
Self-Focusing and the Talbot Effect in Conformal Transformation Optics

Xiangyang Wang,1 Huanyang Chen,2,* Hui Liu,1,† Lin Xu,2 Chong Sheng,1 and Shining Zhu1
1National Laboratory of Solid State Microstructures and School of Physics,

Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
2Institute of Electromagnetics and Acoustics and Department of Electronic Science, Xiamen University, Xiamen 361005, China

(Received 27 February 2017; published 18 July 2017)

Transformation optics has been used to propose various novel optical devices. With the help of
metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However,
as the basic units should be much smaller than the working wavelengths to achieve the effective material
parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work
within the light-ray approximation, it is a big challenge to implement an experimental system that works
simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index
microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and
demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition,
the Talbot effect in such a system has a potential application to transfer digital information without diffraction.
Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.
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In gravitational lensing [1], light rays are bent by a star
because its gravitation changes the geometric property of
space. Similarly, the propagation direction of light is altered
in a transmitting medium relative to a vacuum because of
the interaction between the electromagnetic field and matter
[2]. Based on an analogy between spacetime geometry and
light propagation in a medium, two papers on invisibility
cloaks [3,4] started research into transformation optics
(TO) [5–7], which deepened our understanding of gravi-
tational analogues in optical systems. Furthermore, general
relativity in electrical engineering (an analogue electro-
magnetic system) has been proposed [8–10] and imple-
mented at visible frequencies [11–14].
In the last decade, developments in material science have

enhanced our ability to design optical devices [6] and control
electromagnetic waves using TO. Moreover, the principles
of transformation optics can be harnessed to control other
kinds of wave [15–18]. Although TO is a very beautiful
theory and has many fantastic applications, it has encoun-
tered some difficulties in experiments. In the earlier work on
invisibility cloaking [3,19], different kinds of split-ring
resonance structures are used to tune the effective material
parameters, which are inhomogeneous and anisotropic
tensors. The working wavelengths should be much larger
than the resonance units. On the other hand, in order to
satisfy the light-ray approximation, theworking wavelengths
should be much smaller than the sizes of devices. For this
reason, it is a great challenge to experimentally realize both
geometric optics and wave optics in a single transformation-
optical device [20]. In geometric optics, light is treated as
particles, and the only important thing is the trajectories. But
in wave optics not only do the trajectories matter, but also
phase changes play a very important role.

In two-dimensional space, conformal transformation
optics (CTO) [4,21], as a branch of TO, can steer light
rays by using a dielectric medium with an inhomogeneous
and isotropic refractive index profile. Light rays (in the
geometric-optics regime) can be bent by such a dielectric
medium. Recently, conformal transformation optics was
further expanded into the realm of wave optics, and many
groups have done extensive studies in this field, such as
cloaking [22–26], whispering gallery modes [27], broad-
band plasmonic devices [28,29], the Casimir effect [30],
and analysis of electron energy loss [31]. So devices from
CTO might be good candidates for working simultaneously
in the geometric-optics and wave-optics regimes.
In this Letter we introduce a conformal lens, also known

as the Mikaelian lens [32]. This conformal lens is mapped
from the Maxwell’s fish-eye lens by an exponential
conformal mapping [33]. We construct such a conformal
lens with a gradient-index microstructured optical wave-
guide and observe that it can self-focus a beam: a geometric-
optics property. Moreover, we see the Talbot effect in the
same lens, which stems from a phase change and only
happens for wave optics.
The Talbot effect was first discovered in 1836 [34] and

was explained by Rayleigh in 1881 [35]. It was rediscovered
at the beginning of the 20th century [36–38], and in the mid-
1950s Cowley and Moodie revisited this effect [39,40],
which received much attention [41–44]. Recently the Talbot
effect has been realized in several different systems, such
as metamaterials [45] and surface plasmonics [46], which
have many applications [47,48]. By proper design, we
find that the Talbot effect in the conformal lens can be
further applied to transfer digital information without dif-
fraction. We verified these conformal Talbot effects through
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experiment measurements, numerical simulation, and ana-
lytic calculations.
Let us first recall the basic principle of CTO [4,21]. In a

two-dimensional space denoted by w ¼ uþ vi, if there is a
refractive index profile nwðuþ viÞ, light rays will propa-
gate along curved trajectories if nw is not uniform.
Considering another space denoted by z ¼ xþ yi, related
by a conformal mapping [w ¼ wðzÞ] which satisfies
Cauchy-Riemann condition [49], one can construct a
point-to-point corresponding relationship between u-v
space and x-y space. If the refractive index profile
nwðu; vÞ in u-v space and nzðx; yÞ in x-y space satisfy [4]

nz ¼
�
�
�
�

dw
dz

�
�
�
�
nw; ð1Þ

then light trajectories in x-y space can be simply obtained
by conformal mapping from those in u-v space according
to CTO (see Supplemental Material Sec. I for more details
[50]). Therefore, Eq. (1) establishes the corresponding
relationship of light propagation between two spaces by
conformal mapping.
Now we introduce a CTO device that starts from the

well-known Maxwell’s fish-eye lens in two dimensions.
Its refractive index profile is nwðu; vÞ ¼ 2α=ð1þ u2 þ v2Þ,
where 2α is the refractive index at the center [Fig. 1(a)]. By
using the variational method to obtain light trajectories
[54], we know that all the light rays emitted from a point
source at point A will travel along the solid red circles and
converge to an image at point B. Suppose we have an
exponential conformal mapping w ¼ expðβzÞ, which can
map a u-v complex plane in Fig. 1(a) to a ribbonlike region

of x-y space in Fig. 1(b). The parameter β determines the
width of the ribbonlike region. In Fig. 1(b), the two dashed
blue lines are boundaries of the ribbonlike region, which
are mapped from the branch cut (dashed blue line) in
Fig. 1(a), with width L ¼ 2π=β. According to Eq. (1),
we can derive the refractive index profile in x-y space in
Fig. 1(b) as [33],

nz ¼
n0

coshðβxÞ ; ð2Þ

where n0 ¼ αβ. Here, if we choose α ¼ 1 and β ¼ 1, the
refractive-index profile is that shown on the left of Fig. 1(a).
The refractive indices along the dashed purple lines in
Fig. 1(a) and 1(b) are the same. Light rays (red curve with
arrows) of Fig. 1(b) can be mapped from those of Fig. 1(a)
by w ¼ eβz, which can also be obtained by the variational
method of geometric optics. In fact, we can expand this lens
in the y direction to construct a Mikaelian lens, where light
rays can be self-focused [32] periodically along the line at
x ¼ 0, with a half of the periodicity L [Fig. 1(d)]. One can
also imagine that the whole conformal lens in Fig. 1(d) is
mapped from the Riemann surface of exponential con-
formal mapping shown in Fig. 1(c). The Riemann surface
contains infinite numbers of Riemann sheets. Here we only
show three of them, each of which is a complex plane
endowed with a Maxwell’s fish eye lens. They are con-
nected by branch cuts shown as blue dashed lines in
Fig. 1(c). Because of the existence of the inhomogeneous
lens, a light ray (in red) will travel along a circle. Once it
passes through the branch cut, it will go from one Riemann
sheet to another. The whole trajectory of a light ray in
Riemann surfaces looks like a “spiral” curve. Its conformal
image in x-y space is the red sinelike curve in Fig. 1(d).
Different Riemann sheets in Fig. 1(c) are mapped to
different ribbonlike regions bounded by blue dashed lines
in Fig. 1(d).
So far we have constructed a conformal lens (or a

Mikaelian lens) in Fig. 1(d) by CTO from a Maxwell’s
fish-eye lens. Now we will employ a practical experimental
system to demonstrate its properties. In the original work
of optical conformal mapping, an isotropic medium with a
nonuniform refractive index profile was used [4]. Here we
propose a new way to visualize CTO by using a gradient-
index micro-structured optical waveguide at optical frequen-
cies (Supplemental Material, Sec. II [50]). As a specific
example, we fabricate a Mikaelian lens in a structured
waveguide, which is built on an air-PMMA-Ag-SiO2 multi-
layer structure [Fig. 2(a)]. A laser beam of a large spot size is
coupled to the waveguide through a grating, and used as a
broad incident beam for a Mikaelian lens. Such a beam is
denoted in red in Fig. 2(a) to show its self-focusing property
in the geometric-optics limit. In Fig. 2(b) we show the
effective refractive index of the constructed lens as a red
curve (see Sec. III in the Supplemental Material [50]). The

FIG. 1. Exponential conformal mapping. (a) Imaging by
Maxwell-fish eye in u-v space. (b) Self-focusing of light rays
by Mikaelian lens in x-y space. (c) A “spiral” light ray in the
Riemann surfaces. (d) A sinelike ray in x-y space.
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black curve is the fitted result with the refractive index
profile given by Eq. (2), designed from the conformal
mapping shown in Fig. 1(b). Such a lens can be viewed
as a Mikaelian lens. As theory proposed in Fig. 1(b), we
observed self-focusing in our experiment (see Sec. IV in the
Supplemental Material [50]) [Fig. 2(d)]. Its focusing length
is a quarter of the periodicity L. Figure 2(f) depicts a
numerical simulation with parameters extracted from the
experiment (see Sec. V in the Supplemental Material [50]),
the experiment and numerical results are in good agreement
with each other. In another experiment [Fig. 2(c)], we use a
laser of a small spot size to excite the waveguide and
generate a narrow light ray (shown in red). Based on the
theory proposed in Fig. 1(d), we also schematically show
sinelike rays in the constructed lens. Figures 2(e) and 2(g)
show the experimental and numerical result of light-ray
trajectories, respectively, which agree very well with the
theory. However, there is some absorption in experiment
given in Fig. 2(e), mostly caused by fluorescence emission by
rare-earth ions excited by the laser beam. This fluorescence
emission is just an experimental technique used to measure
the light trajectory inside the conformal waveguide (see
Supplemental Material Sec. II for more details [50]), which
is not necessary for the device. The absorption can be reduced
by removing the rare earth ion in a practical application. In this
lens, the width is about 30 μm, which is about 65 times the
working wavelength (0.46 μm), meaning that the device size
is much larger than the wavelength.
The above experiment only demonstrates CTO in the

geometric-optics limit from the self-focusing property of a
Mikaelian lens in a gradient-index microstructured optical
waveguide. Recently, CTO has also been expanded to wave
optics [3,21–31], which enriches its application. In our
other experiment, by redesigning the coupling grating in

the same waveguide structure, we achieve a conformal
Talbot effect [Fig. 3(c)]. This is an important and interesting
effect in wave optics and shows a big difference from the
ordinary Talbot effect in a homogeneous medium. For
comparison, Figure 3(a) depicts an ordinary Talbot effect
with an infinite periodic incident source, where the periodic
source pattern repeats along the propagation direction at
integer multiples of the primary Talbot length of 2D2=λ and
is equally spaced along in the transverse direction. In a real
practical system, the incident wave cannot be infinitely
large. Figure 3(b) shows the results of an ordinary Talbot
effect with finite periodic source. It is obvious that, for a
finite source, the Talbot effect can only be maintained for a
short distance due to the boundary effect (see Sec. VI in
the Supplemental Material [50]). As a result, a practical
ordinary Talbot effect cannot transfer the field pattern

FIG. 2. Schematics and optical measurements of light rays in a
conformal waveguide. (a),(c) Schematic view of the microstruc-
tured optical waveguide. (b) The effective refractive index
calculated from the waveguide thickness profile (see Supple-
mental Material Sec. III for more details [50]). (d),(f),(e),(g) The
experiment results and numerical simulations of the self-focusing
effect (d),(f) and sinelike rays (e),(g) in the conformal lens.

FIG. 3. Comparison between the ordinary Talbot effect and the
conformal Talbot effect. (a),(b) Ordinary Talbot effect in homo-
geneous medium with infinite periodic source (a) and finite
periodic source (b). (c),(d),(e) Self-focusing of the conformal
Talbot effect in a Mikaelian lens: (c) experimental results; (d)
numerical results; (e) analytical results. The figures in the left
column show the schematic of the grating source, the grating
period is D, the slit width is d. An incident laser is used to excite
the grating source (denoted as yellow arrows).
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without diffraction. However, the conformal Talbot effect in
a Mikaelian lens can avoid this diffraction problem
[Figs. 3(c)–3(e)]. The replicas of the finite periodic source
pattern are vertically squeezed to some special positions at
y ¼ L=4, and the input source pattern is perfectly recovered
at y ¼ L=2 [Fig. 3(c)]. In comparison with the pattern
illustrated in Fig. 3(b), it can be seen that the input source
pattern can be transferred for a very long distance. In this
process there is no diffraction loss, which happens in a
finite ordinary Talbot effect [Fig. 3(b)]. The numerical
simulation is given in Fig. 3(d) and analytical calculation
in Fig. 3(e), which agree with the experimental results
shown in Fig. 3(c). Details of the analytical solution are
provided in the Supplemental Material Sec. VII [50]. In the
above two experiments, we observe phenomena character-
istic of both geometric optics and wave optics in the same
conformal waveguide, demonstrating the capacity of CTO
devices.
It is well known that information in computer science

is restored and transferred as a string of bits: “0” or “1.”
Here, we employ the conformal Talbot effect to transfer an
encoded field pattern. By tuning the grating parameters D
and d, we encode the field pattern with the two bits 0 and 1

(see Supplemental Material Sec. VIII for more details [50]).
Here we use thirty-six bits to investigate the digital coding
information transferred through the Talbot effect in a
Mikaelian lens waveguide. We find that the coding infor-
mation can be transferred over a long distance with small
distortion. Figures 4(a)–4(c) show that three kinds of
coding sources (denoted by Input1, Input2, and Input3)
can be focused and transferred in this conformal lens
waveguide. Figures 4(d)–4(f) display the coding sources
with specific sequences (orange line) and the normalized
intensity profiles of the coding field pattern at different
propagation distances. The coding sources are represented
by the sequences of 0 and 1. With the coding sources (for
example, Input1) imported to this conformal lens wave-
guide, we calculate the input field pattern at y ¼ 0 [red
curve in Fig. 4(d)], focusing pattern at y ¼ L=4 [black curve
in Fig. 4(d)], and output field pattern at y ¼ L=2 [blue curve
in Fig. 4(d)]. It can be clearly seen that the encoded field
pattern consists of several separated peaks with specific
profiles at the focusing distance, and the magnitudes of the
peaks are different for different imported coding sources.
Comparing the input and output patterns, we demonstrate
that the coding source information could be transferred with
very small distortion. Therefore, we can transfer digital
coding information efficiently using the conformal Talbot
effect, for instance, in an optical communication system.
One could subsequently transfer this encoded signal into a
normal optical chip or waveguide and use another conformal
lens at the receiving port to decode the information.
Therefore, the conformal Talbot effect has potential appli-
cation to digital coding transfer without information loss.
In conclusion, we have employed a new platform using a

gradient-index micro-structured optical waveguide to real-
ize conformal transformation optics devices. Based on
conformal mapping theory, we designed and fabricated a
conformal lens to simultaneously obtain a self-focusing
effect in the geometric-optics limit and a Talbot effect in the
wave-optics limit. Numerical simulations and analytical
calculations confirm the experimental results, which dem-
onstrate that such a conformal device can work both in
geometric optics and wave optics. We also show that this
Talbot effect can be used to transfer a digital field pattern
without diffraction and has potential applications in digital
coding communications.
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FIG. 4. Digital coding from different source sequences.
(a),(b),(c) Field pattern with thirty-six bits coding
sequences: (a) 010001000100010001000100010001000100,
(b) 011001100110011001100110011001100110, (c)
011101110111011101110111011101110111. The left pic-
tures schematically show the input coding source sequences
denoted by Input1, Input2, Input3. (d),(e),(f) The finite
periodic coding source sequences (on top) and the normalized
intensity profiles for several propagation distances. For y ¼ 0,
we get the input signal (red solid curve). The encoded result
(black solid curve) is the field at y ¼ L=4, or the focusing
plane. For y ¼ L=2, we get the final output result (blue solid
curve), which deviates little from the input signal.
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