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Solving linear systems of equations is a frequently encountered problem in machine learning and
optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax ¼ b. We describe
a quantum algorithm that achieves a sparsity-independent runtime scaling ofO(κ2

ffiffiffi
n

p
polylogðnÞ=ϵ) for an

n × n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ϵ is the
desired precision parameter. This amounts to a polynomial improvement over known quantum linear
system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear
systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is
polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation
subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum
states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

DOI: 10.1103/PhysRevLett.120.050502

A common bottleneck in statistical learning and machine
learning algorithms is the inversion of high-dimensional
matrices in order to solve linear systems of equations.
Examples include covariance matrix inversions in Gaussian
processes and support vector machines, as well as data
matrix inversions in large scale regression problems [1,2].
Recent advances in the field of quantum information

processing have provided promising prospects for the
efficient solution of high-dimensional linear systems.
The breakthrough work of Harrow, Hassidim, and Lloyd
[3] introduced the quantum linear system algorithm
(QLSA) that computes the quantum state jxi ¼ jA−1bi
corresponding to the solution of a linear system Ax ¼ b,
where A ∈ Rn×n and x, b ∈ Rn, in timeO(polylogðnÞ) for
a sparse and well-conditioned A. Unlike the output A−1b ∈
Rn of a classical linear system solver, a copy of jA−1bi does
not provide access to the coordinates of A−1b. Never-
theless, it allows us to perform useful computations such as
sampling from the solution vector. The QLSA has inspired
several works [4–13] in the emerging research area of
quantum machine learning.
In the classical setting, the best known algorithm for the

sampling task performed by the QLSA requires solving the
linear system. The running time for a classical linear system
solver scales as OðnωÞ, where the matrix multiplication
exponent ω ≤ 2.373 [14,15]. However, as the subcubic
scaling is difficult to achieve in practice, linear system
solvers typically use the Cholesky decomposition and
require time Oðn3Þ for dense matrices. The QLSA [3] has
running time ~O(κ2sðAÞ2=ϵ), where κ is the condition
number, sðAÞ is the sparsity or the maximum number of

nonzero entries in a row of A, and ϵ is the precision to which
the solution is approximated. There have been several
improvements to the QLSA since the original proposal that
have improved the running time to linear in κ and sðAÞ and to
polylogarithmic in the precision parameter ϵ [16,17]. The
work in Ref. [18] introduced preconditioning for the QLSA
and extended its applicability.
Quantum machine learning is an emerging research area

that attempts to harness the power of quantum information
processing to obtain speedups for classical machine learn-
ing tasks. A number of quantum machine learning algo-
rithms have been proposed [4–13,19,20]. Most of these
algorithms use a quantum linear system solver as a
subroutine. However, as mentioned in Ref. [3], and later
also pointed out in Refs. [21,22], the QLSA potentially has
a few caveats. In particular, the QLSA achieves an
exponential speedup over classical algorithms when the
matrix A is sparse and well conditioned, due to the sparsity-
dependent Hamiltonian simulation subroutine.
It was shown in Ref. [23] that given black-box access

to the elements of matrix A, that is, given an oracle that
supports queries of the form OAjj; kijzi → jj; kijz ⊕ Ajki
Hamiltonian simulation with error δh can be performed in
time O(n2=3polylogðnÞ=δ1=3h ). This yields a quantum
linear system algorithm for dense matrices with running
time O(κ2n2=3polylogðnÞ=ϵ). It was also observed
empirically in Ref. [23] that this algorithm scales as
O(

ffiffiffi
n

p
polylogðnÞ=δ1=2h ) for several classes of matrices.

However, the ~Oð ffiffiffi
n

p Þ runtime for black-box Hamiltonian
simulation was not formally proven and is known not to
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hold in the worst case. The oracle OA can be implemented
efficiently if A is well structured, that is, given j, k there
is a small sized quantum circuit to compute the entry Ajk.
However, for the dense linear systems that arise in a large
class of interesting machine learning applications, we do
not have access to such a circuit. Examples include kernel
methods [24] and artificial neural networks where con-
volutional neural network architectures in particular rely
on subroutines for manipulating large, dense matrices
[25,26]. A possible solution in these cases is to use the
quantum random access memory (QRAM) [27,28] as a
general purpose device to implement the desired oracle.
In this Letter we present an alternative quantum algo-

rithm for solving linear systems of equations. Instead of
assuming black-box access to the matrix elements, we work
in a memory model where the entries of A are stored as a
suitable data structure in a QRAM. We show that a ~Oð ffiffiffi

n
p Þ

linear system solver is provably achievable even in the
worst case with this augmented memory model. Moreover,
an exponential advantage can be obtained with our pro-
posed approach when rank of A is polylogarithmic in n.
Our linear system solver uses the quantum singular value

estimation (QSVE) algorithm introduced in Ref. [29]. The
algorithm achieves a runtime O(κ2∥A∥FpolylogðnÞ=ϵ),
where κ denotes the condition number of A, ∥A∥F is the
Frobenius norm, and ϵ is the precision parameter. When the
spectral norm ∥A∥� is bounded by a constant, the scaling
becomes O(κ2

ffiffiffi
n

p
polylogðnÞ=ϵ), which amounts to a

polynomial speed-up over the scaling achieved by
Ref. [3] when applied to dense matrices. We assume
without loss of generality that the matrix A is Hermitian
as a general rectangular matrix M can be embedded into a
block antidiagonal Hermitian matrix with the elements of
M† and M in the lower and upper half, respectively [3].
Furthermore, if A is not invertible, our algorithm applies the
Moore-Penrose pseudoinverse and the running time is
bounded by 1=jλminj, where λmin is the nonzero eigenvalue
for A with the smallest absolute value instead of κ.
We start by introducing some preliminaries. For a

symmetric matrix A ∈ Rn×n with spectral decomposition
A ¼Pi∈½n�λisis

†
i , the singular value decomposition is

given by A ¼Pi∈½n�jλijuiv
†
i , where the left and right

singular vectors ui and vi are equal to the eigenvectors
si up to a sign, such that si ¼ ui ¼ �vi. We also need the
well-known quantum phase estimation algorithm:
Theorem 1.—(Phase estimation [30]) Let unitary

Ujvji ¼ exp ðiθjÞjvji with θj ∈ ½−π; π� for j ∈ ½n�. There
is a quantum algorithm that transforms

P
j∈½n�αjjvji →P

j∈½n�αjjvjijθ̄ji such that jθ̄j − θjj ≤ δ for all j ∈ ½n� with
probability 1 − 1=polyðnÞ in time O(TU logðnÞ=δ), where
TU defines the time to implement U.
Quantum singular value estimation can be viewed as an

extension of phase estimation to nonunitary matrices. It is
the main algorithmic primitive required for our linear

system solver. Given the matrix A with singular value
decomposition A ¼Piσiuiv

†
i and an arbitrary input

state
P

iαijvii, QSVE amounts to performing the mapP
iαijvii →

P
iαijviijσ̄ii, where jσii encodes the precision

δ estimates for the singular values of A with high prob-
ability, such that jσi − σij ≤ δ for all i. A QSVE algorithm
with running time of ~Oð∥A∥F=δÞ was presented in
Ref. [29], where it was used for quantum recommendation
systems. An SVE algorithm applied to a symmetric matrix
estimates jλij but does not recover sgnðλiÞ. However, in
order to solve linear systems we also need to recover
sgnðλiÞ. In this Letter, we provide a simple procedure for
recovering the sign given an SVE algorithm. Our procedure
thus provides a way to construct a quantum linear system
solver from a QSVE algorithm in a black-box manner.
The main result of this Letter is a quantum linear system

solver based on the QSVE algorithm [29] that achieves a
running time of O(κ2∥A∥FpolylogðnÞ=ϵ). We briefly
describe the QSVE algorithm in the next section. We then
present the quantum linear system solver and provide a
complete analysis for the linear system solver as well as a
comparison with other approaches to the QLSA in the
discussion.
The QSVE algorithm.—The QSVE algorithm requires

the ability to efficiently prepare the quantum states corre-
sponding to the rows and columns of matrix A. The matrix
entries are stored in the following data structure, such that a
quantum algorithm with access to this data structure has
this ability.
Lemma 1.—(Data structure [29]) Let A ∈ Rm×n be a

matrix with entries Aij which arrive in an arbitrary order.
There exists a data structure with the following properties:
(i) A quantum computer with access to the data structure
can perform the following mappings in O(polylogðmnÞ)
time.

UM∶ jiij0i → ji;Aii ¼
1

∥Ai∥

Xn
j¼1

Aijji; ji;

UN ∶ j0ijji → jAF; ji ¼
1

∥A∥F

Xm
i¼1

∥Ai∥ji; ji; ð1Þ

where Ai ∈ Rn correspond to the rows of the matrix A and
AF ∈ Rm is a vector whose entries are the l2 norms of the
rows, i.e., ðAFÞi ¼ ∥Ai∥. (ii) The time required to store a
new entry Aij is O(log2ðmnÞ) and data structure size is
Oðw logmnÞ, where w is the number of nonzero entries
in A.
We provide a brief description of a possible realization

of this data structure with a schematic diagram in the
Supplemental Material [31]; more details can be found
in Ref. [29].
The QSVE algorithm is a quantum walk based algorithm

that leverages the connection between the singular values σi
of the target matrix A and the principal angles θi between
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certain subspaces associated with A. It uses a factorization
½A=ð∥A∥FÞ�¼M†N , where M ∈ Rmn×m and N ∈ Rmn×n

are isometries with column spaces CðMÞ and CðN Þ
such that the unitary operator W ¼ ð2MM† − ImnÞ×
ð2NN † − ImnÞ, where Imn denotes the identity matrix,
can be implemented efficiently using the data structure in
Lemma 1.
The operators 2MM† − Imn and 2NN † − Imn re-

present reflections on subspaces CðMÞ and CðN Þ, respec-
tively. The application ofW thus amounts to two sequential
reflections, first on CðN Þ, and then on CðMÞ. As such it
can be interpreted as taking a step in the bipartite quantum
walk [32], where the singular values of the normalized
target matrix A=∥A∥F for QSVE correspond to the principal
angles between the subspaces CðMÞ and CðN Þ. The
relation between quantum walks and eigenvalues has been
well-known in the literature and has been used in several
previous results [32–34]. However, the quantum walk
defined by the QSVE algorithm is particularly interesting
for linear systems, as instead of the sparsity sðAÞ it depends
on the Frobenius norm ∥A∥F. Algorithm 1 describes
the QSVE algorithm, the analysis is contained in the
following lemma:

Lemma 2.—(Preparation of the isometries [29]).
Let A ∈ Rm×n be a matrix with singular value decom-

position A ¼Piσiuiv
†
i stored in the data structure

described in Lemma 1. Then there exist matrices
M ∈ Rmn×m, and N ∈ Rmn×n, such that (1) M, N are
isometries, that isM†M ¼ Im andN †N ¼ In such that A
can be factorized as A=∥A∥F ¼ M†N . Multiplication by
M, N , i.e., the mappings jαi → jMαi and jβi → jN βi
can be performed in time O(polylogðmnÞ). (2) The reflec-
tions 2MM† − Imn, 2NN † − Imn, hence, the unitaryW ¼
ð2MM† − ImnÞð2NN † − ImnÞ can be implemented in
time O(polylogðmnÞ). (3) The unitary W acts as rotation
by θi on the two dimensional invariant subspace
fMui;N vig plane, such that σi ¼ cosðθi=2Þ∥A∥F, where
σi is the ith singular value for A.

We outline the ideas involved in the analysis of the
QSVE algorithm and refer to Ref. [29] for further details.
The mapM appends to an arbitrary input state vector jαi a
register that encodes the row vectors Ai of A, such that

M∶ jαi ¼
Xm
i¼1

αijii →
Xm
i¼1

αiji;Aii ¼ jMαi:

The map N similarly appends to an arbitrary input state
vector jαi a register that encodes the vector AF whose
entries are the l2 norms ∥Ai∥ of the rows of A,

N ∶ jαi ¼
Xn
j¼1

αjjji →
Xn
j¼1

αjjAF; ji ¼ jN αi:

The above maps can be efficiently implemented given the
memory structure described by Lemma 1.
The factorization of A follows from the amplitude

encoding of Ai and AF. We have ji;Aii ¼ ð1=∥Ai∥Þ ×P
n
j¼1 Aijji; ji and jAF; ji ¼ ð1=∥A∥FÞ

P
m
i¼1 ∥Ai∥ji; ji,

implying that ðM†N Þij ¼ hi;AijAF; ji ¼ ½Aij=ð∥A∥FÞ�.
Similarly, it follows that M and N have orthonormal
columns and thus M†M ¼ Im and N †N ¼ In. The rela-
tion between the eigenvalues ofW and the singular values of
A follows from the observation that W acts on jN vii as a
rotation in the plane of fMui;N vig by θi, such that
cos ðθi=2Þ ¼ ½σi=ð∥A∥FÞ�. The detailed calculation leading
to this fact is included in the Supplemental Material [31].
The two dimensional subspace spanned by fMui;N vig is,
therefore, invariant under the action of W which acts on
it as a rotation by angle θi. The corresponding eigenvectors
of W, jw�

i i hence have eigenvalues expð�iθiÞ. We have
jN vii ¼ ωþ

i jwþ
i i þ ω−

i jw−
i i, with jω−

i j2 þ jωþ
i j2 ¼ 1, and

phase estimation can be performed to estimate �θi.
Computing σi ¼ cosðθi=2Þ∥A∥F then leads to estimation
of the singular values. We have shown the correctness of
Algorithm1,which is summarized in the following theorem.
Theorem 2.—(Quantum singular value estimation [29])

Let A ∈ Rm×n be a matrix with singular value decom-
position A ¼Piσiuiv

†
i stored in the data structure in

Lemma 1. Further, let δ > 0 be the precision number.
There is an algorithm that runs in O(polylogðmnÞ=δ) and
performs the mapping

P
iαijviij0i →

P
iαijviijσii, where

σi ∈ σi � δ∥A∥F for all i with probability at least
1 − 1=polyðnÞ.
The runtime of QSVE is dominated by the phase

estimation procedure which returns a δ-close estimate of
θi, s.t. jθ̄i − θij ≤ 2δ, which translates into the estimated
singular value via σ̄i ¼ cos ðθ̄i=2Þ∥A∥F. The error in σi
can then be bounded from above by jσ̄i − σij ≤ δ∥A∥F.
The unitaryW can be implemented in timeO(polylogðmnÞ)
by Lemma 2. Therefore, by Theorem 1 the running time for
estimating of the singular values with additive error δ∥A∥F
in O(polylogðmnÞ=δ).

Algorithm 1. Quantum singular value estimation. [29].

1. Create the arbitrary input state jαi ¼Piαijvii
2. Append a register j0⌈ logm⌉i and create the state
jN αi ¼PiαijN vii ¼

P
iαiðωþ

i jwþ
i i þ ω−

i jw−
i iÞ.

3. Perform phase estimation [30] with precision 2δ > 0 on input
jN αi for W ¼ ð2MM† − ImnÞð2NN † − ImnÞ and obtainP

iαiðωþ
i jwþ

i ; θ̄ii þ ω−
i jw−

i ;−θ̄iiÞ, where θi is the estimated
phase θi in binary bit strings.

4. Compute σ̄i ¼ cos ð�θi=2Þ∥A∥F.
5. Uncompute the output of the phase estimation and apply the
inverse transformation of step (2) to obtain

X
i

αijviijσii: ð2Þ
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Quantum linear system algorithm.—We now give an
algorithm for solving linear systems of equations in ~Oð ffiffiffi

n
p Þ

time for arbitrary matrices with bounded spectral norm. A
QSVE algorithm immediately yields a linear system solver
for positive definite matrices as the estimated singular
values and eigenvalues are related via σi ¼ jλij. In order to
solve general linear systems we need to recover the sign of
each λi. We provide a simple algorithm that recovers the
signs using the QSVE procedure as a black box incurring
only a constant overhead. We assume that A has been
rescaled so that its eigenvalues lie within the interval
½−1;−1=κ� ∪ ½1=κ; 1�. The QLSA [3] also makes the same
assumption; this is also indicated in the review [35]. The
main result of this Letter is the following theorem:

Theorem 3.—Let A ∈ Rn×n be a Hermitian matrix with
spectral decomposition A ¼Piλiuiu

†
i stored in the data

structure in Lemma 1. Further, let κ be the condition
number A, and ∥A∥F the Frobenius norm, and ϵ > 0 be a
precision parameter. Then Algorithm 2 has runtime

O(κ2polylogðnÞ∥A∥F=ϵ) that outputs state jA−1bi such

that ∥jA−1bi − jA−1bi∥ ≤ ϵ.
Proof.—We first argue that Algorithm 2 correctly

recovers the sign of the λi. The algorithm compares the
estimates obtained by performing QSVE for A and for
A0 ¼ Aþ μIn, where μ is a positive scalar to be chosen
later. The matrix A0 has the same eigenvectors as A, but has
eigenvalues λi þ μ. Note that for λi ≥ 0, we have
jλi þ μj ¼ jλij þ jμj ≥ jλij. However, if λi < −μ=2, then

jλi þ μj < jλij. Thus, if the estimates were perfect, then
choosing μ < 2=κ would recover the sign correctly as the
eigenvalues of A lie in the interval ½−1;−1=κ� ∪ ½1=κ; 1�.
With the choice μ ¼ 1=κ and δ < 1=2κ we find that the
signs are still correct for all λi.
The analysis of the error bounds appears in the

Supplemental Material [31], where it is shown that the
error ϵ for the linear system solver is related to the QSVE
precision parameter δ via δ ¼ O½ϵ=ðκ∥A∥FÞ�. Considering
the success probability of the postselection step, we require
on average Oðκ2Þ repetitions of the coherent computation.
This can be reduced to OðκÞ using amplitude amplification
[36]. Therefore, an upper-bound of the runtime of our
algorithm is given by O(κ2polylogðnÞ∥A∥F=ϵ). ▪
The error dependence on the Frobenius norm suggests

that our algorithm is most accurate when the ∥A∥F is
bounded by some constant, in which case the algorithm
returns the output state with a constant ϵ error in poly-
logarithmic time even if the matrix is nonsparse. More
generally, as in the QLSA we can assume that the spectral
norm ∥A∥� is bounded by a constant, although the Frobenius
norm may scale with the dimensionality of the matrix. In
such cases we have ∥A∥F ¼ Oð ffiffiffi

n
p Þ. In these scenarios the

proposed algorithm runs in O(κ2
ffiffiffi
n

p
polylogðnÞ=ϵ) and

returns the output with a constant ϵ error. Note that since
∥A∥F ≤

ffiffiffi
r

p
∥A∥�, where r denotes the rank of A, we may

also write the runtime as O(κ2
ffiffiffi
r

p
polylogðnÞ=ϵ). Hence a

particularly advantageous runtime is achievable if the rank
of A is polylogarithmic in n.
We note that the memory model of Lemma 1 is stronger

than the black-box model; therefore, a direct comparison of
our results with the black-box approach of Ref. [23] is not
appropriate. The QSVE-based linear system solver achieves a
~Oð ffiffiffi

n
p Þ-scaling in this stronger memory model, and it is an

interesting open problem to prove a similar scaling in the
black-box model. We also note that for practical implemen-
tations, the constant runtime overhead with respect to a given
set of elementary fault-tolerant quantum gates is an important
consideration. It has been shown by Scherer et al. [37] that
current approaches to theQLSApotentially suffer froma large
constant overhead, hindering prospects of near-term applica-
tions. Whether our proposed QSVE-based algorithm exhibits
a more advantageous constant overhead due to the absence of
Hamiltonian simulation, remains an open question.
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Algorithm 2. Quantum linear system solver.

1. Create the state jbi ¼Piβijvii with vi being the singular
vectors of A.

2. Perform two QSVEs as in Algorithm 1 for matrices A, Aþ μI
with δ < 1=2κ and μ ¼ 1=κ to obtain

X
i

βijviiAjjλ̄ijiBjjλ̄i þ μjiC:

3. Add an auxiliary register and set it to 1 if the value in register B
is greater than that in register C and apply a conditional phase
gate:

X
i

ð−1ÞfiβijviiAjjλ̄ijiBjjλ̄i þ μjiCjfiiD:

4. Add an ancilla register and apply a rotation conditioned on
register B with γ ¼ Oð1=κÞ. Then uncompute the registers B,
C, D, to obtain

X
i

ð−1Þfiβijvii
 

γ

jλ̄ij
j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
γ

jλ̄ij
�

2

s
j1i
!
:

Postselect on the ancilla register being in state j0i.
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