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Quantum communication typically involves a linear chain of repeater stations, each capable of reliable

local quantum computation and connected to their nearest neighbors by unreliable communication links.

The communication rate of existing protocols is low as two-way classical communication is used. By

using a surface code across the repeater chain and generating Bell pairs between neighboring stations with

probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way

communication can be avoided and quantum information can be sent over arbitrary distances with

arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable

Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission

error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.
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Long-range communication of quantum states is diffi-
cult as such states cannot be copied [1,2]. Current research
into long-range quantum communication focuses on quan-
tum repeaters [3] making use of entanglement purification
[4] and entanglement swapping [5]. Entanglement purifi-
cation requires slow two-way classical communication,
resulting in the quantum communication rate decreasing
polynomially with distance. Furthermore, the communica-
tion error rate pc is at best comparable to the error rate pg

of gates within repeaters. If qubits have a finite coherence
time, requesting a constant pc as the distance increases
results in a finite maximum communication distance.
Arbitrarily rapid and reliable communication over arbi-
trary distances is not possible using only entanglement
purification and swapping.

Initial work incorporating error correction into quantum
communication resulted in non-fault-tolerant schemes
[6,7] capable of correcting small numbers of errors.
Recently, the first steps towards fault-tolerant quantum
communication were taken [8]; however, entanglement
purification was still used between neighboring quantum
repeaters, fundamentally limiting the communication rate
to hundreds of logical qubits per second. A quantum
communication protocol requiring very little two-way
classical communication has been developed concurrent
with this work [9].

We show that, using surface code quantum error correc-
tion (QEC) [10–12], two-way classical communication can
be avoided provided we can create Bell pairs between
neighboring stations with heralded success probability
SB * 0:65 and fidelity F * 0:96. This means communica-
tion can proceed at a rate independent of the classical
communication time between repeater stations. Given
local quantum gates with pg � 0:75%, we show how to

communicate logical qubits over arbitrary distances with
arbitrarily low pc at a rate limited only by the local gate
speed. The number of qubits per repeater increases only
logarithmically and the quantum communication rate de-
creases only logarithmically with communication distance.
If the probability of heralded success is less than 0.65 and
Bell pairs between neighboring stations with fidelity no
less than 0.92 are generated only every TB seconds, we
show that the logarithmic resource scaling remains and the
communication rate through N links is proportional to
½TBlog

2ðN=pcÞ��1.
To describe our quantum communication protocol, we

must describe surface codes and this in turn requires the
notion of stabilizers [13]. A stabilizer of j�i is an operator
M such thatMj�i ¼ j�i. For example, Zj0i ¼ j0i. Given
any set of commuting operators fMig, a state j�i exists
stabilized by fMig.
Surface codes exist on lattices of the form shown in

Fig. 1. Data qubits are represented by open circles. We
define a set of commuting operators on data qubits by
associating ZZZZ (XXXX) with each face (vertex). If the
j�i stabilized by these operators suffers errors, becoming

j ��i, then local to these errors we obtain equations of the

form Mj ��i ¼ �j ��i. Measuring whether the qubits are in
the þ1 or �1 eigenstate of each stabilizer thus gives us
information about the errors in the lattice. Measuring a
stabilizer requires a sequence of six gates. This information
can be used to reliably correct the errors provided the error
rates of initialization, CNOT, measurement, and memory,
which here we take to be equal at rate pg, are all less than

approximately 0.75% [11,12,14]. Logical operators XL

(ZL) are chains of single-qubit X (Z) operators that com-
mute with every Z (X) stabilizer and link the top (left)
boundary to the bottom (right). The distance d of the code
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is the number of single-qubit operators in the shortest
logical operator.

We now describe our communication protocol, initially
restricting ourselves to moving a logical qubit from the left
end to the right end of a single monolithic array of qubits
with the ability to perform local gates. Given an arbitrary
surface code logical qubit j�Li at the left end of the array,
an uninitialized region of qubits j�i in the middle and a
surface code logical qubit j0Li at the right end, j�Li can be
fault-tolerantly teleported to the location of j0Li by the
following procedure. First, the uninitialized region is ini-
tialized [Fig. 2(a)]. Second, the syndrome qubits across the
entire lattice are interacted with their neighbors [Fig. 2(b)].
This begins the process of increasing the size of the logical
qubit to cover the entire lattice. Third, the measurement
pattern shown in Fig. 2(c) completes one round of stabil-
izer measurement. The interaction pattern of Fig. 2(b) is
executed a total of d times, interleaved with the measure-
ment pattern of Fig. 2(c). This process is standard surface
code QEC. During the rounds of error correction, the
logical qubit information becomes reliably distributed
across the entire lattice. Finally, after the dth round of
interaction, the measurement pattern shown in Fig. 2(d)
is applied. These measurements effectively cut off a large
piece of the logical qubit without revealing information
about the value being transmitted, faithfully leaving the
logical qubit in the unmeasured region.

All measurement results are simply sent to the destina-
tion end of the lattice, not processed during transmission.
The final round of measurements prepares the lattice for
the transmission of the next logical qubit. Assuming each
interacting quantum gate takes Tg seconds and each mea-

surement Tm seconds, a logical qubit can be transmitted
every ð4Tg þ TmÞd seconds. The scaling of d and values

required for practical communication will be discussed

later after the full communication scheme has been
described.
The processing of measurement results related to X and

Z stabilizers occurs independently. Errors result in stabil-
izer measurements changing. Error chains change stabil-
izer measurements only at the end points. A good
approximation of the most likely pattern of errors corre-
sponding to a given set of stabilizer measurement changes
is one in which every change is connected by a chain of
errors to another change or lattice boundary such that the
total number of errors is a minimum. A classical algorithm,
the minimum weight perfect matching algorithm [15], can
find such a pattern efficiently, in time growing polylogar-
ithmically with the volume of the lattice when parallel
processing is used [16,17]. Error correction fails when
the corrections actually create error chains connecting
pairs of opposing boundaries. With careful calculation of
the distance between changes, a minimum of bðdþ 1Þ=2c
errors must occur before failure is possible, implying pc

decreases exponentially with d.
When communicating over a large physical distance, the

fundamental entanglement resource is expected to be Bell
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FIG. 2. Monolithic surface code quantum communication.
(a) Monolithic lattice of qubits with source logical qubit j�Li,
initial measurement pattern for the intermediate region, and
destination area initialized to j0Li. (b) Circuits used in parallel
to prepare for stabilizer measurement. Numbers indicate the
timing of gates. (c) Intermediate stabilizer measurements.
(d) Final stabilizer measurement and communicated state.
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FIG. 1 (color online). A surface code logical qubit. Stabilizers
ZZZZ (XXXX) are associated with the data qubits (open circles)
around each face (vertex). Syndrome qubits (dots) measure
stabilizers using the indicated sequences of gates. Logical op-
erators ZL; XL connect opposing boundaries.
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pairs created over fiber links kilometers in length. The
monolithic lattice described above can be broken into
pieces connected by Bell pairs as shown in Fig. 3.
Stabilizers spanning the communication link can be mea-
sured using the approach shown in Fig. 4. We temporarily
ignore heralded failure to entangle, which is discussed
below. The left half of each Bell pair can be measured
before the right half even reaches its destination. The rate
of the scheme thus remains unchanged—one logical qubit
every ð4Tg þ TmÞd seconds. Latency is, however, intro-

duced as the qubits in any given repeater station are not
initialized until the first photons arrive from the left. For
many ranges of parameters, a given repeater will have
finished working and sending photons before the next
repeater receives its first photons.

The scheme’s maximum tolerable Bell pair error rate is
of critical importance. Let us temporarily assume that all
gates within repeater nodes are perfect and Bell pairs are
subject to depolarizing errors. We shall continue to ignore
heralded failure to entangle for the moment. A probability
pB of depolarizing error on a Bell pair means that the errors
IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY,
ZZ each occur with probability pB=15. Using the Bell pair
stabilizers XX and ZZ, these errors are equivalent to II
with probability pB=5 and IX, IY, IZ with equal probabil-
ity 4pB=15.

After correction, nontrivial combinations of X (Z) errors
form a chain that runs from the top spatial (temporal)
boundary to the bottom spatial (temporal) boundary.
Given this symmetry, and the fact that the different types
of errors are processed independently, we focus on IX

errors, which occur on any given Bell pair with probability
pX ¼ 8pB=15. Referring to the Bell pairs numbered 1 to
2d� 1 in Fig. 3, IX errors on odd pairs induce an X error
on the data qubit to their left whereas on even pairs the
result is an incorrect stabilizer measurement.
These errors can be visualized as the bonds of a d� t 2D

square lattice. The error rate pX is too high when, after
correction, the probability of having a chain of errors along
the d dimension increases with d. For t ¼ 1, we have a
repetition code, implying pX < 0:5 is correctable. For t ¼
d, we have a surface code with perfect syndrome measure-
ment implying pX & 0:1 [12]. The equivalent values of pB

are 15=16 and approximately 0.2.
We simulated a pair of repeater nodes with perfect gates

and an independent stochastic error model of depolarized
Bell pairs for verification (Fig. 5). Note the expected cross-
over at pB ¼ 15=16� 0:94. Significant growth of the time
to failure with d occurs for pB & 0:2, as expected. Rapid
growth occurs for pB � 0:1, equivalent to a fidelity F of the
entangled state �with respect to the desired Bell state j�þi
of 0.92 since F ¼ h�þj�j�þi ¼ 1� 4p=5 for depolar-
ized Bell pairs.
Loss during transmission can be modeled as measure-

ment in an unknown basis. Loss is easier to tolerate than
depolarizing noise as the failure to measure the transmitted
pulse or photon gives the location of the error. This can be
seen in the simulation results of Fig. 6, which shows
efficient handling of 40%–45% loss. Note that no code
can handle more than 50% loss as this would violate the
no-cloning theorem [1,2].
The probability of logical error after d stabilizer mea-

surements, plink, is shown in Fig. 7 versus pB and loss ploss.
For 35% loss and 5% error (F ¼ 0:96), increasing d by 30
decreases plink by a factor of 10. The exponential decrease
of plink with d implies the probability of communication
error pc through N links decreases exponentially with d.
Doubling N requires halving plink, so d increases logarith-
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FIG. 3. Repeater-based surface code quantum communication.
The qubit pattern in each quantum repeater (ovals) is for d ¼ 3.
The pattern width is independent of d.
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FIG. 4. If the probability of heralded success is sufficiently
high, qubit A can be interacted with its neighboring data qubits
and measured before the entangling pulse or photon even reaches
its destination. Error correction takes care of heralded failures,
including loss during transmission.
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mically with N for fixed pc. In brief, d ¼ Oð logðN=pcÞÞ.
Sending data through 104 repeaters with an overall error of
10�6 error would require d� 300, corresponding to of
order 103 qubits per repeater. Each repeater takes time
dð4Tg þ TmÞ=ð1� plossÞ to send a logical qubit. Long-

range, high fidelity MHz communication can thus be
achieved provided 300ð4Tg þ TmÞ=0:65� 1 �s, meaning

�2 ns gates.
Permitting repeaters to have a nonzero local gate error

rate pg will only have significant impact if it is close to the

threshold error rate of approximately pth
g ¼ 0:75% [14].

An error rate 1 or 2 orders of magnitude below this will not
significantly change the above results.

To summarize, provided the Bell pair depolarizing error
rate is less than approximately 10% (F * 0:92), utilizing
surface code QEC enables the practical fault-tolerant quan-
tum communication of logical qubits over an arbitrary
number of links N with arbitrarily low overall communi-
cation error rate pc given Oð logðN=pcÞÞ qubits per re-
peater. If the rate of loss is high, the communication rate
is inversely proportional to the time TB required to suc-

cessfully create a single Bell pair and the number of Bell
pairs used to link neighboring repeaters which is itself
proportional to the square of the number of qubits per
repeater giving a rate of ½TBlog

2ðN=pcÞ��1. If the loss is
below approximately 35% and F * 0:96, only one-way
classical communication is required and of order 103 qu-
bits per repeater and nanosecond gates enables one to send
logical qubits at a MHz rate with 10�6 error through 104

links—sufficient in principle to reach the opposite side of
the planet.
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