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Polyelectrolytes (PEs) are charged polymers in polar solvents. Classical scaling theories suggest that the

viscosity η for semidilute unentangled PE solutions in θ solvents obeys the empirical Fuoss law η ∝ n1=2p in

the “salt-free” regime, and η ∝ n5=4p in the regime affected by added salt, where the polymer concentration
np is defined as the number of monomers per volume. However, recent experiments have also reported

η ∝ n0.68p and η ∝ n0.91p , which are at odds with the classical scaling theories. To rationalize the four distinct
scaling laws, we probe the electrostatic energy per monomer under the influence of salt and their
contributions to the viscosity of PE solutions. We identify four consecutive regimes dependent on the
magnitude of the ratio of the polymer concentration np to the salt concentration ns, which capture the
unexplained observations, and provide physical insights for the influence of salt contamination and added
salt on the properties of both weakly and strongly charged semidilute unentangled PE solutions.

DOI: 10.1103/PhysRevLett.124.177801

Introduction.—The rheology of semidilute polyelectro-
lyte (PE) solutions has been studied extensively. Because of
the electrostatic interactions among the charged monomers
and mobile ions, the relation between the viscosity η of a
PE solution and the polymer concentration np follows
different power laws in the unentangled semidilute regime,
which are distinct from neutral polymer solutions [1–3].
Previous theories predict the empirical Fuoss law η ∝ n1=2p

for PE solutions with no purposefully added salt (nominally

“salt-free”) [4–6], and η ∝ n5=4p when salt is added [7,8], as
often reported for sodium polystyrenesulfonate (NaPSS)
solutions [9–12]. However, new power-law exponents have
been measured for salt-free PE solutions, e.g., 0.68 for
sodium carboxymethylcellulose (NaCMC) [13–15] and
acrylamide-sodium-2-acrylamido-2-methylpropane-sulfo-
nate (AM-NaAMPS) [16], and 0.91 for salt-free hyaluronic
acid (HA) [17] and chitosan [18], all of which are with
qualitatively different flexibilities. To date there is no
definitive explanation for either of these new measured
power laws.
Earlier theories commonly assume that the (bulk) salt

concentration ns in salt-free semidilute PE solutions
corresponds to the local counterion concentration,
which is proportional to the polymer concentration np.
Consequently, it is expected that the electrostatic energy per
monomer is of the order of the thermal energy kBT for all
np in the semidilute regime. However, these a priori
assumptions oversimplify the electrostatics in PE solutions,
and omit the influence of salt and PE charge strength.
Therefore, in this Letter, we develop a theoretical model to
investigate the electrostatic contributions, which incorpo-
rate the effects of salt contamination and added salt, to the

conformation and dynamics of both weakly and strongly
charged PE solutions, and rationalize the aforementioned
unexplained experimentally measured power laws for the
viscosity.
Theory.—Our model starts with the concept of “blobs”

introduced by de Gennes and colleagues [19,20], who
described a flexible polymer chain in a semidilute solution
as noninteracting blobs that follow a random walk.
Similarly, we model the semidilute PE solution at polymer
concentration np as closely packed blobs of size ξ, as
illustrated in Fig. 1(a), assuming that each PE chain is
intrinsically flexible with a degree of polymerization
Np ≫ 1, and uniformly charged with a charge fraction
φ. Each PE blob [see Fig. 1(b)] contains g ¼ npξ3 mono-
mers of size a, where ξ3 is the volume of a blob, and
1 < g < Np sets the boundaries of the semidilute solution
regime. To probe, at least approximately, the electrostatic
interactions among the charged monomers and the sur-
rounding mobile ions, we introduce a cell model for each
monomer and further divide the blobs into closely packed
“cells” with volume Ω ¼ 1=np ¼ 4l2a, where a is the cell

FIG. 1. Schematics of (a) blob-packed semidilute PE solution,
(b) several charged monomers surrounded by ions in a blob, and
(c) the cell model depicting two adjacent nonconnected mono-
mers as parallel charged plates.
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length and 2l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðanpÞ
p

is the average separation
distance between two adjacent nonconnected monomers
[see Fig. 1(c)].
Considering that the PEs are in a θ solvent and the

excluded volume contribution is negligible, we write the
total free energy F of such a blob as

F
kBT

¼ ξ2

ga2
þ ξ3felecðnp; ns;φÞ; ð1Þ

where the first term is the elastic energy of the freely jointed
g monomers [19–21], and the second term refers to the
electrostatic energy of the charged monomers and electro-
lyte ions encased within a blob. Here we introduce
felecðnp; ns;φÞ as the nondimensional electrostatic energy
density, and accordingly felec=np is the nondimensional
electrostatic energy per monomer. We can then obtain the
equilibrium ξ and g as functions of felec=np with a
minimization procedure for F [22]:

δF
δξ

¼ 0 ⇒ ξ ¼ aðnpa3Þ−1=2
�

felec
np

�

−1=4
; ð2aÞ

g ¼ ðnpa3Þ−1=2
�

felec
np

�

−3=4
: ð2bÞ

We neglect the numerical coefficients in Eqs. (1) and (2)
and the following derivations.
The relaxation time τ and viscosity η of an unentangled

semidilute PE solution can be obtained using the Zimm-
Rouse model, following a standard procedure [5–8,20–24].
The relaxation time of the monomers in a blob is treated as
Zimm-like [25], i.e., τξ ¼ ηsξ

3=ðkBTÞ where ηs is the
solvent viscosity, and the relaxation time τ of the Np=g
blobs in each chain is referred to as Rouse-like [26]:

τ ¼ τξ

�

Np

g

�

2

¼ ηs
kBT

N2
pa3=2n

−1=2
p

�

felec
np

�

3=4
: ð3Þ

Moreover, the stress relaxation modulus G can be charac-
terized as kBT per chain per unit volume, i.e., G ¼
kBTnp=Np [5–10]. Then, the corresponding viscosity η
of the PE solution is expressed as

η ¼ τG ¼ ηsNpðnpa3Þ1=2
�

felec
np

�

3=4
: ð4Þ

Note that if we take felec=np ¼ 1 in Eq. (4), as assumed
by de Gennes et al. [5], where the electrostatic energy per
monomer is the thermal energy kBT at any np, we obtain

the Fuoss law η ∝ n1=2p , as suggested for salt-free unen-
tangled semidilute PE solutions [5,6]. However, instead of
making this a priori assumption, we determine felec=np as

a function of np, ns, and φ in four consecutive concen-
tration regimes using the cell model.
We model two adjacent nonconnected monomers as

parallel similarly charged plates (or rods, see Ref. [22])
located in the center of a cell [x ¼ �l in Fig. 1(c)]. The
surface charge density is σ ¼ Zeφ=S, where Z ¼ �1
denotes the valence of the charged monomers, e is the
electric charge, and S ¼ 4la is the plate surface area. Each
plate is surrounded by monovalent ions that form electric
double layers (EDLs). For a typical aqueous semidilute PE
solution at room temperature T ¼ 300 K, e.g., a ¼ 1 nm,
the vacuum permittivity ϵ0 ¼ 8.8 × 10−12 F=m, the relative
dielectric constant of water ϵr ≈ 80, np ¼ 10−5 − 1 M,
ns ¼ 10−5–0.1 M, we can quantify the cell size 2l ≈
1.3–400 nm and the EDL thickness or Debye length
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTϵ0ϵr=ð2e2nsÞ
p

≈ 1–100 nm, which are much
larger than the Bjerrum length lB ¼ e2=ð4πϵ0ϵrkBTÞ≈
0.7 nm. Meanwhile, we limit φ < a=lB to avoid counter-
ion condensation [27–29]. Therefore, it is reasonable to
solve for the ion distributions in a confined cell domain by a
mean-field approach.
With our notation, felec=np involves the electrostatic

energy of all charged species in a cell

felec
np

¼
Z

S

σψS

kBT
dSþ

Z

Ω

�

−
ϵ0ϵr
2kBT

�
�

�

�

�

dψ
dx

�

�

�

�

2

dΩ

þ
Z

Ω

X

�

eψ
kBT

ziniþni;∞þni

�

ln

�

ni
ni;∞

�

−1

�	

dΩ;

ð5Þ

where the first term is the electrostatic energy contributed
by the charged surface (S), the second term is the self
energy of the electric field, and the third term is the
electrostatic energy contributed by the mobile ions, incor-
porating the Coulomb interactions and the entropy of
mixing of the pointlike electrolyte ions (i ¼ �) in the cell
volume (Ω). Here ψ is the electrostatic potential relative to
a reference ψ ¼ 0 in the bulk where PE is absent, ψS is the
electrostatic potential at the charged surface, n� and n�;∞
are the local and bulk ion concentrations, respectively,
and n�;∞ ¼ ns.
Minimization of felec with respect to ψ and n�, respec-

tively, leads to the classical Poisson equation and
Boltzmann distribution:

d2ψ
dx2

¼ eð−nþ þ n−Þ
ϵ0ϵr

; n� ¼ ns exp

�

∓ eψ
kBT

�

: ð6Þ

The boundary condition at the charged surface is

δFelec

δψS
¼ 0 ⇒

dψ
dx

�

�

�

�

x¼�l
¼ −

σ

ϵ0ϵr
: ð7Þ
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Also, a symmetry boundary condition is used at the
midplane between the two charged surfaces:

dψ
dx

�

�

�

�

x¼0

¼ 0: ð8Þ

The nondimensional Poisson-Boltzmann (PB) equation
and boundary conditions from Eqs. (6)–(8) in the domain
−l < x < 0 [Fig. 1(c)] are

d2Ψ
dx̄2

¼ sinhΨ
λ̄2

; B:C:
dΨ
dx̄

�

�

�

�

x̄¼−1
¼ −

σ̄

λ̄2
;

dΨ
dx̄

�

�

�

�

x̄¼0

¼ 0;

ð9Þ

where Ψ ¼ eψ=ðkBTÞ, x̄ ¼ x=l, σ̄ ¼ σ=ð2nselÞ, and
λ̄ ¼ λ=l. Note that jσ̄j and λ̄ can be associated with the
parameters of the PE solutions via

jσ̄j ¼ φ

2

np
ns

; λ̄2 ¼ a
2πlB

np
ns

¼ φc

2

np
ns

; ð10Þ

where we introduce φc ¼ a=ðπlBÞ as a critical charge
fraction (see Discussion).
Results.—Within the Debye-Hückel (DH) limit jΨj ≪ 1,

Eq. (9) can be linearized as d2Ψ=dx̄2 ≈ Ψ=λ̄2, which yields
the analytical solution

Ψðx̄Þ ≈ σ̄ coshðx̄
λ̄
Þ

λ̄ sinhð1
λ̄
Þ : ð11Þ

In Eq. (11), the electrostatic potential for nonoverlapping
EDLs, λ̄ ≪ 1, follows an exponential decay away from the
charged surface, i.e.,Ψ ≈ ðσ̄=λ̄Þ exp ½ðjx̄j − 1Þ=λ̄�, while it is
nearly a constant for overlapping EDLs, λ̄ ≫ 1, i.e., Ψ ≈ σ̄.
Therefore, under the scenario jσ̄j ¼ φnp=ð2nsÞ ≪ 1,
we obtain the electrostatic energy per monomer from
Eqs. (5) and (11) as

felec
φnp

≈
jσ̄j
2λ̄

coth

�

1

λ̄

�

; ð12Þ

which is asymptotically felec=ðφnpÞ ≈ jσ̄j=ð2λ̄Þ ¼
ðφ=4Þ½2np=ðφcnsÞ�1=2 for λ̄ ≪ 1, and felec=ðφnpÞ ≈
jσ̄j=2 ¼ φnp=ð4nsÞ for λ̄ ≫ 1. Accordingly, we derive
the PE solution viscosity using Eqs. (4), (10), and (12) as

η

ηsNp
≈ðnpa3Þ12

�

φ2

4

�

2

φc

np
ns

�1
2

coth

��

φc

2

np
ns

�

−1
2

�	3
4

: ð13Þ

This result is asymptotically η ∝ n7=8p n−3=8s φ3=2 for
λ̄ ¼ φcnp=ð2nsÞ ≪ 1, and η ∝ n5=4p n−3=4s φ3=2 for λ̄ ¼
φcnp=ð2nsÞ ≫ 1.

Beyond the DH limit jΨj ≫ 1, solving the nonlinear PB
equation is challenging. However, we obtain an approxi-
mate solution for Eq. (9) considering λ̄≫1 and jσ̄j=λ̄2 ≪ 1
(see derivations in Ref. [22]):

Ψðx̄Þ ≈ sinh−1 σ̄ þ 1

2

σ̄

λ̄2

�

x̄2 −
1

3

�

: ð14Þ

Here we retain the leading-order approximation in Eq. (14),
Ψ ≈ sinh−1 σ̄, which fits well with the numerical solutions
up to jσ̄j=λ̄2 ¼ ðφ=φcÞ ≈ π, and substitute it in Eq. (5):

felec
φnp

≈ sinh−1 jσ̄j þ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̄2 þ 1
p

jσ̄j : ð15Þ

Note that Eqs. (11) and (14), also separately Eqs. (12)
and (15), yield the same asymptotic approximations
when jσ̄j ≪ 1 and λ̄ ≫ 1. Therefore, for the scenario when
jσ̄j ≫ 1 and λ̄ ≫ 1, Eq. (15) yields felec=ðφnpÞ ≈ sinh−1jσ̄j
and Eq. (4) becomes

η

ηsNp
≈ ðnpa3Þ1=2

�

φsinh−1
�

φ

2

np
ns

��

3=4
: ð16Þ

The parameters jσ̄j, λ̄, Ψ, felec=ðφnpÞ, and η in Eqs. (10)–
(16) can all be expressed as functions of np=ns. A rodlike
geometry for a cell model representing the charged mono-
mers gives similar approximations [22].
Discussion.—The solutions for felec=ðφnpÞ, obtained

numerically using Eqs. (5)–(10) for a typical semidilute
PE solution at room temperature, are presented as a
function of φnp=ð2nsÞ (or equivalently jσ̄j) at various
charge fractions φ ¼ 0.01, 0.1, and 1 in blue solid lines
in Fig. 2; the critical charge fraction is
φc ¼ a=ðπlBÞ ≈ 0.45. Accordingly, predictions using the
approximate Eqs. (12) and (15) shown as dashed and
dotted lines, respectively, fit well with the numerical
solutions in the corresponding regimes. Specifically, the
plots for φ ¼ 0.01 and 0.1 crossover three regimes,
i.e., φnp=ð2nsÞ≪φ=φc, φ=φc ≪ φnp=ð2nsÞ ≪ 1 and
1≪φnp=ð2nsÞ, each with its own distinct power-law
exponent, i.e., 1=2, 1 and a case approximately 0.24. Here,
0.24 is obtained by fitting Eq. (15) approximately with
felec=ðφnpÞ¼½φnp=ð2nsÞ�0.24 for 101<φnp=ð2nsÞ<103

[22]. In contrast, the plot for φ ¼ 1 crosses over two
regimes, i.e., φnp=ð2nsÞ ≪ 1 and 1 ≪ φnp=ð2nsÞ, follow-
ing two power-law exponents, 1=2 and 0.24. Apparently,
the exponent 1 does not exist for a strong charge criterion
φ < φc. Also, φc ¼ a=ðπlBÞ ≈ 0.45 is distinct from the
critical charge fraction φc;cond ¼ a=lB (≈1.43 for typical
PE solutions) in the counterion condensation theory,
beyond which the mean-field description fails [27–29]. It
is also shown in Fig. 2 that felec=ðφnpÞ ≈ 1 when
φnp=ð2nsÞ ¼ 1, which is consistent with the previous
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theory for salt-free PE solutions [5]. However, rather than
taking φnp=ð2nsÞ ¼ 1 as an a priori assumption, we
highlight that φnp=ð2nsÞ ¼ 1 differentiates the regimes
within and beyond the DH limit.
Note that ns refers to the salt concentration in the bulk,

e.g., a connected reservoir where PE is absent and ψ ¼ 0,
which is not necessarily proportional to the local counterion
concentration φnp near a monomer. Also, it is well
documented that experiments on PE solutions are always
affected by salt contamination, which may arise from salt
residual in the PE sample, e.g., ∼0.4 wt% for dialyzed
NaCMC [14], or dissociated carbon dioxide (CO2) in the
solvent, e.g., ∼10−5.5 M in deionized water [10,11]. To
incorporate both conditions, we define the (bulk) salt
concentration for PE solutions as ns ≈ αnp þ β, where
αnp is the salt residual in the PE sample, and β is the
summation of the salt contamination and added salt in the
solvent. Also we assume that salt-free PE solutions are
within the regime φnp=ð2nsÞ ≫ 1 (beyond the DH limit).
Then, substituting ns ¼ β and ns ¼ αnp in Eq. (16),
respectively, leads to two different scaling laws:

η

ηsNp
≈ðnpa3Þ1=2

�

φsinh−1
�

φnp
2β

��

3=4
∝φ0.93n0.68p ; ð17aÞ

η

ηsNp
≈ðnpa3Þ1=2

�

φsinh−1
�

φ

2α

��

3=4
∝φ0.93n1=2p ; ð17bÞ

where the exponents are obtained by fitting
sinh−1½φnp=ð2nsÞ� approximately with ½φnp=ð2nsÞ�0.24
for 101 < φnp=ð2nsÞ < 103 [22].
The predictions of the viscosity η=ðηsNpÞ of weakly

charged PE solutions (φ ¼ 0.1 and φc ¼ 0.45), obtained
using numerical solutions for felec=np (Fig. 2) in Eq. (4)
and considering ns ¼ αnp þ β, are presented as a function
of np=β in Fig. 3. Here, α1 ¼ 0.001 and α2 ¼ 0.01

represent “pure” and impure PE samples, respectively,
and β ¼ 10−4 M represents the salt contamination or added
salt in solvent for both cases. Power-law exponents are
indicated for regimes where the numerical curves have
approximately constant slope over a factor of 10 change
in np=β.
In the regime np=β ≪ 2=φ within the DH limit

jσ̄j ≪ 1 (see Fig. 3), which is characterized as PE solutions
with added salt, predictions of η=ðηsNpÞ for both con-
ditions with pure and impure PE samples are identical.
We find that, using Eq. (13), the asymptotically obtained
scaling law η ∝ φ3=2n7=8p n−3=8s in the regime np=β ≪ 2=φc

(dashed black lines) is consistent with the
experimental data η ∝ n0.91�0.04

p for salt-free chitosan sol-

utions [18]. Similarly, we asymptotically identify η ∝
φ3=2n5=4p n−3=4s in the regime 2=φc ≪ np=β ≪ 2=φ (dash-
dotted black lines), which is consistent with the previous
theory considering the effect of salt [7]. Note that the
exponent 5=4 is only expected for weakly charged PE
solutions, i.e., φ < φc.
In the regime np=β ≫ 2=φ beyond the DH limit jσ̄j ≫ 1,

which is characterized as PE solutions with
no added salt, predictions of η=ðηsNpÞ for pure and impure
PE samples are different. For α1 ¼ 0.001, we identify
(i) η ∝ φ0.93n0.68p in the regime 2=φ ≪ np=β ≪ 1=α1 using
Eq. (17a) (solid black lines), which is consistent with the
experimental observation η∝n0.68�0.06

p for salt-free NaCMC

solutions [14], and (ii) η ∝ φ0.93n1=2p in the regime np=β ≫
1=α1 using Eq. (17) (dotted black lines), which is consistent
with the empirical Fuoss Law [4]. In contrast, the exponent
0.68 is not obvious for α2 ¼ 0.01, as the regime 2=φ ≪
np=β ≪ 1=α2 is comparatively narrow. Therefore, we antici-
pate that the exponent 0.68 is more likely to be observed for
PE solutions with purer PE samples and larger charge
fraction.

FIG. 2. Nondimensional electrostatic energy per charged
monomer felec=ðφnpÞ as a function of φnp=ð2nsÞ for semidilute
PE solutions, where the critical charge fraction is φc ¼ 0.45.

FIG. 3. Nondimensional viscosity η=ðηsNpÞ as a function of
np=β for weakly charged PE solutions (φ ¼ 0.1 and φc ¼ 0.45).
Here α indicates the PE sample purity.
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The scaling laws for the relaxation time τ and viscosity η
of weakly charged φ < φc PE solutions are organized in
four consecutive regimes of np=ns in Table I. For strongly
charged φ > φc PE solutions, as discussed above, our
model captures three scaling laws in Table I, while the
regime 2=φc ≪ np=ns ≪ 2=φ is not applicable.
The experimental measurements for the specific viscos-

ity ηsp ¼ ðη − ηsÞ=ηs of NaCMC solutions at various np,
with and without added salt [14] are plotted in Fig. 4,
where the molecular weight is Mw ¼ 3.2 × 105 g=mol
(Np ≈ 1200). The NaCMC sample is considered to be
pure and strongly charged, i.e., α ≈ 0.0017 and φ ≈ 0.5. In
the unentangled regime (approximately np < 10−1.8 M in
Fig. 4), data for the salt-free solutions β ≈ 10−5.5 M
(circles) are captured by the scaling law η ∝ n0.68p from
Eq. (17a) in the regime 2=φ ≪ np=β ≪ 1=α. Also data for
solutions with a little added salt β ≈ 0.001 M (triangles) are
captured by the scaling law η ∝ n7=8p in the regime
np=β ≪ 2=φc. Both results are consistent with our pre-
dictions for strongly charged PE solutions from pure
samples.
We note that the electrostatic energy per monomer, as

shown in Fig. 2, decreases with an increase of added salt,
and eventually the PE solution will behave as a neutral
polymer solution when the electrostatic contribution is
negligible. Therefore, data for ns ¼ 0.01 M (diamonds)

and 0.5 M (stars) in Fig. 4 are captured by the scaling law
η ∝ n5=4p for neutral polymer solutions [20].
Conclusion.—We use a mean-field approach to study the

electrostatics in semidilutePE solutions and its contribution to
the conformational and rheological properties of the unen-
tangled PE chains. To understand the electrostatic interactions
among the charged monomers and the electrolyte ions, we
integrate a cell model, for the charged monomers, with the
blob model, and obtain approximations for the potential
distributions for nonoverlapping and overlapping EDLs
within and beyond the Debye-Hückel limit. Consequently,
we identify four scaling laws for the electrostatic energy per
monomer felec=np, relaxation time τ, and viscosity η in four
consecutive regimes of np=ns, which capture unexplained
experimental observations and provide insights for the effect
of salt contamination, added salt, and charge strength in the
properties of PE solutions. We anticipate that the asymptotic
approximations for the electrostatics can be applied in other
colloidal systems such as polyelectrolyte brushes, suspen-
sions of clay particles, and bacterial colonies.
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