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We propose a general framework for constructing universal steering criteria that are applicable to
arbitrary bipartite states and measurement settings of the steering party. The same framework is also useful
for studying the joint measurement problem. Based on the data-processing inequality for an extended Rényi
relative entropy, we then introduce a family of steering inequalities, which detect steering much more
efficiently than those inequalities known before. As illustrations, we show unbounded violation of a
steering inequality for assemblages constructed from mutually unbiased bases and establish an interesting
connection between maximally steerable assemblages and complete sets of mutually unbiased bases. We
also provide a single steering inequality that can detect all bipartite pure states of full Schmidt rank. In the
course of study, we generalize a number of results intimately connected to data-processing inequalities,
which are of independent interest.
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Steering is a nonclassical phenomenon that formalizes
what Einstein called “spooky action at a distance” [1,2]. For
a long time, it was studied under the name of Einstein-
Podolsky-Rosen paradox [3–5]. Recently, it was recognized
as a form of nonlocality that sits between entanglement and
Bell nonlocality [6–9] and that is intrinsically asymmetric
[10,11]. Interestingly, steering can be characterized by a
simple quantum information processing task, namely, entan-
glement verificationwith anuntrusted party [6,7]. In addition,
steering has been found useful in a number of applications,
such as subchannel discrimination [12] and one-sided device-
independent quantum key distribution [13,14].
Recently, detection and characterization of steering have

attracted increasing attention [4–7,12,15–22]. Various
steering criteria and inequalities have been derived, such
as linear steering inequalities [15,18], inequalities based on
multiplicative variances [4,5,15], entropic uncertainty rela-
tions [16,17], fine-grained uncertainty relations [19], and
hierarchy of steering criteria based on moments [20].
However, most of these results are tailored to deal with
specific scenarios; majority criteria are only applicable to
given numbers of measurement settings and outcomes. In
addition, many criteria (including most linear criteria) rely
heavily on numerical optimization and lack a clear physical
meaning and simple interpretation.
In this Letter, we propose a general framework for

constructing universal steering criteria that are applicable
to arbitrary measurement settings of the steering party.
In particular, we introduce nonlinear steering inequalities
based on the data-processing inequality for an extended
Rényi relative entropy [23,24], which detect steering more

systematically and efficiently than criteria in the literature.
The same framework is also useful for studying the joint
measurement problem [25–30]. In addition, our criteria
have a clear information theoretic meaning and simple
interpretation. They are closely related to steering robust-
ness under white noise. As illustrations of the general
framework, we show unbounded violation of a steering
inequality by virtue of mutually unbiased bases (MUB)
[31,32] and establish an interesting connection between
maximally steerable settings and complete sets of MUB.
We also provide a single steering inequality that can detect
all bipartite pure states of full Schmidt rank.
Suppose Alice and Bob share a bipartite state ρ with

reduced states ρA and ρB. Alice can perform local mea-
surements described by a collection of positive-operator-
valued measures (POVMs) fAajxg, which is known as a
measurement assemblage. If Alice obtains outcome a for
measurement x, then the unnormalized reduced state of
Bob is ρajx ¼ trA½ðAajx ⊗ 1Þρ�. In the following, we discuss
steering of Bob’s system by Alice’s measurements in terms
of Bob’s states ρajx. The set of states ρajx for a given x is
called an ensemble for ρB and denoted by fρajxga, while the
whole collection of ensembles is called a state assemblage
[18] and denoted by fρajxg; see Fig. 1. The assemblage
fρajxg is steerable if it does not admit a local hidden state
model [6,7] as ρajx ¼

P
λpðajx; λÞσλ for all a, x, where

fσλg is an ensemble for ρB and pðajx; λÞ are a collection of
stochastic maps with pðajx; λÞ ≥ 0 and

P
apðajx; λÞ ¼ 1.

The state ρ is steerable from Alice to Bob if there exists a
measurement assemblage for Alice such that the resulting
state assemblage for Bob is steerable. In this Letter, we
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shall focus on steerability of assemblages, no matter how
they are constructed.
The steering problem is closely related to the joint

measurement problem [27–30,33]. Up to a scaling, a
POVM may be seen as an ensemble for the completely
mixed state. A measurement assemblage is compatible or
jointly measurable if the corresponding state assemblage
(for the completely mixed state) is unsteerable. So many
results on steering can be turned into corresponding results
on POVMs, and vice versa. We shall make use of this
connection without further comments.
To set the stage, we need to introduce suitable order

relations on ensembles and assemblages. Given two ensem-
bles fρag and fσbg for ρB, which may represent two
preparation procedures, the ensemble fρag is a coarse
graining of fσbg, denoted by fρag≼fσbg or fσbg≽fρag,
if the former can be derived from the latter by data processing,
that is, ρa ¼

P
bpðajbÞσb, where the stochastic map pðajbÞ

characterizes the data-processing procedure. In that case,
fσbg is a refinement of fρag. Intuitively, coarse graining
usually leads to a less informative ensemble. Two ensembles
are equivalent if they are coarse graining (refinement) of each
other. The relation of coarse graining (refinement) forms a
partial order on equivalent classes of ensembles for a given
state. For example, the trivial ensemble fρBg is a coarse
graining of all ensembles for ρB. However, there is no
ensemble that is a refinement of all ensembles except when
ρB is pure, in which case all ensembles are equivalent.
The order relation on ensembles can be generalized to

assemblages in a natural way. Given two assemblages
fρajxg and fσbjyg for ρB, the assemblage fρajxg is a coarse
graining of fσbjyg, denoted by fρajxg ≼ fσbjyg or
fσbjyg ≽ fρajxg, if each ensemble in fρajxg is a coarse
graining of an ensemble in fσbjyg. In that case, fσbjyg is
called a refinement of fρajxg. An assemblage is unsteerable
if and only if it has a refinement that contains only one
ensemble, that is, all its ensembles possess a common
refinement. By definition, any coarse graining of an
unsteerable assemblage is unsteerable. Conversely, any
refinement of a steerable assemblage is steerable.
A function f on ensembles is order monotonic (or order

preserving) if fðfρagÞ ≼ fðfσbgÞ whenever fρag ≼ fσbg.
Order-monotonic functions on assemblages can be defined
in a similar manner. Here, the image of f could be any space

with a partial order, although we use the same notation for
the partial order as that on ensembles. The image of all
ensembles for a given state under an order-monotonic
function f is called the complementarity chamber and
denoted by Cf. In those cases of interest to us, the chambers
are usually finite-dimensional compact convex sets, and
their shapes reflect the information tradeoff among different
ensembles, hence, the name. For any unsteerable assem-
blage fρajxgwith a common refinement, say, fσλg, we have
fðfρajxgaÞ ≼ fðfσλgÞ ∈ Cf for all x. So fðfρajxgaÞ have a
common upper bound in Cf. Violation of this condition is a
signature of steerability; see Fig. 2 for an illustration.
To unleash the potential of the above idea, it is essential

to construct order-monotonic functions that are easy to
characterize as follows. Let fρag be an ensemble for ρB and
Q a positive operator of full rank; define

GQðfρagÞ≔
X
a

jρaiihhρaj
trðQρaÞ

; ḠQðfρagÞ≔
X
a

jρ̄aiihh ρ̄aj
trðQρaÞ

;

ð1Þ

where ρ̄a ¼ ρa − trðρaÞ=d, and d is the dimension of the
Hilbert space. Here, we consider the Hilbert space of
operators on the physical space, i.e., the Hilbert-Schmidt
space. The kets in this space are denoted by the double-ket
notation to distinguish them from ordinary kets.
Superoperators, such as the outer product jAiihhBj, act
on the operator space just as ordinary operators act on
the usual Hilbert space; for example ðjAiihhBjÞjCii ¼
jAiitrðB†CÞ (cf. Refs. [30,34]).
For a positive real vector p and a real vector v of the

same length, we introduce extended Rényi relative
entropy of order 2 as D2ðv∥pÞ ≔ log

P
kðv2k=pkÞ, which

reduces to Rényi relative entropy of order 2 when p
and v represent probability distributions [23,24]. As shown
in the Supplemental Material [35], which includes
Refs. [36–48], this quantity obeys a generalized data-
processing inequality. Let C be a Hermitian operator; then
hhCjGQðfρagÞjCii ¼

P
aðv2a=paÞ, where va ¼ trðρaCÞ and

FIG. 2. Simple idea behind universal steering criteria. Here, the
green cone at GðfρajxgaÞ represents the set of superoperators F
satisfying F ≥ GðfρajxgaÞ. When the assemblage fρajxg is
unsteerable, GðfρajxgaÞ have a common upper bound in the
complementarity chamber (left plot). Violation of this condition
implies steerability (right plot).
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each other 

|{ }a xAmeasurement
assemblage |{ }a xρρρρ

state
assemblage
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FIG. 1. Steering scenario. Alice can affect Bob’s state via her
measurements following the relation ρajx ¼ trA½ðAajx ⊗ 1Þρ�.
Entanglement is necessary but not sufficient for steering.
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pa ¼ trðρaQÞ. It follows that hhCjGQðfρagÞjCii is order
monotonic, which, in turn, implies the following theorem.
Theorem 1.—The functions GQð·Þ and ḠQð·Þ are order

monotonic for any positive operator Q of full rank.
When Q is the identity, Eq. (1) reduces to

GðfρagÞ ≔
X
a

jρaiihhρaj
trðρaÞ

; ḠðfρagÞ ≔
X
a

jρ̄aiihhρ̄aj
trðρaÞ

:

ð2Þ
We have

Tr½GðfρagÞ�¼
X
a

trðρ2aÞ
trðρaÞ

≤
X
a

trðρaÞ¼ trðρBÞ;

Tr½ḠðfρagÞ�¼Tr½GðfρagÞ�−
trðρBÞ
d

≤
�
1−

1

d

�
trðρBÞ; ð3Þ

where “Tr” denotes the trace of superoperators, while “tr”
denotes the trace of ordinary operators. Here, the upper
bounds are saturated if and only if the ensemble is rank 1,
that is, all the ρa have rank 1. Recall that fρBg is a coarse
graining of all ensembles for ρB, we also have

GðfρagÞ ≥
jρBiihhρBj
trðρBÞ

; ḠðfρagÞ ≥
jρ̄Biihhρ̄Bj
trðρBÞ

; ð4Þ

which imply that

Tr½GðfρagÞ� ≥
trðρ2BÞ
trðρBÞ

; Tr½ḠðfρagÞ� ≥
trðρ̄2BÞ
trðρBÞ

: ð5Þ

So the purity of ρB sets lower bounds for Tr½GðfρagÞ�
and Tr½ḠðfρagÞ�.

Define

τðfρajxgÞ ¼ minfTrðF ÞjF ≥ GðfρajxgaÞ ∀ xg;
τ̄ðfρajxgÞ ¼ minfTrðF ÞjF ≥ ḠðfρajxgaÞ ∀ xg: ð6Þ
Note that GðfρajxgaÞ − ḠðfρajxgaÞ is independent of x and
its trace is equal to trðρBÞ=d, we deduce that

τðfρajxgÞ ¼ τ̄ðfρajxgÞ þ
trðρBÞ
d

: ð7Þ

Theorem 2.—The functions τð·Þ and τ̄ð·Þ are order
monotonic on assemblages. Any unsteerable assemblage
fρajxg for ρB satisfies the inequalities τðfρajxgÞ ≤ trðρBÞ
and τ̄ðfρajxgÞ ≤ ð1 − 1=dÞtrðρBÞ.
Proof of Theorem 2.—Suppose fρajxg ≼ fσbjyg. Then,

any ensemble x in fρajxg is a coarse graining of an
ensemble y in fσbjyg, so GðfρajxgaÞ ≤ GðfσbjygbÞ accord-
ing to Theorem 1. Therefore, F ≥ GðfρajxgaÞ for all x
whenever F ≥ GðfσbjygbÞ for all y. It follows that
τðfρajxgÞ ≤ τðfσbjygÞ and τð·Þ is order monotonic. By
the same reasoning, so is τ̄ð·Þ.
The ensembles in fρajxg possess a common refinement,

say fσλg, so that GðfσλgÞ ≥ GðfρajxgaÞ for all x. On the

other hand, Tr½GðfσλgÞ� ≤ trðρBÞ according to Eq. (3). It
follows that τðfρajxgÞ ≤ trðρBÞ. The other inequality in
Theorem 2 follows from similar reasoning or Eq. (7).
The two steering inequalities in Theorem 2 are equiv-

alent in view of Eq. (7). In practice, one may be easier to
analyze than the other. These inequalities are also appli-
cable to unnormalized assemblages. In particular, they can
serve as compatibility inequalities on POVMs if ρB is
replaced by the identity (cf. Ref. [30]); the same remark
applies to several other results in this Letter. Figure 2
elucidates the simple idea behind these steering inequal-
ities: unsteerable assemblages cannot be too informative.
More general steering inequalities can be constructed by
virtue of the order-monotonic functions GQ and ḠQ as
shown in the Supplemental Material [35].
Most known steering inequalities [15,18], such as linear

steering inequalities, rely on numerical calculation for each
assemblage even to write down the inequalities explicitly,
and the behavior of the bounds are unpredictable.
Remarkably, the inequalities in Theorem 2 are applicable
to arbitrary assemblages. In addition, for normalized
assemblages, the upper bounds in τðfρajxgÞ ≤ 1 and
τ̄ðfρajxgÞ ≤ ð1 − 1=dÞ depend at most on the dimension,
but not on any other detail. In this sense, our steering
criteria τðfρajxgÞ and τ̄ðfρajxgÞ are universal.
Besides wide applicability, the steering criteria τðfρajxgÞ

and τ̄ðfρajxgÞ are also superior with regard to computational
complexity because they can be computed efficiently with
semidefinite programming (SDP), whose size increases
only linearly with the number of ensembles. Although the
steerability of an assemblage can be determined by SDP
[18,21], the size of such SDP increases exponentially with
the number of ensembles. So our approach is attractive from
both conceptual and practical perspectives.
The criterion τ̄ðfρajxgÞ also quantifies the steering

robustness of the assemblage fρajxg with regard to white
noise. Let ρajxðηÞ¼ηρajxþð1−ηÞtrðρajxÞ=dwith 0 ≤ η ≤ 1;
then the assemblage fρajxðηÞg may be seen as the assem-
blage fρajxg corrupted by white noise. It is also a coarse
graining of fρajxg when the latter is an assemblage for the
completely mixed state. Calculation shows that
τ̄½fρajxðηÞg� ¼ η2τ̄ðfρajxgÞ, so the assemblage fρajxðηÞg
is steerable as long as η2τ̄ðfρajxgÞ > 1 − 1=d.
As an illustration, let us take the qubit as an example. Let

fρag be an ensemble for ρB ¼ 1
2
ð1þ sB · σÞ, where σ is the

vector composed of the three Pauli matrices and sB is the
Bloch vector of ρB. Each member in the ensemble can be
written as ρa ¼ 1

2
pað1þ sa · σÞ, where sa is the Bloch

vector corresponding to ρa, and fpag is a probability
distribution satisfying

P
apasa ¼ sB. Define

GðfρagÞ ¼
X
a

pasasTa ð8Þ

as the matrix representation (up to a scaling) of the
superoperator ḠðfρagÞ¼1

4

P
apajsa ·σiihhsa ·σj with respect
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to the Pauli basis. Then GðfρagÞ is order monotonic and
satisfies

sBsTB ≤ GðfρagÞ ≤ 1; s2B ≤ tr½GðfρagÞ� ≤ 1: ð9Þ
Note that tr½GðfρagÞ� ≤ 1 implies GðfρagÞ ≤ 1, so the
complementarity chamber lies in a truncated cone of
dimension 6.
Now the steering inequalities in Theorem 2 reduce to

2τ̄ðfρajxg ≤ 1 with

2τ̄ðfρajxgÞ ¼ minftrðFÞjF ≥ GðfρajxgaÞ ∀ xg: ð10Þ
For example, consider the state ρB with sB ¼ ð0; 0; cos θÞ
(0 ≤ θ ≤ π=2Þ and let fρ�jx ¼ 1

2
p�jxð1þ s�jx · σÞg for

x ¼ 1, 2 be an assemblage for ρB, where p�j1 ¼
1
2
ð1� cos θÞ, s�j1 ¼ ð0; 0;�1ÞT, p�j2 ¼ 1

2
, s�j2 ¼

ð�η sin θ; 0; cos θÞT with 0 ≤ η ≤ 1. The assemblage
forms a cross when represented on the Bloch ball.
Calculation shows that Gðρ�j1Þ ¼ diagð0; 0; 1Þ and
Gðρ�j2Þ ¼ diagðη2 sin2 θ; 0; cos2 θÞ, so that 2τ̄ðfρajxgÞ ¼
1þ η2 sin2 θ. Thus, the assemblage is steerable when-
ever η sin θ ≠ 0.
To further demonstrate the power of our steering inequal-

ities, we need to introduce several concepts. Two ensem-
bles fρag and fσbg are mutually orthogonal if trðρ̄aσ̄bÞ ¼ 0
for all a, b or, equivalently, if ḠðfρagÞ and ḠðfσbgÞ have
mutually orthogonal support. The same definition applies
to POVMs. For rank 1 projective measurements, orthogon-
ality is equivalent to mutually unbiasedness. Recall that
two bases fjψ jig and fjφkig in dimension d are mutually
unbiased if jhψ jjφkij2 ¼ 1=d for all j, k [31,32]. The
following two propositions are proved in the
Supplemental Material [35].
Proposition 1.—Any assemblage fρajxg for ρB satisfies

τðfρajxgÞ ≤ dtrðρBÞ and τ̄ðfρajxgÞ ≤ ðd − 1=dÞtrðρBÞ.
Proposition 2.—Any assemblage fρajxg for ρB with m

ensembles satisfies τ̄ðfρajxgÞ ≤ mð1 − 1=dÞtrðρBÞ. The
upper bound is saturated if and only if the ensembles
are rank 1 and mutually orthogonal.

In view of Proposition 1, state assemblages saturating
the upper bound τ̄ðfρajxgÞ ≤ d − 1=d [or τðfρajxgÞ ≤ d] are
maximally steerable. When the assemblage fρajxg is con-
structed from the basis states ofm projective measurements
(with suitable scaling), the upper bound τ̄ðfρajxgÞ ≤
mð1 − 1=dÞ is saturated if and only if the bases are
mutually unbiased. The inequality τ̄ðfρajxgÞ ≤ d − 1=d
in Proposition 1 means that each set of MUB can contain,
at most, dþ 1 bases, in agreement with the well-known
bound [31,32]. When d is a prime power, a complete set of
MUB can be constructed [31,32], so the steering inequality
τ̄ðfρajxgÞ ≤ 1 − 1=d can be violated by a factor of dþ 1,
which is unbounded as d grows. Such assemblages remain
steerable even under white noise with ever increasing
strength. In contrast with unbounded violations of linear
steering inequalities shown in Refs. [49,50], our result

follows from a universal recipe, and the degree of violation
can be determined precisely. An intriguing problem left
open is how many bases are needed to construct a
maximally steerable assemblage when complete sets of
MUB cannot be found, say, in dimension 6.
More general steering inequalities can be derived by

considering the effect of filtering. The following proposi-
tion is an easy generalization of a result in Ref. [29]; see,
also, Refs. [9,51] for similar conclusions.
Proposition 3.—The two assemblages fVρajxV†g and

fVρTajxV†g (unnormalized) are both unsteerable for any
operator V if fρajxg is unsteerable. When V is invertible,
fVρajxV†g, fVρTajxV†g, and fρajxg are simultaneously
steerable or not.
When Bob’s state ρB is invertible, Theorem 2 and

Proposition 3 imply that any unsteerable assemblage
fρajxg satisfies

τ̄ðfρ−1=2B ρajxρ
−1=2
B gÞ ≤ d − 1: ð11Þ

Until now, we have discussed steering in terms of Bob’s
state assemblage fρajxg. At this point, it is instructive to
consider steering of Bob’s state by Alice’s measurements as
described by the assemblage fAajxg, which is the physical
situation illustrated in Fig. 1. Suppose they share a pure
bipartite state ρ of full Schmidt rank, which has Schmidt
decomposition ρ ¼ P

j;kλjλkjjjihkkj. Then, the reduced
states of Alice and Bob have the same form with respect to
the Schmidt basis ρA ¼ ρB ¼ P

jλ
2
j jjihjj, and the state

assemblage fρajxg for Bob takes on the form ρajx ¼
ρ1=2B AT

ajxρ
1=2
B [24,29]. Therefore,

τ̄ðfρ−1=2B ρajxρ
−1=2
B gÞ ¼ τ̄ðfAT

ajxgÞ ¼ τ̄ðfAajxgÞ; ð12Þ
where the second equality follows from Lemma S6 in the
Supplemental Material [35]. As a consequence of Eqs. (11)
and (12), τ̄ðfAajxgÞ ≤ d − 1 if Alice cannot steer Bob’s
system. If the assemblage fAajxg is composed of twoMUB,
then τ̄ðfAajxgÞ ¼ 2ðd − 1Þ, which violates the bound by a
factor of 2. Remarkably, the single steering inequality
τ̄ðfρ−1=2B ρajxρ

−1=2
B gÞ ≤ d − 1 with two measurement set-

tings can detect the steerability of all bipartite pure states
of full Schmidt rank, whereas infinitely many inequalities
linear in ρajx (note that our inequalities are not linear in ρajx)
are needed to achieve the same task [15,18]. Also, no
general recipe is known for constructing linear steering
inequalities without numerical optimization. Therefore,
our approach provides a dramatic improvement over
those alternatives in the literature.
As another example, consider an isotropic state in

dimension d × d, ρðαÞ ¼ αjΦihΦj þ ð1 − αÞð1=d2Þ, where
jΦi ¼ ðPjjjjiÞ=

ffiffiffi
d

p
and 0 ≤ α ≤ 1. Suppose Alice has the

measurement assemblage fAajxg; then, τ̄ðfρajxgÞ ¼
ðα2=dÞτ̄ðfAajxgÞ; cf. the Supplemental Material [35]. The
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isotropic state is steerable with respect to fAajxg when
α2τ̄ðfAajxgÞ > ðd − 1Þ. If the measurement assemblage for
Alice is composed of m MUB, then τ̄ðfAajxgÞ ¼ mðd − 1Þ,
so the isotropic state is steerable if mα2 > 1. In the case of
two qubits, this condition turns out to be both sufficient and
necessary [15,20].
In summary, we proposed a general framework for

detecting and characterizing steering based on simple
information theoretic ideas. By virtue of the data-processing
inequality for the extendedRényi relative entropy of order 2,
we then introduced a family of steering inequalities that are
applicable to arbitrary assemblages and have a simple
interpretation. These steering criteria are also closely related
to steering robustness underwhite noise. As illustrations, we
showed unbounded violation of a steering inequality for
assemblages constructed from MUB and provided a single
steering inequality that can detect all bipartite pure states of
full Schmidt rank. Our Letter established intriguing con-
nections among a number of fascinating subjects, including
information theory, quantum foundations, and the geometry
of quantum state space, which are of interest to researchers
from diverse fields. In addition, our work has an intimate
connection to quantum estimation theory. Indeed, our
Theorem 1 can be applied to proving the data-processing
inequality for Fisher information, and vice versa (cf. the
Supplemental Material [35]). Also, our study allows us to
derive and generalize many results in quantum estimation
theory, which will be presented in another paper.
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