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Parameter estimation is of fundamental importance in areas from atomic spectroscopy and atomic

clocks to gravitational wave detection. Entangled probes provide a significant precision gain over classical

strategies in the absence of noise. However, recent results seem to indicate that any small amount of

realistic noise restricts the advantage of quantum strategies to an improvement by at most a multiplicative

constant. Here, we identify a relevant scenario in which one can overcome this restriction and attain

superclassical precision scaling even in the presence of uncorrelated noise. We show that precision can be

significantly enhanced when the noise is concentrated along some spatial direction, while the Hamiltonian

governing the evolution which depends on the parameter to be estimated can be engineered to point along

a different direction. In the case of perpendicular orientation, we find superclassical scaling and identify a

state which achieves the optimum.

DOI: 10.1103/PhysRevLett.111.120401 PACS numbers: 03.65.Yz, 03.65.Ta, 03.67.�a

Estimation of an unknown parameter is essential across
disciplines from atomic spectroscopy and clocks [1–3] to
gravitational wave detection [4]. It is typically achieved by
letting a probe, e.g., light, interact with the system under
investigation, picking up information about the desired
parameter. As seen in Fig. 1, a metrology protocol can be
understood in four main steps [5,6]: (i) preparation of the
probe, (ii) interaction with the system, (iii) readout of the
probe, and (iv) construction of an estimate of the unknown
parameter from the results. Steps (i)–(iii) may be repeated
many times before the final construction of the estimate.

The estimate uncertainty will depend on the available
resources, here the probe size N and the total time T
available for the experiment (other choices are possible
[7]). By the central limit theorem, for N uncorrelated

particles, the best uncertainty scales as 1=
ffiffiffiffiffiffiffi
�N

p
, where � ¼

T=t is the number of evolve-and-measure rounds. This
bound is known as the shot-noise or standard quantum
limit (SQL). By making use of quantum phenomena, a
metrology protocol may surpass the SQL, reaching instead
the limits imposed by the quantum uncertainty relations.
For probes of noninteracting particles, the best possible
scaling compatible with these relations is 1=ð ffiffiffi

�
p

NÞ, known
as the Heisenberg limit.

Without noise, the Heisenberg limit can be attained using
entangled input states, e.g., Greenberger-Horne-Zeilinger
(GHZ) states for atomic spectroscopy [8]. In the presence of
noise, however, the picture is much less clear, as the optimal
strategy depends strongly on the model of decoherence
considered. Nevertheless, the SQL has been significantly
surpassed in experiments of optical magnetometry [9,10],
which proved that some sources of noise can be effectively

counterbalanced [11,12]. However, unless one can keep
improving the interaction strength or readout efficiency
with probe size, e.g., increasing the optical depth with the
atom number in atomic vapors, destructive effects of uncor-
related noise are bound to dominate at highN. In this regime
of fixed noise (independent of the particle number), a num-
ber of no-go results exists, demonstrating that for most
types of noisy channels acting independently on each probe
particle, an infinitesimally small amount of decoherence
limits any quantum improvement over the SQL to at most a
constant factor [1,13–18]. In particular, any noisy evolution
described by N full rank channels, i.e., channels for which
no subspace of the probe state space is free of decoherence,
belongs to this class [15–18]. This is arguably the most
likely evolution in experiments, suggesting that the preci-
sion is always bound to scale classically for large enoughN.
Here, for a frequency estimation task undergoing uncor-

related noise and for a configuration where the Hamiltonian
and the noise have preferred spatial directions transversal to

FIG. 1 (color online). General metrology protocol where a
known probe state evolves according to a physical evolution
depending on an unknown parameter !. After a sufficient
amount of data are collected, an estimate for the parameter is
constructed.

PRL 111, 120401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

0031-9007=13=111(12)=120401(5) 120401-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.120401


each other, we show that the restriction to SQL-like scaling
can be surpassed. This is achieved by optimizing the dura-
tion t of the evolve-and-measure rounds.AsN increases, the
quantum channel describing the single-particle evolution
varies due to this optimization. This allows circumventing
the conditions of previous no-go results which were derived
assuming a fixed form of the N single-particle channels
[15–18]. Although t optimization has been considered pre-
viously and was not sufficient on its own [1,14], we dem-
onstrate that in combinationwith directionality of the noise,
it enables beating the SQL. The corresponding channel is
full rank, yet we find that a GHZ-state input attains a

precision scaling asymptotically as 1=N5=6. This is found
numerically and confirmed by a semianalytical argument.
We further demonstrate numerically that this scaling is
optimal by identifying an upper bound on the precision
which is saturated by the GHZ state. We also analyze
deviations from perfectly directional noise. The asymptotic
scaling is then again restricted to be SQL-like. However, for
small deviations, we observe a much higher precision gain
than for parallel noise. Note that here the noise is purely
Markovian. Exploting non-Markovianity can also lead to
improved precision scaling, as previously shown [19].

Model for noisy frequency estimation.—We consider a
Hamiltonian H ¼ ð!=2ÞPN

k¼1 �
k
z , where �k

z is a Pauli

operator acting on the kth spin-1=2 particle (qubit), and
! is an unknown frequency to be estimated. To account for
noise, we model the evolution by a master equation of
Lindblad form

@�ðtÞ
@t

¼ H ð�Þ þLð�Þ: (1)

Here, H ð�Þ ¼ �i½H;�� describes unitary evolution and
the Liouvillian Lð�Þ describes noise. We consider uncor-
related noise, such that L ¼ P

kL
k, and for a single qubit

we have

L k� ¼ ��

2
½�� �x�

k
x��

k
x � �y�

k
y��

k
y � �z�

k
z��

k
z�;
(2)

where � is the overall noise strength and �x;y;z � 0 with

�x þ �y þ �z ¼ 1. For �z ¼ 1, this describes the situ-

ation considered by Huelga et al. [1], namely, dephasing
along the direction of the unitary, while �x ¼ 1 corre-
sponds to dephasing transversal to the unitary. The latter
model resembles the magnetometry setup of Ref. [10], in
which the estimated magnetic field is directed perpendic-
ularly to the dominant dephasing dictating the spin deco-
herence time and the spin relaxation is ignored. For
�x ¼ �y ¼ �z ¼ 1=3, we have an isotropic depolarizing

channel.
The uncertainty �! in the estimate of ! can be

expressed in terms of the quantum Fisher information
[20] (QFI) F ð�!Þ of the probe state �! after evolution.
According to the quantum Cramér-Rao inequality [21],

�!
ffiffiffiffi
T

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ð�!Þ=t

p ; (3)

a bound achievable asymptotically for � � 1 [22,23]. One
can explicitly solve the master equation (1), obtaining a
map for the corresponding channel (see the Supplemental
Material [24] for details). Applying the map to a given
input, one obtains �!, and the QFI is computed through the
diagonalization of this state. Alternatively, bounds on
the QFI can be computed from the Kraus representation
of the channel [14,15]. We write F N ¼ F ð�!Þ for probes
of N particles.
For a general input state, it is a difficult task to compute

the QFI, as the size of �! grows exponentially with N.
However, for a GHZ state

jGHZi ¼ 1ffiffiffi
2

p ðj0i�N þ j1i�NÞ; (4)

the calculation simplifies dramatically (see Ref. [24]), and
we are then able to optimize F N=t (and hence �!) for
largeN. To obtain results valid for general inputs, we resort
to bounds on the precision. A first indication that perform-
ance is better under transversal than parallel noise is given
by the geometric classical simulation (CS) method [15]
(see Fig. 2). We obtain tighter bounds by adapting the
finite-N channel extension (CE) method of Kołodyński
et al. [25] to allow for optimization over t (see
Ref. [24]). As for previous asymptotic methods [14,15]
without t optimization, we cannot a priori guarantee
our bound to be saturable. However, for parallel noise
(�z ¼ 1), our bound is known to be tight in the asymptotic
N limit both with [26] and without [25] t optimization. As
we find below, the bound is also tight for transversal noise.
Parallel noise.—To understand the role of noise, we

compare parallel and perpendicular noise, as well as noise
which is directional but not fully concentrated on any of
the axes. We start by parallel dephasing, which has been
studied before [1].
For a single qubit, the QFI for an optimal input state is

given by F opt
1 ¼ e�2t�t2. In the noiseless case (� ¼ 0), as

expected, the longer the probe state is allowed to evolve,
the more information can be extracted about the parameter.
In the noisy case, after a time 1=2�, the dephasing process
wins over the unitary evolution and the extractable infor-
mation is degraded. For a classical strategy using N inde-
pendent qubits, this is the optimal time, and the SQL for
parallel noise is

�!
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffiffi
2�e

N

s
: (5)

It has been proven [14] that when quantum strategies are
allowed, the precision is instead bounded by

�!
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðe2�t � 1ÞN

tN2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
czð�; tÞ

N

s
: (6)
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The tighter bound coincides with the finite-N CE method
[25] for this channel and asymptotically reduces to the

weaker bound. Optimizing, we find t
opt
z ¼ w½N�=2�,

where w½N� ¼ 1þW½1� N=eN� and W½z� is the

Lambert W function. Asymptotically, t
opt
z approaches

zero as 1=
ffiffiffiffi
N

p
. Hence, the asymptotic scaling of Eq. (6)

is dictated by the small-time behavior of czð�; tÞ, which is
fully determined by the CS method [15], i.e., by the
geometrical location of the channel in the convex set of
all quantum qubit maps (see Fig. 2):

czð�; tÞ ¼ �zðtÞ2t ¼ 2�þ 2�2tþOðt2Þ: (7)

Using Eqs. (5) and (6), we see that the asymptotic scaling is
SQL-like and that quantum strategies provide only a con-
stant factor improvement of

ffiffiffi
e

p
, as found earlier [1,14].

Thus, for purely parallel dephasing, optimizing t leads only
to a minor improvement of precision. The asymptotic
scaling imposed by Eq. (6) is shown in Fig. 3(a).

The asymptotic SQL-like scaling is known to be satu-
rable with spin squeezed states [25,26]. For comparison
with transversal noise, we note that a GHZ input state gives
no improvement over the SQL Eq. (5). A GHZ strategy is
thus useless for parallel noise.

Transversal noise.—We now turn our attention to per-
fectly transversal noise. While we do not have an analytical
expression, we can efficiently compute the finite-N CE
bound and determine the optimal evolve-and-measure

duration t
opt
x for each N numerically [see Fig. 3(a)].

Without optimization, the asymptotic scaling is still
restricted to being SQL-like, as indeed it must be since
transversal noise corresponds to a full rank channel
[15–18]. However, unlike for parallel noise, the asymptotic
quantum improvement factor is not bounded by the ge-
ometry of the set of qubit maps (see Fig. 2). In conse-
quence, at short times, the asymptotic SQL factor cxð�; tÞ
from the CS method is

cxð�; tÞ ¼ �xðtÞ2t ¼ �2

12
t3 þOðt5Þ; (8)

and, as opposed to Eq. (7), cxð�; tÞ ! 0, as t ! 0.
Optimizing the finite-N CE bound over t for each N, we

find that superclassical scaling is maintained (verified nu-
merically up to N ¼ 108 for �=! between 0.001 and 100)
and follows an asymptotic behavior very well described by

�!
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
cxð�Þ
N5=3

s
: (9)

For large N, toptx ! 0, since otherwise the restriction to
SQL-like scaling applies. From our numerics, we obtain

that t
opt
x ¼ ð3=�NÞ1=3 and

cxð�Þ ¼ 32=3

2
�1=3: (10)

Thus, at the level of bounds, the t-optimized quantum
strategies provide a scaling rather than a constant factor
improvement over classical schemes for transversal noise.
To confirm this scaling, as we have not yet demonstrated
that the bound is tight, we examine a specific strategy
based on a GHZ state.
For given N, we can analytically compute the QFI

corresponding to a GHZ input (see Ref. [24]). The expres-
sion becomes cumbersome with larger N, but we can

numerically determine t
opt
x and the minimum �!, for val-

ues of N up to several thousands. The result is shown in
Fig. 3(a). Clearly, for the displayed values of �=!, the
GHZ state is optimal. What is more, the GHZ strategy
shows no sign of returning to SQL-like scaling for large N
(verified for N up to 5000 and �=! between 0.001 and 10).

Note that t
opt
x ! 0 with increasing N. If we expand the QFI

for GHZ inputs to first order in t, we find that F N=t ¼
N2tþOðt2Þ. As a semianalytical check, substituting the

numerically obtained t
opt
x ¼ ð3=�NÞ1=3, one recovers the

scaling behavior of the CE bound. Based on this strong
numerical and semianalytical evidence, we conjecture that
the finite-N CE bound is indeed tight for sufficiently large
N and that the asymptotic scaling is superclassical, as
predicted by Eq. (9).

FIG. 2 (color online). Cut through the space of all valid qubit
maps. The identity channel I½%� ¼ % is at the top, and
(extremal) unitary channels U!t are at the circumference. One
can think of phase !t as increasing along the angular direction
and decoherence �t along the radial direction. The spirals
represent trajectories of channels for parallel Ez

!ðtÞ and trans-
versal Ex

!ðtÞ noise, approaching the completely mixing channel
at the disk center. Arrows are separated by fixed time steps. We
see that Ex

!ðtÞ loses coherence slower, being always closer to the
boundary, and also has larger angular ‘‘speed’’ jdEx

!=d!j. The
classical simulation method [15] provides a geometric bound on
estimation precision based on the distance to the boundary:

�!
ffiffiffiffi
T

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�ðtÞ2t�=Np
. For asymptotic N, the bound is deter-

mined by the behavior for small t at the start of the spirals. We
get �zðtÞ2 ¼ 2�=tþOð1Þ and �xðtÞ2 ¼ ð�2t2Þ=12þOðt4Þ.
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Intermediate noise.—In a realistic implementation of a
setup with transversal noise, most likely, there will be
deviations from perfect directionality. To account for
such imperfections, in the following, we consider devia-
tions along the z axis, such that �x ¼ 1� � and �z ¼ �
(we note, however, that similar conclusions hold for more
general deviations, i.e., taking also �y � 0 [27]). Once

there is some z noise, the asymptotic scaling must return
to being SQL-like. If this were not the case, then by starting
with a bit of z noise and adding x noise until �x dominates,
one could recover superclassical scaling. Hence, for large
enough N, the precision would be improved by adding
noise, which is clearly unphysical. Nevertheless, super-
linear scaling can still persist over a large region of N.

Following this reasoning, the asymptotic bound must be
of the form

�!
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxzð�; �Þ

N

s
(11)

with cxzð�; �Þ � czð��; 0Þ ¼ 2��. In fact, we expect that

equality must hold. This is because t
opt
xz ! 0 for asymptotic

N, but for very short times, noncommutativity effects seize
to apply and our model is equivalent to a process in which
unitary evolution and noise along each axis are applied
sequentially in any order. Equality is confirmed by the
numerical results in Fig. 3(b), where we see that the CE

bound attains the asymptotic scaling
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=N

p
. The same

argument applies to the GHZ-state strategy. In this case,
we can see explicitly what happens at short times.
Expanding up to second order in t, we haveF N=t¼ N2t�
½ð2N� 1Þð1� �Þ þ 4N2��N�t2=2. For largeN, the expres-
sion reduces to the case of pure parallel noise with an
effective noise strength of ��, and asymptotically the

precision scales as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��e=N

p
. Thus, for � > 0, the GHZ

state no longer saturates the bound. In Fig. 3(b), we explore
the transition from superclassical to asymptotic SQL-like
scaling for both the bound and the GHZ state. Intuitively,
we expect that the transition point Nxzð�; �Þ to SQL-like
behavior increases smoothly to infinity for � ! 0. Indeed,
from Eqs. (9)–(11), we can estimate Nxz as the intersection
of the superclassical and asymptotic SQL-like asymptotes

Nxzð�; �Þ � 3=ð8��3=2Þ. Beyond Nxzð�; �Þ, no significant
gain is obtained by increasing initial entanglement; i.e.,
increasing the size of the entangled probe or using copies
of disentangled probes of the same size leads to the same
improvement in precision.
Finally, we remark that while topt tends to zero for large

N, in practice, t may be bounded from below by a finite
resolution tmin. In this case, one can optimize t forN’s up to

the point where topt ¼ tmin and obtain the 1=N5=6 scaling of
Fig. 3(a) in this region. Beyond this point, one sets t ¼ tmin,
and the precision becomes restricted to being SQL-like.
Thus, the effect of tmin > 0 for transversal noise, despite its
different nature, has similar consequences to the effect of
� > 0. Both lead to nonzero asymptotic constant factors
cxð�; tÞ and cxzð�; �Þ, respectively, which can approach
zero when tmin ! 0 or � ! 0. More generally, when both
� > 0 and tmin > 0, the ultimate precision is limited by the
bound (6) with czð��; tminÞ.
Conclusions.—Although recent results have shown that

realistic noise prevents quantum metrology strategies from
outperforming their classical counterparts by more than a
constant factor, when the noise is independent of the probe
size, it is nevertheless possible to observe scaling beyond
the standard quantum limit in the presence of uncorrelated
noise. Adapting the classical simulation and finite-N
channel extension methods [15,25], we have shown that

FIG. 3 (color online). (a) Precision scaling for bounds and GHZ strategy. The bound for parallel noise with optimization of the
single-round duration is shown (dotted line), as well as the bounds for transversal noise without (dashed line) and with (solid lines)
optimization. Without optimization (taking t optimal for a single qubit), the asymptotic scaling is still SQL-like, but with optimization,
superclassical scaling is maintained. In the latter case, the bound is saturated by the GHZ-state strategy (dots). The thin line shows
1=N5=6 scaling for reference, and the borders of the upper and lower shaded regions show SQL-like and Heisenberg scaling,
respectively. (b) Bound (solid lines) and GHZ-state strategy (dashed line) for noise with a dominant transversal and a small parallel
component �x=�z ¼ 99. The scaling is superclassical for moderate N, while the z component determines the asymptotic scaling,

which is hence SQL-like. The CE bound approaches
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��=N

p
(lower thin dotted line) and the GHZ-state

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��e=N

p
(middle thin dotted

line). The finite-N CE bound for parallel noise with the same strength is shown for reference (upper thin dotted line) as well as for
transversal noise (thin solid line).
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optimizing the duration of evolve-and-measure rounds sig-
nificantly enhances the precision. In particular, we have
considered a unitary evolutionwith awell-defined direction
and noise with a preferential direction transversal to the
unitary. In this setting, we have analyzed a frequency esti-
mation protocol and showed that the GHZ state achieves
maximal precision in the presence of noise, providing a

precision scaling of 1=N5=6. Furthermore, we have demon-
strated that although the asymptotic scaling returns to being
SQL-like when the noise deviates from being perfectly
transversal, the constant factor improvement of the preci-
sion can be significantly enhanced for small deviations.

We believe that our work opens an avenue towards
useful quantum metrology protocols in realistic, noisy
settings. In particular, we expect our model to capture the
essential features of anisotropic noise occurring, e.g., in
quantum magnetometry [9,10]. Our results indicate a gap
in scaling between the SQL and the attainable precision
when the geometry of the noise is accounted for, and we
hope to stimulate further research, as there is ample room
for particular measurement schemes to achieve precisions
inside this gap.
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Horodecki, P. Horodecki, and R. Horodecki for helpful
discussions. This work was supported by the the EU Q-
Essence Project, the ERC Starting Grant PERCENT, the
Spanish FIS2010-14830 Project, the Foundation for Polish
Science TEAM Project, the International PhD Project
‘‘Physics of future quantum-based information technolo-
gies’’ (Grant No. MPD/2009-3/4), the ERC Grant
QOLAPS, the NCN Grant No. 2012/05/E/ST2/02352, the
ERA-NET CHIST-ERA Project QUASAR, and the
Excellence Initiative of the German Federal and State
Governments (Grant No. ZUK 43).

[1] S. F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert,
M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865
(1997).

[2] J. J. Bollinger, W.M. Itano, D. J. Wineland, and D. J.
Heinzen, Phys. Rev. A 54, R4649 (1996).
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