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We use the Wetterich equation for foliated spacetimes to study the renormalization group flow of
projectable Hořava-Lifshitz gravity coupled to n Lifshitz scalars. Using novel results for anisotropic heat
kernels, the matter-induced beta functions for the gravitational couplings are computed explicitly. The
renormalization group flow exhibits an UV attractive anisotropic Gaussian fixed point where Newton’s
constant vanishes and the extra scalar mode decouples. This fixed point ensures that the theory is
asymptotically free in the large–n expansion, indicating that projectable Hořava-Lifshitz gravity is
perturbatively renormalizable. Notably, the fundamental fixed point action does not obey detailed balance.
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Introduction.—Classical general relativity provides an
excellent description for gravitational phenomena ranging
from submillimeter up to astrophysical scales [1]. Despite
these remarkable successes, a fundamental theory capturing
the gravitational force on all length scales is still missing:
quantizing the Einstein-Hilbert action along the same lines
as QCD shows that the theory is perturbatively nonrenor-
malizable [2]. In terms of Wilson’s modern formulation of
renormalization [3], this feature is equivalent to the
observation that the Gaussian fixed point (GFP), represent-
ing the free theory, does not act as an UV attractor for
the renormalization group (RG) flow of Newton’s constant
G, a fact that is easily deduced from the negative mass
dimension of G. This raises the question regarding
whether or not there are other fixed points of the RG flow
which may serve as a (nonperturbative) UV completion of
gravity.
One proposal along these lines is the asymptotic safety

program, initially advocated byWeinberg [4]. This scenario
considers all action functionals built from the metric field
and preserving (background) diffeomorphism invariance.
By now, there is substantial evidence that the theory space
spanned by these action functionals possesses a non-
Gaussian fixed point (NGFP) with a finite number of
relevant deformations [5]. Thus, it is conceivable that
gravity constitutes a consistent and predictive quantum
theory within the framework of nonperturbatively renor-
malizable quantum field theories.
Hořava-Lifshitz (HL) gravity [6,7] (see [8–11] for

reviews) constitutes an alternative to this scenario. The
construction performs an Arnowitt-Deser-Misner decom-
position of the D ¼ dþ 1 dimensional metric, encoding
the gravitational degrees of freedom in the lapse function
N, a shift vector Ni, and a metric on the d-dimensional
spatial slices σij, thereby introducing a foliation structure
on spacetime. As its key ingredient, HL gravity relaxes the
symmetry requirements underlying asymptotic safety and

considers action functionals invariant with respect to
foliation preserving diffeomorphisms only.
The reduced symmetry group of HL gravity allows us to

replace the relativistic flat-space scaling by a scaling
relation that is anisotropic between space and time

t → bt; x → b1=zx: ð1Þ

This modifies the standard dimensional analysis, and for
z > 1, interactions including higher powers of spatial
derivative terms become power-counting relevant or mar-
ginal, thereby improving the UV behavior of the theory. In
particular, at criticality, z ¼ d, Newton’s constant is dimen-
sionless so that the theory is power-counting renormaliz-
able [7]. Thus, it is conceivable that HL gravity is
perturbatively renormalizable (asymptotically free). In
the language of the Wilsonian renormalization group, this
conjecture entails the existence of an anisotropic Gaussian
fixed point (AGFP) which acts as an UV attractor for
Newton’s constant at high energies. In [7], it was speculated
that the AGFP may be located at the conformal point at
which the extra scalar mode intrinsic of HL gravity
decouples and, in addition, preserves detailed balance.
Given that the AGFP may constitute a valid UV completion
of gravity, which is supported by recent Monte Carlo
simulations [12–15], and the considerable attention devoted
to HL gravity, it is rather surprising that its properties
remained largely mysterious and only partial results are
available [16–21].
This situation clearly calls for the use of the RG to clarify

the structure of HL gravity at high energies. A convenient
way to perform such computations is the functional RG
equation for the gravitational effective average action Γk
[22]. The metric construction can readily be adapted to the
case of projectable Hořava-Lifshitz (PHL) gravity [23],
yielding the Wetterich equation governing the scale
dependence of Γk
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∂tΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1∂tRk�: ð2Þ

Here, t≡ lnðk=k0Þ is the “RG time,” Γð2Þ
k is the Hessian of

Γk, and Rk is a regulator term designed to suppress low
energy modes. In the sequel, we will work with the Litim
regulator [24], setting RkðyÞ ¼ ðk2 − yÞθðk2 − yÞ.
In this Letter, we use the flow equation (2) to study the

ultraviolet behavior of PHL gravity coupled to n aniso-
tropic Lifshitz scalar fields in the large-n limit. In this limit,
the beta functions are dominated by the contributions
originating from integrating out the scalar fields. Since
gravity couples universally to itself as well as to matter, the
contribution of the graviton propagating in loops becomes
negligible with respect to the contribution of the n matter
fields and the beta functions become exact in the large-n
limit. As we will show, this ansatz allows us to identify the
AGFP underlying the perturbative renormalizability of HL
gravity in D ¼ 3þ 1 dimensions.
Setup.—Concretely, the effective average action of the

system is given by projectable Hořava–Lifshitz gravity
coupled to n Lifshitz scalars (LS)

Γk½N;Ni; σ;ϕ� ¼ ΓHL
k ½N;Ni; σ� þ SLS½N;Ni; σ;ϕ�: ð3Þ

Here,

SLS ≡ 1

2

Z
dtddxN

ffiffiffi
σ

p
ϕ½Δt þ ðΔxÞz�ϕ ð4Þ

is the action of the Lifshitz scalars with anisotropic scaling
z in a curved background, Δt ≡ −ð1=N ffiffiffi

σ
p Þ∂tN−1 ffiffiffi

σ
p ∂t,

and Δx ≡ −σijDiDj is the positive definite covariant
Laplacian on the spatial slice with Di containing the
d-dimensional Christoffel symbols constructed from
σijðt; xÞ. The gravitational part of Γk is given by the
classical action for PHL gravity [7]

ΓHL
k ¼ 1

16πGk

Z
dtddxN

ffiffiffi
σ

p ½KijKij − λkK2 þ Vk�; ð5Þ

where all couplings giðkÞ have been promoted to depend on
the RG scale k. The potential Vk½σ� contains all power-
counting relevant and marginal operators constructed from
the intrinsic curvature tensors on the spatial slices.
Following [11], Vk for d ¼ 2 has the form

Vðd¼2Þ
k ¼ g0 þ g1Rþ g2R2; ð6Þ

while the case d ¼ 3 includes all interactions with up to six
spatial derivatives

Vðd¼3Þ
k ¼ g0þg1Rþg2R2þg3RijRij−g4RΔxR

−g5RijΔxRijþg6R3þg7RRijRijþg8Ri
jR

j
kR

k
i : ð7Þ

Thus, the setup contains two wave-function renormaliza-
tions (Gk, λk) and three (d ¼ 2) and eight (d ¼ 3) running
parameters in the potential, respectively. Our conventions
for parametrizing Vk in terms of coupling constants follow
the ones typically adopted in higher-derivative gravity and
are tailored to exhibit the properties of potential fixed
points. Note that we have not implemented detailed balance
to simplify Vk.
Beta functions.—Now, we compute the beta functions,

βgi ≡ ∂tgi, capturing the running of the gravitational
coupling constants induced by integrating out the scalar
fields. For this purpose, it is convenient to express the flow
in terms of dimensionless couplings ~gi ≡ gik−½gi�, where
[gi] is the canonical mass dimension of gi. In particular, the
dimensionless Newton’s constant is given by

gk ≡Gkk2η; η≡ d
2z

−
1

2
; ð8Þ

so that Gk becomes dimensionless at criticality d ¼ z.
Actually, it is the shift of the canonical mass dimension
induced by the anisotropy z which underlies the power-
counting renormalizability of HL gravity.
The beta functions are obtained by substituting (3) into

(2) and reading off the coefficients multiplying the extrinsic
and intrinsic curvatures. In the case where the RG flow is
driven by the scalar fields, the operator trace is given
by TrWð□Þ with WðyÞ ¼ ½yþ RkðyÞ�−1∂tRkðyÞ and □≡
Δt þ ðΔxÞz being the anisotropic Laplace operator.
The evaluation of the trace can be linked to the short-

time expansion of the heat kernel Tre−s□ by reexpressing
WðzÞ through its Laplace transform. The expansion of the
heat kernel can be found in a systematic way by the
repeated use of the Baker-Hausdorff lemma combined with
the off-diagonal heat-kernel techniques [25,26]. The result
is given by

Tre−s□ ≃ ð4πÞ−ðdþ1Þ=2s−ð1þd=zÞ=2
Z

dtddxN
ffiffiffi
σ

p

×

�
s
6
ðe1K2 þ e2KijKijÞ þ

X
n≥0

sn=zbna2n

�
: ð9Þ

Here, a2n are the standard heat-kernel coefficients contain-
ing the intrinsic curvatures constructed from σij, possibly
subject to geometrical constraints arising from working on
a low-dimensional manifold. Their values have, e.g., been
given in [27,28]: a0 ¼ 1, a2 ¼ R=6, etc. The coefficients ei
and bn depend on d, z and encode the corrections
originating from the anisotropic differential operator. The
ones in the extrinsic curvature sector are

e1 ¼
d − zþ 3

dþ 2

Γð d
2zÞ

zΓðd
2
Þ ; e2 ¼ −

dþ 2z
dþ 2

Γð d
2zÞ

zΓðd
2
Þ ; ð10Þ

while the bnðd; zÞ for 0 ≤ n ≤ ⌊d=2⌋ are given by
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bn ¼
Γðd−2n

2z þ 1Þ
Γðd−2n

2
þ 1Þ : ð11Þ

The coefficients bnðd; zÞ for n > ⌊d=2⌋ can be computed
on a case by case basis. The ones relevant for the present
computation are

b2ð2; 2Þ ¼ 0; b2ð3; 3Þ ¼
1ffiffiffi
π

p Γ
�
5

6

�
;

b3ð3; 3Þ ¼ −
1

2
: ð12Þ

For z ¼ 1, these results reproduce the standard heat kernel
written in terms of Arnowitt-Deser-Misner variables, while
for d ¼ z ¼ 2, our formulas coincide with the special case
considered in [29]. The systematic computation of the
early-time expansion of the heat kernel of an anisotropic
Laplace operator constitutes the main technical break-
through of our work.
Based on the expansion (9), it is straightforward to

obtain the desired beta functions by applying the Mellin
transform techniques reviewed, e.g., in [30]. Defining
ϕn ≡ 1=ΓðnÞ R 1

0 dxx
n−1, the scale dependence of the two

(dimensionless) wave-function renormalizations is gov-
erned by

βg ¼ 2ηg −
2

3
ð4πÞ−ðd−1Þ=2ϕηe2g2;

βλ ¼ −
2

3
ð4πÞ−ðd−1Þ=2ϕηðe1 þ λe2Þg; ð13Þ

while the beta functions for the cosmological constant ~g0
and for ~g1 read

β~g0 ¼ −2~g0 þ
4g

ð4πÞðd−1Þ=2
�
b0ϕηþ1 −

1

6
e2ϕη ~g0

�
;

β~g1 ¼
�
2

z
− 2

�
~g1 þ

2g

3ð4πÞðd−1Þ=2 ðb1ϕηþ1−1=z − e2ϕη ~g1Þ:

ð14Þ

At criticality d ¼ z ¼ 2, the system is supplemented by

β ~g2 ¼
g
4
~g2: ð15Þ

For d ¼ z ¼ 3, the additional beta functions read

β ~g2 ¼ −
2

3
~g2 þ

g
5π

�
1

8
ffiffiffi
π

p Γð5=6Þ
Γð1=3Þ þ ~g2

�
;

β ~g3 ¼ −
2

3
~g3 þ

g
5π

�
1

4
ffiffiffi
π

p Γð5=6Þ
Γð1=3Þ þ ~g3

�
;

β ~gi ¼
g
π

�
1

5
~gi −

1

2
ci

�
; i ¼ f4; 5; 6; 7; 8g; ð16Þ

with the numerical constants

c4 ¼
1

336
; c5 ¼

1

840
;

c6 ¼ −
1

560
; c7 ¼

1

105
; c8 ¼ −

1

180
: ð17Þ

We, now, summarize the most important properties of
these flow equations.
Isotropy: z ¼ 1.—In the isotropic case, Eqs. (13) and

(14) exhibit a fixed plane fλ� ¼ 1; ~g�1 ¼ −1g which is
invariant under RG transformations. This plane possesses
a NGFP situated at

~g�0 ¼ −
12ðd − 1Þ
ðdþ 1Þ2 ;

g� ¼ −
3ðd − 1Þ

2
ð4πÞðd−1Þ=2Γ

�
dþ 1

2

�
: ð18Þ

For d ¼ 3, this fixed point coincides with the one found in
the metric computations [30,31]. On the fixed plane, the
two-derivative terms of ΓHL

k combine into the dþ 1-
dimensional Einstein-Hilbert action. Thus, a flow starting
on this subspace will not generate Lorentz violating
interactions. This result provides first hand evidence that
gravitational interactions preserving full diffeomorphism
invariance span a subspace in the theory space underlying
HL gravity which is closed under RG flows.
Criticality: z ¼ d.—For z > 1, the NGFP (18) is shifted

towards smaller values λ� < 1, see Fig. 1. At criticality,
η ¼ 0, e2 ¼ −de1 so that the fixed point is located at

AGFP∶ g� ¼ 0; λ� ¼ 1

d
: ð19Þ

In d ¼ 2, the AGFP is completed by

40 30 20 10 10 20
G

1
d

1

z 1

z d

FIG. 1 (color online). z dependence of the fixed point arising
from (13). The dashed horizontal line represents the general
relativistic case, while the thick vertical line represents the line of
Gaussian fixed points. In the shaded area, the extra scalar mode of
HL gravity is classically unstable [10].
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~g�1 ¼ 0; ~g�2 ¼ 0; ~g�3 ¼ 0; ð20Þ

while in d ¼ 3, the couplings determining V� are fixed to

~g�1 ¼ ~g�2 ¼ ~g�3 ¼ 0; ~g�i ¼
5

2
ci: ð21Þ

Newton’s constant vanishes at the AGFP justifying the
label “Gaussian.” Moreover, the fixed point is precisely
situated at the point where the extra scalar mode becomes
nondynamical. It is this z ¼ d Lifshitz fixed point that
underlies the conjectured perturbative renormalizability of
HL gravity.
The scale dependence of the coupling constants at

criticality z ¼ d ¼ 3 is shown in Fig. 2. Clearly, the

AGFP acts as an UV attractor of the RG flow, supporting
the hypothesis that the theory is asymptotically free.
Somewhat intriguingly, Gk flows to zero for Gk < 0 and
the regimeGk > 0 is separated from the AGFP by a Landau
pole. Based on the analogous computations within the
asymptotic safety program [30,31], where the inclusion of
gravity loops shifts the matter induced NGFP from g� < 0
to g� > 0, we expect that this feature will be cured by
taking gravitational fluctuations into account. We hope to
come back to this point in the future. For the time being, we
will content ourselves with discussing two eminent con-
sequences of our findings.
Flat space propagators at criticality.—It is illustrative to

expand the 3þ 1-dimensional fixed point action ΓHL�
obtained from the AGFP around (Euclidean) flat space.
Since the scalar mode is nondynamical at the AGFP, we
focus on the transverse traceless (TT) fluctuations only
(see also [21] for a more detailed discussion). Expanding
σij ¼ δij þ ϵhij with ϵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

16πg�
p

yields the two-point
propagator

GTT� ∝ ðω2 − ~g�5~p
6Þ−1; ð22Þ

where ω and ~p denote the energy and spatial momentum of
the graviton, respectively. The higher order vertices vanish
at the AGFP. Thus, the AGFP describes a noninteracting
theory with a z ¼ 3 anisotropic dispersion relation. At this
stage, the following remarks are in order. The sign of ~g�5
indicates that the propagator is unstable in Euclidean space.
Moreover, performing the same analysis in d ¼ 2 shows
that the propagator contains only an energy term, owed to
the vanishing of ~g�2. We expect that the inclusion of gravity
loops will resolve these issues. Our results, then, indicate
the existence of an upper bound on the number of scalar
fields that can consistently be coupled to PHL gravity
without destabilizing the gravitational sector.
Detailed balance.—A conjecture already put forward in

the seminal work [7] is that the potentials (6), (7) satisfy
detailed balance, stating that V can be derived from a
variational principle, V ∝ ðδW½σ�=δσijÞHijklðδW½σ�=δσklÞ
with H being the de Witt supermetric. For z ¼ d ¼ 3, this
conjecture implies that the superpotentialW generating the
six-derivative terms is the Chern-Simons action, so that the
potential is given by the square of the Cotton tensor,
Vdb ∝ CijCij, with Cij ¼ ϵiklDkðRj

l −
1
4
RδjlÞ. Rewriting

Vdb in terms of the basis (7) yields

Vdb ∝ RijΔxRij −
3

8
RΔxR

þ 3Ri
jR

j
kR

k
i −

5

2
RRijRij þ

1

2
R3: ð23Þ

Constructing V� from the fixed point couplings (21) shows
that the scalar induced AGFP does not obey detailed
balance. This feature is actually independent of the

1 2 3 4 5
t

2. 10 81

1. 10 81

1. 10 81

2. 10 81

t 1 3

20 000 40 000 60 000 80 000 100 000
t

0.5

0.4

0.3

0.2

0.1

G t

20 000 40 000 60 000 80 000 100 000
t

gi t

ci

FIG. 2 (color online). Scale-dependence of the wave-function
renormalizations Gk and λk and the marginal couplings ~gi in
d ¼ z ¼ 3. The AGFP (19), (21) acts as an UV attractor of the
RG flow.
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correction coefficients bn and solely relies on the sixth
order heat-kernel coefficients a6.
Conclusions.—In this Letter, we used the functional

renormalization group equation for PHL gravity [23] to
study the matter-induced RG flow of the gravitational
coupling constants in the large-n limit. As a key result,
we identified the z ¼ d Lifshitz critical point (AGFP)
underlying the perturbative renormalizability of the theory
and showed that it acts as an UV attractor for the RG flow.
The AGFP is situated at the conformal point where the
extra degree of freedom intrinsic to HL gravity is non-
dynamical and the underlying fixed point action does not
preserve detailed balance. While the computation has been
carried out in the framework of PHL gravity, we expect that
the AGFP also acts as UV fixed point for the nonproject-
able theory, the difference being that, owing to the enlarged
theory space, the latter case will give rise to a larger number
of relevant deformations. Clearly, it is interesting to
complement the present computation by the inclusion of
gravity loops, and we hope to come back to this point in the
near future.
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