increasing doping level, induc-
ing the doping-tuned CDW (or SCþ CDW coexistent
phase) to a uniform SC phase transition. As we will discuss
below, this picture could be relevant to experimental
observations in cuprates. In the following, we turn to the
identification of these phases.
Charge density wave.—Since the charge density of the

ground state is uniform along the y direction due to
translational symmetry and shows distinct behaviors along
the x direction for different phases, we define the averaged

charge density for each column as nx ¼
PLy

y¼1hn̂x;yi=Ly

and show the density profiles in Fig. 2. In the CDW phase,
we identify an approximate periodic density modulation
with the wavelength λ ≃ 4=ðLyδÞ doping dependent. For
example, at t2 ¼ 0, δ ¼ 1=12, the density profile has λ ≃ 8,
i.e., each stripe is filled with four holes [or nhSTR ¼ 4 in
average, see Fig. 2(a)]. In contrast, in the coexistent phase
we find a charge modulation with λ ≃ 4 [Fig. 2(c)], which
contains two holes nhSTR ¼ 2 on average per stripe, regard-
less of the doping level. Thus, a quasi-long-range SC
occurs likely in the coexistent phase as the charge modu-
lation with two holes (nhSTR ¼ 2) may be plausible for
pairing [30,41–43]. Importantly, in addition to the afore-
mentioned charge ordered phases, we find a uniform charge
density phase with vanishing-small density modulation in
the bulk of the system [see Fig. 2(b) and [40] ]. The absence
of static charge order indicates that the CDW is very weak
and thus may give way to a robust SC.
SC pairing correlation and d-wave symmetry.—We

examine the SC by measuring the dominant spin-singlet
pairing correlations Pα;βðrÞ ¼ hΔ̂†

αðr0ÞΔ̂βðr0 þ rÞi, where
the pairing operator is defined on two NN sites r1 and r2 ¼
r1 þ eα and Δ̂αðr1Þ ¼ ðcr1↑cr2↓ − cr1↓cr2↑Þ=

ffiffiffi
2

p
(eα¼x;y

denote the unit lengths along x and y direction, respectively).

We consider the correlation decay along the x direction with
distance r.
First, we discuss the SC pairing symmetry by inspecting

the different pairing correlations shown in Fig. 3(a). While
two kinds of the vertical-vertical correlations Py;y (blue, for
two y bonds in the same chains), P00

y;y (red, for two y bonds
with one relative lattice shift in the y direction) and the
horizontal-horizontal correlation Px;x (purple) are always
positive, the vertical-horizontal correlations Py;x (green) are
negative. Thus, the pairing order parameters should have the
opposite signs for the x bond and y bond, respectively.
Furthermore, the pairing term has no phase shift along both
directions, showing a conventional d-wave pairing sym-
metry as depicted by the inset of Fig. 3(a). In addition, the
magnitudes of the pairing correlations are insensitive to
bond orientations, showing a spatially uniform feature of the
SC order. Second, by tuning t2=t1, the pairing correlations
are enhanced and become strong in the SC phase, signaling
the developed quasi-long-range order. Such pairing corre-
lations remain stable for the larger t2=t1 entering the SCþ
CDWphase as shown in Fig. 3(b) for δ ¼ 1=12. Third, in the
SC and SCþ CDW phases, we identify that the pairing
correlation dominates over all other competing charge and
spin correlations, as evidenced by Fig. 5 for δ ¼ 1=12,
t2=t1 ¼ 0.12 (SC phase) and 0.22 (SCþ CDW phase). All
above features strongly support a robust d-wave pairing
nature in the SC and the SCþ CDW phases.
To clarify the presence of quasi-long-range SC order, we

further investigate the decay behavior of pairing correla-
tions using two different ways. As the DMRG method
represents the ground state as a matrix product state with a
finite bond dimension, the correlations at long distance
usually decay exponentially on wider systems [44], which
would recover the true nature of correlations in the infinite
bond dimension limit. Therefore, we first fit the raw data of
pairing correlations for various bond dimensions using the
exponential function Py;yðrÞ ∼ expð−r=ξSCÞ, as shown in
Fig. 4(a). One can see that the correlation length ξSC
monotonically grows as the bond dimension increases. We
find a power-law dependence ξSC ∼Dα [see the inset of
Fig. 4(a)] for the bond dimension up to D ¼ 20 000,
indicating that ξSC tends to diverge in the D → ∞ limit
and a true quasi-long-range order is expected. In the second
method, the obtained SC correlations are extrapolated to
the D → ∞ limit first [19,29], using a second-order
polynomial function of 1=D for the data points of D ¼
8000 − 20 000 [Fig. 4(b)]. We find that the extrapolated
pairing correlations over a wide range of distance collapse
to a power-law decay function Py;yðrÞ ∼ r−KSC , with a
Luttinger exponent KSC ≈ 0.36. In Fig. 4(c), we compare
the power-law SC correlations on the Ly ¼ 4 and 6
systems, which give the exponent KSC ≈ 0.96 for Ly ¼ 4

and 0.36 for Ly ¼ 6. It is clear that the pairing correlations
are significantly enhanced for Ly ¼ 6 and we find that
KSC < 1 is a common feature in the SC phase [40].

FIG. 3. SC pairing correlations. (a) Various kinds of pairing
correlations along different bond directions: vertical-vertical
correlation Py;y (blue) and P00

y;y (red), horizontal-horizontal
correlation Px;x (purple), and vertical-horizontal correlation
Py;x (green). The inset shows the pattern of the d-wave symmetry.
(b) Double-logarithmic plot of the pairing correlations Py;y for
different t2=t1 at δ ¼ 1=12, 1=8.
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It signals that the SC order, which becomes stronger and
tends to be stabilized on larger system sizes, should survive
in the 2D limit. Thus, this uniform SC state can be regarded
as the quasi-1D descendant of a 2D superconductor [32].
Last but not least, we compare density correlations with

SC pairing correlations. We identify a power-law behavior
of density correlations with a much higher exponent
KCDW ≈ 2.93 [see Figs. 4(d) and 4(e)]. In Figs. 4(c) and
4(f) we show that SC pairing and density correlations
behave differently going from a width-4 to width-6 cylin-
der: while SC correlations are greatly enhanced (KSC
reduces from 0.96 to 0.36), density correlations are strongly
suppressed with KCDW increasing from 1.4 to 2.93. Notice
that KSC < 0.5 and KCDW > 2 imply that the SC suscep-
tibility diverges whereas the CDW susceptibility remains
finite on the ladder systems [33]. This trend indicates that
the SC order may grow stronger with increasing system
width, thus we anticipate a robust uniform SC phase
without a CDW instability in the 2D limit. Furthermore,
we have carefully confirmed that the single-particle and
spin correlations all decay exponentially in the uniform SC
phase [see Fig. 5(a) and [40] ].

In comparison, in the SCþ CDW phase the SC order is
found to cooperate with a weak stripe order, qualitatively
consistent with the results of the width-4 Hubbard model or
t-J model [29,30]. Quantitatively, SC correlations still
dominate all other correlations [see Fig. 5(b)] with the
Luttinger exponents KSC < KCDW < 2 (see Supplemental
Material [40]).
Fermi surface evolution.—Lastly we measure the elec-

tron distribution function in the momentum space nðkÞ ¼P
i;j;σhc†i;σcj;σieik·ðri−rjÞ=ðLxLyÞ to study the evolution of

electronic structure. We identify that the normal and SC
phases have distinct topologies of nðkÞ: In the normal
CDW phase [Fig. 1(c)], the size of the electron pocket near
the Γ ¼ ð0; 0Þ point expands eventually covering a large
portion of the Brillouin zone with a clear nematic distortion
of Fermi surface from the unidirectional stripe order. In the
SC and SCþ CDW phases [Figs. 1(d) and 1(e)], electronic
states form a closed Fermi surface with approximate C4

symmetry and an isolated electron pocket centers around
the Γ point. Such a change of the Fermi surface topology is
robust for all doping levels [40]. We conjecture that the
Fermi surface topology may be related to the emergence of
quantum criticality between the CDWand SC phase, which
we leave for future study.
Summary and discussion.—We have presented a com-

prehensive study of a doped Mott insulator by further
advancing the state-of-the-art DMRG computations, which
allows us to identify a robust superconductivity on wider
cylindrical systems. We map out a global phase diagram in
terms of doping level and the NNN electron hopping
strength. We identify two SC phases, either with or without
a static CDW order. The remarkable result found on the
wider system is that, by suppressing charge and spin orders,
a uniform SC phase with the ordinary d-wave pairing
symmetry emerges. We carefully established that the SC
pairing correlation is the strongest correlation with robust
quasi-long-range order and a small power exponent. The

FIG. 5. Correlations in the SC and SCþ CDW phases. Com-
parison among the pairing correlation Py;yðrÞ, density correlation
DðrÞ, spin correlation SðrÞ ¼ hSx · Sxþri, and single particle
correlation GðrÞ ¼ hPσ c

†
x;σcxþr;σi for (a) the SC phase and

(b) the SCþ CDW phase. The correlations are rescaled to make a
direct comparison.

FIG. 4. Scaling of correlations in the SC phase. (a) Semi-
logarithmic plot of Py;y obtained by different bond dimensions
D. The inset shows the dependence of the correlation length ξSC on
D,where ξSC is obtainedby fittingPy;y ∼ expð−r=ξSCÞ. In the range
ofD ¼ 4000− 20 000 (equivalent toUð1ÞD ¼ 12 000 − 60 000),
ξSC fits to ξSC ∼Dα with α ¼ 0.576. (b) Double-logarithmic plot of
Py;y with the same data in the subfigure (a). The dashed crossed
line denotes the power-law fitting of the extrapolated D → ∞
results. (c) Comparing the pairing correlations on the Ly ¼ 4, 6
cylinders. (d)–(f) Similar plots for the density-density correlation
function DðrÞ.
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density correlations also decay with a power-law behavior,
but have a large exponent, indicating a special limit of
Luther-Emery liquid where the CDW correlations cannot
compete with the SC correlations. Such a uniform d-wave
SC state has been sought for decades, and the current
numerical identification provides convincing evidence for
the emergence of such a state in strongly correlated electron
systems with only repulsive interactions.
As the width-6 system has reduced ring and plaquette

correlations around the cylinder [36], it may be a better
representation of a 2D system. Intuitively, our phase
diagram on the 6-leg system turns out to resemble the
essential features of the cuprate compounds [2]. For
instance, upon increasing the hole doping level, two
different possibilities could occur: the system could be
driven from the normal state to a uniform SC phase directly,
or it could first go into a SCþ CDW coexistent phase and
then it takes another transition into a uniform SC state. This
picture provides an intuitive understanding that CDWorder
often but not always appears in the underdoped regime with
the onset of superconductivity, which may depend on the
ratio t2=t1 and other properties of materials.
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Note added.—Recently, we noticed an arXiv preprint
focusing on the larger positive t2 regime [45] and another
preprint studying the phase diagram with both negative and
positive t2 [46]. The superconducting state found in
Ref. [45] has the similar pairing correlation and density
correlation power exponents as those in our SCþ CDW
state. The enhanced spin correlations with growing system
circumference in the SCþ CDW phase also agree with the
observation in Ref. [46] in the same parameter region.
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Henderson, C. A. Jiménez-Hoyos et al. (Simons Collabo-
ration on the Many-Electron Problem), Phys. Rev. X 5,
041041 (2015).

[13] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin,
R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L.
Chan, Science 358, 1155 (2017).

[14] G. Ehlers, S. R. White, and R. M. Noack, Phys. Rev. B 95,
125125 (2017).

[15] E.W. Huang, C. B. Mendl, S. Liu, S. Johnston, H.-C. Jiang,
B. Moritz, and T. P. Devereaux, Science 358, 1161 (2017).

[16] K. Ido, T. Ohgoe, and M. Imada, Phys. Rev. B 97, 045138
(2018).

[17] B. Ponsioen, S. S. Chung, and P. Corboz, Phys. Rev. B 100,
195141 (2019).

[18] H.-C. Jiang, Z.-Y. Weng, and S. A. Kivelson, Phys. Rev. B
98, 140505(R) (2018).

[19] M. Qin, C.-M. Chung, H. Shi, E. Vitali, C. Hubig, U.
Schollwöck, S. R. White, and S. Zhang (Simons Collabo-
ration on the Many-Electron Problem), Phys. Rev. X 10,
031016 (2020).

[20] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and
O. K. Andersen, Phys. Rev. Lett. 87, 047003 (2001).

[21] K. Tanaka, T. Yoshida, A. Fujimori, D. H. Lu, Z.-X. Shen,
X.-J. Zhou, H. Eisaki, Z. Hussain, S. Uchida, Y. Aiura et al.,
Phys. Rev. B 70, 092503 (2004).

[22] C. Kim, P. J. White, Z.-X. Shen, T. Tohyama, Y. Shibata, S.
Maekawa, B. O. Wells, Y. J. Kim, R. J. Birgeneau, and M.
A. Kastner, Phys. Rev. Lett. 80, 4245 (1998).

[23] S. R. White and D. J. Scalapino, Phys. Rev. B 79, 220504
(R) (2009).

[24] C. T. Shih, T. K. Lee, R. Eder, C.-Y. Mou, and Y. C. Chen,
Phys. Rev. Lett. 92, 227002 (2004).

[25] G. B. Martins, J. C. Xavier, L. Arrachea, and E. Dagotto,
Phys. Rev. B 64, 180513(R) (2001).

[26] M. Bejas, A. Greco, and H. Yamase, Phys. Rev. B 86,
224509 (2012).

[27] A. Eberlein and W. Metzner, Phys. Rev. B 89, 035126
(2014).

[28] J. F. Dodaro, H.-C. Jiang, and S. A. Kivelson, Phys. Rev. B
95, 155116 (2017).

[29] H.-C. Jiang and T. P. Devereaux, Science 365, 1424 (2019).

PHYSICAL REVIEW LETTERS 127, 097003 (2021)

097003-5

https://doi.org/10.1038/nature14165
https://doi.org/10.1146/annurev-conmatphys-031218-013210
https://doi.org/10.1146/annurev-conmatphys-031218-013210
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1103/PhysRevB.55.3894
https://doi.org/10.1103/PhysRevB.55.3894
https://doi.org/10.1103/PhysRevLett.80.1272
https://doi.org/10.1103/PhysRevLett.80.1272
https://doi.org/10.1103/PhysRevB.60.R753
https://doi.org/10.1103/PhysRevB.60.R753
https://doi.org/10.1103/PhysRevLett.91.136403
https://doi.org/10.1103/PhysRevLett.91.136403
https://doi.org/10.1103/PhysRevLett.88.117002
https://doi.org/10.1103/PhysRevLett.88.117002
https://doi.org/10.1103/PhysRevB.71.075108
https://doi.org/10.1103/PhysRevB.71.075108
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1103/PhysRevB.95.125125
https://doi.org/10.1103/PhysRevB.95.125125
https://doi.org/10.1126/science.aak9546
https://doi.org/10.1103/PhysRevB.97.045138
https://doi.org/10.1103/PhysRevB.97.045138
https://doi.org/10.1103/PhysRevB.100.195141
https://doi.org/10.1103/PhysRevB.100.195141
https://doi.org/10.1103/PhysRevB.98.140505
https://doi.org/10.1103/PhysRevB.98.140505
https://doi.org/10.1103/PhysRevX.10.031016
https://doi.org/10.1103/PhysRevX.10.031016
https://doi.org/10.1103/PhysRevLett.87.047003
https://doi.org/10.1103/PhysRevB.70.092503
https://doi.org/10.1103/PhysRevLett.80.4245
https://doi.org/10.1103/PhysRevB.79.220504
https://doi.org/10.1103/PhysRevB.79.220504
https://doi.org/10.1103/PhysRevLett.92.227002
https://doi.org/10.1103/PhysRevB.64.180513
https://doi.org/10.1103/PhysRevB.86.224509
https://doi.org/10.1103/PhysRevB.86.224509
https://doi.org/10.1103/PhysRevB.89.035126
https://doi.org/10.1103/PhysRevB.89.035126
https://doi.org/10.1103/PhysRevB.95.155116
https://doi.org/10.1103/PhysRevB.95.155116
https://doi.org/10.1126/science.aal5304


[30] Y.-F. Jiang, J. Zaanen, T. P. Devereaux, and H.-C. Jiang,
Phys. Rev. Research 2, 033073 (2020).

[31] A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
[32] L.Balents andM. P. A.Fisher,Phys.Rev.B53, 12133 (1996).
[33] E. Arrigoni, E. Fradkin, and S. A. Kivelson, Phys. Rev. B

69, 214519 (2004).
[34] Y. Gannot, Y.-F. Jiang, and S. A. Kivelson, Phys. Rev. B

102, 115136 (2020).
[35] H.-C. Jiang, S. Chen, and Z.-Y. Weng, Phys. Rev. B 102,

104512 (2020).
[36] C.-M. Chung, M. Qin, S. Zhang, U. Schollwöck, and S. R.

White (The Simons Collaboration on the Many-Electron
Problem), Phys. Rev. B 102, 041106(R) (2020).

[37] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[38] S. R. White, Phys. Rev. B 48, 10345 (1993).

[39] I. P. McCulloch and M. Gulácsi, Europhys. Lett. 57, 852
(2002).

[40] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.097003 for more
supporting data from other physical quantities and also at
other parameter points in the phase diagram.

[41] J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391
(1989).

[42] M. Vojta, Adv. Phys. 58, 699 (2009).
[43] K. Machida, Physica (Amsterdam) 158C, 192 (1989).
[44] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96

(2011), January 2011 Special Issue.
[45] H.-C. Jiang and S. A. Kivelson, preceding Letter, Phys. Rev.

Lett. 127, 097002 (2021).
[46] S. Jiang, D. J. Scalapino, and S. R.White, arXiv:2104.10149.

PHYSICAL REVIEW LETTERS 127, 097003 (2021)

097003-6

https://doi.org/10.1103/PhysRevResearch.2.033073
https://doi.org/10.1103/PhysRevLett.33.589
https://doi.org/10.1103/PhysRevB.53.12133
https://doi.org/10.1103/PhysRevB.69.214519
https://doi.org/10.1103/PhysRevB.69.214519
https://doi.org/10.1103/PhysRevB.102.115136
https://doi.org/10.1103/PhysRevB.102.115136
https://doi.org/10.1103/PhysRevB.102.104512
https://doi.org/10.1103/PhysRevB.102.104512
https://doi.org/10.1103/PhysRevB.102.041106
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1209/epl/i2002-00393-0
https://doi.org/10.1209/epl/i2002-00393-0
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.097003
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.127.097002
https://doi.org/10.1103/PhysRevLett.127.097002
https://arXiv.org/abs/2104.10149

