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Finding optical setups producing measurement results with a targeted probability distribution is hard, as
a priori the number of possible experimental implementations grows exponentially with the number of
modes and the number of devices. To tackle this complexity, we introduce a method combining
reinforcement learning and simulated annealing enabling the automated design of optical experiments
producing results with the desired probability distributions. We illustrate the relevance of our method by
applying it to a probability distribution favouring high violations of the Bell-Clauser-Horne-Shimony-Holt
(CHSH) inequality. As a result, we propose new unintuitive experiments leading to higher Bell-CHSH
inequality violations than the best currently known setups. Our method might positively impact the
usefulness of photonic experiments for device-independent quantum information processing.
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Introduction.—Bell nonlocality is a remarkable feature
that allows one to prove the incompatibility of an experi-
ment with a classical description by assuming only no
signaling and some form of independence between the
experiment’s devices [1]. First appreciated for its founda-
tional implications, it was recently realized that Bell non-
locality is also a valuable resource to perform some
quantum information tasks in a device-independent way,
i.e., without ever assuming a detailed quantum model of the
setup. This led to trustworthy protocols for quantum key
distribution with device-independent security guarantees
[2] and random number generation with device-indepen-
dent randomness certifications [3]. In the same vein, self-
testing [4] is the only technique that allows one to certify
the functioning of quantum devices without assuming
anything particular about their physical model.

In device-independent protocols, the quantity of interest,
be it the rate of quantum key distribution, the randomness
of outcomes, or the deviation from the ideal device in self-
testing, is expressed as a scalar function of the probability
distribution of measurement outcomes. In most cases, the
targeted probability distribution is the one leading the
highest Bell inequality violation. For example, the simplest
and most studied Bell test is the Clauser, Horne, Shimony,
and Holt (CHSH) test [5] which can be used for all
aforementioned tasks. From a practical perspective, one
of the main goals for performing device-independent
quantum information tasks is, thus, to design an experiment
with measurement outcomes optimizing the violation of the
CHSH inequality.

With their high repetition rates and routinely controlled
devices, optical experiments are appealing to perform a
CHSH test as demonstrated in many experiments [6—11].
The CHSH inequality violations reported in these
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experiments are very small which prevents one from using
them for most applications of device-independent quantum
information processing. It is, thus, natural to wonder if the
same optical devices can be rearranged to increase the
CHSH inequality violations. Finding the setup leading to
the highest CHSH score, that is, the highest CHSH
inequality violation, is, however, not straightforward, as
too many possibilities must be considered. It is the case that
automation is becoming necessary to improve implemen-
tations of device-independent protocols.

Inspired by recent developments in machine learning
[12—15], which is becoming more and more useful in
automation of problem solving in quantum physics
research [16-23], we introduce a technique based on the
interplay between reinforcement learning [24] and simu-
lated annealing [25] to design photonic setups maximizing
a given function of probability distributions of measure-
ment results. We illustrate the relevance of this method by
applying it to probability distributions yielding high vio-
lations of the CHSH inequality with controlled resources.
In essence, our algorithm not only rediscovered two known
setups, but also discovered new, unexpected experimental
settings leading to higher CHSH scores and, to our
knowledge, are not analogous to any known settings.

CHSH test—The way to realize the CHSH test is
depicted in Fig. 1(a). A bipartite quantum state is prepared
and shared between Alice and Bob. They then perform
measurement on their system by randomly and independ-
ently choosing one out of two measurement settings: A,
with x = 1, 0 for Alice and B, with y = 0, 1 for Bob. Each
measurement has two possible outcomes +1 labeled a and
b for Alice and Bob, respectively. The CHSH score is
then computed from the distribution of measurement out-
comes as
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(a) Schematic representation of a Bell test with two parties—Alice and Bob. In each round, Alice and Bob independently

perform a measurement on the state that they share. The measurement outcomes that Alice and Bob observe by repeating the
measurements are used to test a Bell inequality. (b) Schematic representation of the proposed learning protocol to design photonic
experiments leading to a probability distribution of measurement outcomes favoring a large CHSH inequality violation. Reinforcement
learning (gray-green arrows) and simulated annealing (blue arrows) approaches are used together.
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where p(a = b|A,B,) is the probability that the results are
the same given the setting choices A, and B,. Note that
the CHSH score is upper bounded by 2 whenever there
exists a locally causal model reproducing the measurement
outcomes. The range of possible scores is enlarged to

8| < 2v/2 with quantum models [26].

The physics of designed experiments.—We consider an
experiment involving n bosonic modes initialized in the
vacuum state. Their state is then manipulated by applying
single-mode operations—phase shifters, displacement
operations, and single-mode squeezers—and two-mode
operations—beam splitters and two-mode squeezers—on
any mode or pair of modes in any order or measuring out
some of the modes with non-photon-number-resolving
detectors; see Supplemental Material [27] for a detailed
description of these elements. The state preparation is
complete if the desired combination of outcomes click or
no click is observed on n — m detectors. The remaining m
modes are shared between Alice and Bob, who locally
apply a combination of operations from the same alphabet
depending on their measurement settings. Finally, all
the modes are measured out with non-photon-number-
resolving detectors, yielding one of the 2" possible out-
comes. In our examples, we will consider the cases
{m,n} ={2,2} and {2,3}.

The alphabet of possible unitary operations we described
is a fair representation of devices that are routinely used in
optical experiments [45]. It is worth mentioning that
degrees of freedom, such as polarization or frequency,
are described by associating several bosonic modes to one

photon. The use of a single-photon detector is motivated by
the fact that the results of Gaussian operations alone can be
reproduced by locally causal models.

Complexity.—To motivate an automated approach to our
problem, let us discuss the complexity of finding the
desired setup. A priori, the number of possible arrange-
ments of elements grows exponentially with the number of
modes and the total number of elements. However, as any
combination of such elements defines a Bogolyubov trans-
formation on the n modes, only O(n?) elements are needed;
see Supplemental Material, Sec. B [27] for the details. Yet,
an automated approach is very relevant for the design of
such experiments for three reasons. First, the total number
of parameters must also account for the measurement
settings, and a brute-force approach would have to optimize
the parameters of 23 elements for finding the highest
CHSH score for the case {m,n} = {2,3}. Second, if the
elements include imperfections, the set of transformations
which is accessible by combining individual elements is, in
general, unknown, making a brute-force method unfea-
sible. Finally, a brute-force search is unsuitable when one is
interested in keeping the number of elements low.

Learning to violate the CHSH inequality.—We now
formalize the problem of an automated design of an optical
setup leading to a high CHSH score as a reinforcement
learning [24,46] task. The description of a setup we
outlined before possesses two levels. The top level specifies
the order in which different elements are applied on
different modes. As each element is parametrized by one
or more parameters, a second level specifies the value of
these parameters. The automated design we propose treats
the two levels on a very different footing—a learning agent
focuses on the first level, and an optimization algorithm
based on simulated annealing treats the second level.
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(a) Setup used to test the reliability of the simulated annealing based optimization. Two modes, initially empty, are coupled by

a two-mode squeezing (TMS) operation. One mode is sent to each party which he or she measures using photon detection preceded by
displacement operations (D). (b) Learning curves reflecting the parameter optimization process performance for the fixed sequence
shown in (a). The results are an average over 1000 independent runs, and shaded areas are mean squared deviations. f ~ 2.4547 (dashed
line) is the optimal CHSH value found by using an analytical expression. (¢) CHSH score and experiment length reflecting the
reinforcement learning process of improving the CHSH value using a restricted set of elements. The results are an average over ten
independent runs, and shaded areas are mean squared deviations. The maximal value of # =~ 2.7075 found by the learning agent is shown
as a dashed line. (d) Setup combining simplicity and a relatively high CHSH score = 2.6401 (the heralding probability is
Petick & 2.2 x 1073). The diamond shape element above the heralding detector is a beam splitter.

As seen in Fig. 1(b), the learning agent (shown as a robot) is
interacting with a simulated experiment (shown as an
optical table) in rounds or interaction steps. A sequence
of interaction steps that leads to a feedback signal (reward)
is called a trial. One interaction step is visualized in
Fig. 1(b). At the beginning of each trial ¢, the agent
perceives an input s;(¢), which is a representation of an
initial (empty) optical setup at the agent-environment
interaction step k = 1. After a deliberation process, the
agent chooses an optical element a;(t) (action) out of the
set of available elements; see Fig. S1 in Supplemental
Material [27] for the list of available elements. The chosen
element is incorporated into the setup s;(¢), and this
combination makes up a new setup s,(¢). The latter is
then analyzed with the help of an optimization technique in
order to understand the quality of the prepared setup. The
optimization technique based on simulated annealing
[25,47,48] tries to find the best parameters of all the
chosen optical elements in the setup such that the meas-
urement results lead to the highest possible CHSH score.
The search for parameters runs until the maximum number
of optimization iterations is reached or once the CHSH
score at step k is higher than the previous best one
Pli—1) = maxg , po(7]¢ < 1= 1). 1 fi(1) > plr—1). a
reward of r(¢) =1 is given and the trial is finished: The
agent starts the next trial from the initial configuration
s1(t+ 1) with an updated CHSH score ().

Optimizing a fixed setup.—The learning process relies on
a good optimization algorithm that provides near-optimal
CHSH values for each setup proposed by the agent.

However, optimization is interrupted once the reward is
determined to save more runtime on learning rather than
optimization. Moreover, it is not important to determine the
full capability of all the setups under consideration during
the learning process. To learn, the agent needs only to
figure out if the current setup is better than all the previous
setups (with a high probability). To confirm this, we test the
reliability of simulated annealing by first separating the
optimization process from the reinforcement learning
process. This is implemented by considering the fixed
setup shown in Fig. 2(a). The learning scenario is equiv-
alent to having a “lucky” agent that always chooses a setup
known to produce a high CHSH score [49-51] or to an
agent that already learned this setup.

Figure 2(b) shows the results of the parameter optimi-
zation in this scenario. In our protocol, the computation
time allocated to the annealer increases with each sub-
sequent trial. As a consequence, the CHSH score grows
with the number of trials toward its maximum theoretical
value (dashed line), which confirms that the optimization
based on simulated annealing found near-optimal param-
eters. The maximum CHSH score found by the simulated
annealing based optimization is  ~ 2.4546, which has only
a 107 difference with the known optimal solution. Apart
from the optimization procedure, it is important that a
correct reward signal is paired with the dynamics of the
CHSH score $. In Fig. 2(b), one can see that reward r is
growing with time in parallel with . However, the reward
goes down toward zero with time, meaning that the agent
receives nearly no feedback after 20 trials. This unusual
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phenomenon, opposite to a standard scenario in reinforce-
ment learning, where an agent is expected to keep maxi-
mizing the reward per trial, is explained by that fact that it
becomes harder and harder to surpass the CHSH values of
previous rounds once the CHSH score has nearly reached
its maximum theoretical value.

Reinforcement learning with a limited set of devices.—
We first start by considering a task in which the agent is
given n =3 bosonic modes and a restricted toolbox
composed of beam splitters, two-mode squeezers, and
displacement operations. Given that two modes will be
distributed to Alice and Bob and the last one is detected, the
agent is asked to design setups by getting feedback from
simulated annealing.

As a reinforcement learning agent, we are using the
projective simulation agent which was first introduced in
Ref. [28] and since then was shown to be attractive both
theoretically [29-32] and for practical use [33-35,46,52].
The details of the agent’s internal structure and metapara-
meters are omitted here; see [27,53] for more information.

Figure 2(c) shows the evolution of the CHSH score and
the length of the experiment [(¢), i.e., the evolution of the
number of elements used by the agent per trial. One can see
that the setup length first decreases before increasing.
Similar to the behavior of the reward r(7) observed in
Fig. 2(b), it is hard to improve over nearly optimal
solutions; hence, the agent gets no reward and, by gradually
forgetting its previous experience, explores the most com-
plex possibilities of the maximum allowed Ilength
[nax = 15. The maximum length is set to avoid computa-
tional complexity in simulations and to avoid overcompli-
cated photonic setups that are difficult to realize
experimentally. This maximum length is the same through-
out our work and is lower than the number of [ =23
independent elements required for a general Bogolyubov
transformation on the three modes; see Supplemental
Material, Sec. B [27] for the details. As for the CHSH
values, a setup is found leading to a maximum value of
~2.7075 using 11 elements. Although the agent gets
rewards more frequently when the CHSH score tends to
increase, which may favor long lengths, he effectively gets
a similar reward per action in shorter experiments with
lower CHSH values. This trade-off can be controlled by the
agent’s metaparameters. When short length setups are
favored, the agent finds frequently a simple setup leading
to a CHSH score of ~2.6401 in which modes 2 and 3 are
first coupled with a two-mode squeezer and modes 1 and 2
are then coupled through a beam splitter; see Fig. 2(d). This
corresponds to a physical implementation of a setup
proposed in 1999 [54], where a CHSH inequality violation
is observed by first sending a single photon into a beam
splitter and measuring the output modes with photon
detection preceded by displacement operations. Note that
the agent is using displacements with real and imaginary
parts; however, he does not use them symmetrically in the
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FIG. 3. Two photonic setups designed by the learning agent
after learning from simpler examples. SMS elements correspond
to single-mode squeezing operations. (a) A Bell test with CHSH
score f ~2.7242 and a heralding probability px =~ 2.9 x 10~
or =~ 2.7424 with pgi = 2.6 x 107, (b) A Bell test with § =~
2.7454 and pgiq ~ 1.1 x 1072, Parameters of the elements for
both setups are in Supplemental Material [27]. (c) Dependence of
the CHSH scores of setups which are considered in this work on
detection efficiency. The setups designed by the agent provide
higher CHSH values than known setups for any detection
efficiency.

measurement choices. Each element with a complex
parameter is indeed divided into two elements, one with
a real parameter and one with a purely imaginary param-
eter, and the agent found a way to reduce the number of
elements in the displacements from 8 to 4. This represents
the internal feature of reinforcement learning agents—
reducing the number of actions per reward, which corre-
sponds to reducing the number of elements in setups.
Proposal of new experiments with reinforcement
learning.—Next, we allow the agent to choose between
more elements by adding single-mode squeezing with a
complex squeezing parameter to the previous set of
elements. Benefiting from the extended space of possibil-
ities, the agent gives us new setups, two of them producing
CHSH scores above 2.74; see Figs. 3(a) and 3(b). We were
not able to find known setups producing similar states. In
order to witness the relevance of these new setups, we
computed their CHSH score for nonunit detection efficien-
cies and reoptimized systematically the parameters of
each element when the detection efficiency is changed.
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For comparison, we also reported in Fig. 3(c) the CHSH
score of setups shown in Figs. 2(a) and 2(d) which are
known to be resistant to detector inefficiency and to
produce high CHSH scores for close to unit efficiency
detection respectively [55]. We conclude that the new
setups provide higher CHSH scores for any detection
efficiency. This can be partially understood by noting that
the new setups have more elements and the possibility to
control their parameters allows one to reduce them to setups
close to the ones of Figs. 2(a) and 2(d). Although more
detailed analyses are needed to conclude about the useful-
ness of these new setups in practice, they might provide
additional motivations to develop programmable photonic
integrated circuits.

Conclusion and outlook.—We have introduced a new
learning approach to design photonic quantum experiments
maximizing a desired function of the probability distribu-
tion of measurement outcomes. We observed that our
learning agent is able to learn the experimental designs
by trial and error. The agent was designing setups with
increasing CHSH value and decreasing the experiment
length whenever it was possible. As a result, new setups
have been discovered with unprecedented CHSH values for
any detection efficiency, which might positively impact the
usefulness of photonic experiments for device-independent
quantum information processing.
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