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Fluctuation-driven dynamics in nanoscale thin-film flows:
Physical insights from numerical investigations
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The effects of thermal fluctuations on nanoscale flows are captured by a numerical
scheme that is underpinned by fluctuating hydrodynamics. A stochastic lubrication equa-
tion (SLE) is solved on nonuniform adaptive grids to study a series of nanoscale thin-film
flows. The Fornberg scheme is used for high-resolution spatial discretization and a fully
implicit time-marching scheme is designed for numerical stability. The accuracy of the
numerical method is verified against theoretical results for thermal capillary waves during
the linear stage of their development. The framework is then used to study the nonlinear
behavior of three bounded thin-film flows: (1) droplet spreading, where power laws are
derived; (2) droplet coalescence, where molecular dynamics results are reproduced by the
SLE at a fraction of the computational cost and it is discovered that thermal fluctuations
decelerate the process, in contrast to previously investigated phenomena; and (3) thin-film
rupture, where, in the regime considered, disjoining pressure dominates the final stages of
rupture.
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I. INTRODUCTION

Bounded planar thin-film flows are common in both nature and technology. A variety of inter-
esting flow behaviors fall into this class, including rupture [1], dewetting [2], droplet spreading
[3], and sessile droplet coalescence [4]. Dynamics of these processes can often be well described
by lubrication equations (LEs), derived using a long-wave approximation to the Navier-Stokes
equations [5], which reduces the modeling problem to solving a single partial differential equa-
tion. Motivated by emerging technologies in micro- and nanoscale fluid dynamics [6], thin-film
nanoflows have attracted considerable interest recently and challenged conventional theories, due
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to the emergence of new dominant physics at these scales. An important physical factor at the
nanoscale is thermal noise, which has been shown experimentally to influence interfacial dynamics
through the observation of thermal capillary waves on interfaces of (ultra-low surface-tension)
colloid-polymer mixtures [7]. Recently, with the use of molecular dynamics (MD) simulations, it has
been discovered that fluctuation-driven nanowaves dominate a range of nanoscale interfacial-flow
phenomena, such as nanothread breakup [8], nanojet instablity [9], nanodroplet coalescence [10],
and development of rough interfaces on nanoscale thin films [11]. Notably, the observations of
nanothread breakup in MD were further confirmed by an analytical model [12] and experiments
with colloid-polymer mixtures [13,14].

To model thin-film flows with thermal noise mathematically, Grün et al. [15] derived a stochastic
lubrication equation (SLE) by applying a long-wave approximation to the Landau-Lifshitz-Navier-
Stokes equations (the fluctuating hydrodynamics equations) [16]. Linear instability analysis was
then conducted on the SLE by Mecke and Rauscher [17] to obtain an evolving spectrum for thermal
capillary waves of the film interface. It was shown that thermal noise changes the spectrum of
thermal capillary waves from an exponential decay to a power law for large wave numbers, which
was then confirmed by the experimental observations on the dewetting of polymer films [18]. The
same spectrum behavior was also confirmed in MD simulations, first done by Willis and Freund
[19] in 2010 and recently, followed by Zhang et al. [20], who showed that interfacial roughening
falls into a universality class [11]. However, theories based on small deviations from equilibrium
cannot, inevitably, describe inherently nonlinear events such as film breakup.

Besides the theoretical analysis, numerical studies of the fully nonlinear SLE have also been
carried out with uncorrelated noise [21] and a spatially correlated noise model [22], whose solutions
at the linear stage are confirmed by the theory for thermal capillary waves and experimental data,
respectively. The nonlinear dynamics was also investigated in these numerical studies with particular
attention paid to thin-film rupture time [22] and droplet size distribution after dewetting [21]. How-
ever, analytic results for these nonlinear behaviors are nontrivial. The only successful attempt is on
nanodroplet spreading [23,24], where a similarity solution was derived for “fluctuation-dominated
spreading” and then verified numerically. Therefore, numerical investigations have become an
important approach to better understand the nonlinear behaviors of thin-film flows. Interestingly, the
spatial discretization in previous works [21,22,25] was developed only on uniform grids, meaning
that the locally nonlinear behaviors (e.g., multiscale rupture dynamics) could not be easily resolved
with high accuracy, while, in the deterministic cases (LE), these local behaviors have been captured
accurately on nonuniform grids in a range of different numerical schemes [26–29].

In this work, we develop an accurate and efficient numerical scheme (on nonuniform grids) to
overcome the aforementioned drawbacks and employ it to investigate different kinds of bounded
thin-film flows; in particular for flows where we expect locally nonlinear dynamics (such as in
rupture and coalescence).

The article is laid out as follows. In Sec. II the SLE is introduced, the numerical scheme is
proposed and the correlated-noise model is presented. In Sec. III numerical solutions for the SLE
are verified against known analytical results (Sec. III). In Sec. IV we use the SLE solver to study
three different kinds of thin-film flows with nonlinear dynamics: (1) droplet spreading on a precursor
film verified by theories developed (Sec. IV A), (2) bounded droplet coalescence, validated by MD
(Sec. IV B), and (3) thin-film rupture (Sec. IV C).

II. MATHEMATICAL MODELING AND NUMERICAL APPROACH

In this section, we introduce the mathematical model which describes nanoscale thin-film flows
and then propose a numerical framework for solving the associated system of equations. We first
present the nondimensionalised SLE.
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FIG. 1. Schematic of a thin film with a perturbed interface.

A. Stochastic lubrication equations

The SLE for a two-dimensional bounded film was first derived by Grün et al. [15] and Davi-
dovitch et al. [23], who applied a long-wave approximation to the fluctuating hydrodynamics
equations to describe the dynamics of the interface by the film height h(x, t ) (see Fig. 1). Recently,
Zhang et al. [30] proposed a more general SLE using a slip boundary condition, which is crucial at
the nanoscale, so this approach is employed here.

To identify the governing dimensionless parameters, we nondimensionalize the SLE with the
following characteristic scales:

h = h̃/h0, t = t̃/(3μh0/γ ), � = �̃/(γ /h0), N = Ñ
√

3μh2
0/γ ,

where h̃, t̃ , �̃, and Ñ represent the dimensional interface height, time, disjoining pressure, and
normally distributed random variable (the model for thermal fluctuations), respectively. Note that
the dimensional material parameters are not given tildes. h0 is the characteristic film height, μ is the
liquid’s dynamic viscosity and γ is surface tension. Following Zhang et al. [30], the dimensionless
SLE is given by

∂h

∂t
= − ∂

∂x

[
M(h)

(
∂3h

∂x3
− ∂�

∂x

)
−
√

2ϕM(h)N
]
. (1)

Here the mobility M(h) = h3 + 3 lsh2, so that the slip length ls = 0 the “orginal SLE” from Ref. [15]
is recovered. The disjoining pressure � = A/(6πh3), where A is the dimensionless Hamaker
constant, reflecting the strength of the van der Waals forces between liquid and a substrate [20].
The noise term N has zero mean and covariance 〈N (x, t )N (x′, t ′)〉 = δ(x − x′)δ(t − t ′). The
dimensionless parameter ϕ = l2

T/(W h0) relates to the intensity of interface fluctuations, where
lT = √

kBT/γ is the characteristic thermal fluctuation length and W is the initial thickness of
the film (z direction). When ϕ = 0, the deterministic LE [5] is recovered. In this work, periodic
boundary conditions are considered in all cases and the initial conditions depend on the type of
thin-film flow we simulate. The remaining parts of this section are concerned with the numerical
scheme for solving Eq. (1).

B. Spatial discretization on nonuniform grids

To resolve locally large gradients in flow variables, without slowing down the computation
dramatically, we use a nonuniform grid for spatial discretization. We choose the well-known scheme
proposed by Fornberg [31] to approximate spatial derivatives using finite differences,

dk

dxk
h(x) ≈

n∑
j=0

Lk
j,n(x)h(x j ), (2)

where {x j}s
j=0 are the grid points chosen for approximation and Lk

j,s(x) are the Fornberg coefficients
calculated at x. Details of the calculation and error estimate of the Fornberg coefficients can be
found in Appendix A.
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To apply the Fornberg scheme for spatial discretization we first rearrange the SLE into a
conservative form:

∂h

∂t
= −∂F (h)

∂x
, where F (h) = M(h)

(
∂3h

∂x3
+ A

2πh4

∂h

∂x

)
−
√

2ϕM(h)N . (3)

The film height h(x, t ) is to be solved at the mth step, tm, according to a certain spatial discretization
{xi}n

i=0 to give an array {hm
i }n

i=0. We use 3 (n = 2) and 5 (n = 4) points to approximate the first-order
and the third-order derivatives, respectively, with the target point located at the center to provide
second-order accuracy. The expression for the spatial discretization of Eq. (3) at the ith node is then
written as

∂t hi = −
2∑

j=0

L1
j,2Fi−1+ j, (4)

where

Fi = M(hi )

(
4∑

j=0

L3
j,4hi−2+ j + A

2πh4
i

2∑
j=0

L1
j,2hi−1+ j

)
−
√

2ϕM(hi )Ni. (5)

Here L1
j,2(xi ) using {xi−1, xi, xi+1} and L3

j,4(xi ) using {xi−2, xi−1, xi, xi+1, xi+2} are the Fornberg
coefficients for the first and third derivatives, respectively.

C. Implicit time-marching method

Equation (4) is of the form

∂h
∂t

= D h, (6)

where h is the solution vector and D(h) is a matrix representing the nonlinear differential operator
and has size (n + 1) × (n + 1). Employing the implicit Euler time-marching method [32] to Eq. (6)
gives

hm+1 − hm

�t
= D(hm+1) hm+1, (7)

where the superscript m denotes the time-step level. This is equivalent to

G = [I − �t D(hm+1)
]
hm+1 − hm = 0, (8)

and this root-finding problem, G(hm+1) = 0, can be solved by the Newton-Kantorovich method
[33], using an initial guess of the solution hg (the superscript g denotes “guess”) obtained by an
explicit Euler time-marching method:

hg = hm + �t D(hm) hm. (9)

If hg is a distance q away from the solution, hm+1 = hg + q, so that G(hg + q) = 0, then in the
linear approximation one has

G(hg + q) ≈ G(hg) + ∂G(hg)

∂hg
q = 0. (10)

From Eq. (8) we have

∂G(hg)

∂hg
= I − �tJ, (11)
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where the J is the Jacobian of D(hg). Combining Eqs. (10) and (11) yields a linear approximation
of q,

q ≈ −(I − �tJ)−1G(hg), (12)

so that we can update hg as hg + q and repeat the process. If the iteration converges, both q and
G(hg) will decrease quadratically, eventually to zero. The final solution, hm+1 = hg.

To control numerical errors caused by the temporal discretization, we implement the following
criteria:

(1) The solution is not negative at any point, hi > 0
(2) The maximum value of the time derivative error has to be smaller than a prescribed upper

limit, where the error can be computed using the second-order derivative in the Taylor expansion,

max
1�i�n

(| (�tm )2

hm
i

d2hm
i

dt2 |) < 10−3

(3) The iteration process converges, i.e., specifically, |qi|/hi decreases monotonically to below
10−4

(4) The number of iteration steps is smaller than 100.
If any condition is not satisfied, we go back to the initial value (hg

i = hm
i ) and restart the iteration

process with a reduced time step. If �t is smaller than 10−16, the iteration halts and the code
ends in a failed state. Unavoidably, the implicit Euler scheme applied to stochastic differential
equations converges slower with reducing time steps than the equivalent deterministic system [32],
forcing a smaller time step for the SLE (compared to the LE) that significantly increases the
computational costs.

D. Correlated-noise model

The covariance of uncorrelated fluctuations are described by a Dirac delta function. The delta
function could be approximated by a two-dimensional rectangular (boxcar) function (in t and x)
that is nonzero over a time step (�t) and grid spacing (�x), i.e., N (x, t ) ≈ Nt

i /
√�t�x. Here

Nt
i represents computer-generated random numbers and follows a normal distribution with zero

mean and unit variance. However, this model has been shown prone to numerical instability for the
SLE [34]; problems that are exacerbated as �x and �t become smaller and the amplitude of noise
becomes larger.

To achieve a robust numerical scheme with nonuniform spatial and temporal discretization, we
combine the spatially correlated noise model from Ref. [15] and the temporal one from Ref. [34], so
that the noise becomes correlated beneath the spatial correlation length Lc and the time correlation
length Tc. Uncorrelated behavior can then be approximated by taking the limit of these lengths to
zero, ensuring they are numerically well resolved throughout the limiting process.

Following [15], the stochastic term, N (x, t ) is expanded using separation of variables in the
Q-Wiener [W (x, t )] process as

N (x, t ) = ∂W (x, t )

∂t
=

q→+∞∑
q→−∞

χq ċq(t ) gq(x). (13)

Here the constant χq are the eigenvalues of the correlation function Fcor,

χq =
∫ L/2

−L/2
Fcor (x)e−i 2πqz/L dx , (14)

where q represents an integer sequence. The expressions for Fcor and details about this model can
be found in Appendix B. The coefficient ċq(t ) represents a temporally correlated noise process
in our setup, in contrast to [15] where uncorrelated noise is considered, modeled by a simple
linear interpolation between uncorrelated random noise at the endpoints of the temporal correlation
interval [34] (see Fig. 17). As the full implicit time-marching method usually provides stable
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FIG. 2. Interface profiles at two time instants (t1 = 20 and t2 = 70) from numerical solutions of the SLE
with different values of the noise strength ϕ. Note that the same random numbers are employed in all the cases.

numerical performance with large time steps (�t > Tc), this temporally correlated model will be
only activated and is only practically necessary, when capturing local dynamics near singularities
for very small �t , e.g., for the final stage of film rupture (see more details in Appendix B).

E. Grid-size convergence

To test the grid-size convergence of the numerical approach above, we consider the simulation
of a relatively short film L = 15 with an initial perturbation h(x, 0) = −0.7 cos(2 π x/L), which
relaxes to a relatively flat film in the absence of disjoining pressure (A = 0). We set Lc = 1.5 and
run the simulations with an increasingly fine grid spacing for different values of the noise strength
ϕ, whose influence is shown in Fig. 2.

Notably, besides numerical errors caused by discretizations in the simulation, statistical errors
are also introduced by the stochastic term in the SLE. To better demonstrate the convergence, we
measure two different kinds of errors.

The first one comes from the numerical discretization scheme. To exclude the influence of
statistical variability, we perform simulations with the same N (x, t ) for all cases, which is generated
before the simulations by fixing Nt

q (see Appendix B) at each time instant. Figure 3(a) shows
simulation results with ϕ = 10−2 at three time instances for varying grid size. These interface
profiles in Fig. 3(a) agree well with each other, indicating that the numerical errors indeed converge.
We check the average deviation of each interface profile to that with the finest resolution calculated
(�x = 0.0094) shown in Fig. 3(b), where the second-order convergence, as expected, is confirmed,
with the prefactor depending, unsurprisingly, on noise strength.

Since convergence studies for noisy systems are naturally stochastic, the second target quantity to
test convergence is ensemble-averaged; here the ensemble consists of 200 independent simulations.
The ensemble-averaged profiles at three-time instances are plotted in Fig. 4(a) for varying grid size.
Here all profiles are presented relative to the minimum point (i.e., we plot h against x − xmin).
Then we check the average deviation of each ensemble-averaged profile to that with the finest
resolution (�x = 0.0094); see Fig. 4(b), where the convergence is confirmed. Note the deterministic
result (black lines) follow second-order convergence, while, as also expected, the stochastic cases
converge with approximately first-order convergence.
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FIG. 3. (a) Interface profiles obtained with different grids at three time instances: t1 = 20, t2 = 40, and t3 =
70. Here ϕ = 10−2. (b) Convergence characteristics for decreasing grid size, where Dev. is average deviation
of interface profiles to the finest resolution profile in (a).

III. NUMERICAL VERIFICATION: THERMAL CAPILLARY WAVES

In this section, the numerical scheme is verified by comparison to analytical results known for
thermal capillary waves, with particular attention paid to the effect of the nonuniform grid, which
are known to create spurious effects in some stochastic partial differential equation systems [35].

The fluctuations of the interface in thermal equilibrium [11,17] can be described by the classical
theory for thermal capillary waves [7,18] with the static spectra of each surface mode (wave number)
derived from the equipartition theorem. To capture the development of thermal capillary waves
towards the equilibrium state, more advanced theories that include the time evolution of wave
spectra were derived by applying linear stability analysis to the SLE [20,22]; we will use the
model from Ref. [20] to validate our numerical solutions. Starting with a smooth initial surface and
neglecting disjoining pressure (A = 0), in dimensionless form the time evolution of the spectrum is
given by (see Appendix C for derivation)

|H |rms =
√

−ϕL

k2
(e−2k4t − 1), (15)

FIG. 4. (a) Ensemble-averaged interface profiles obtained from 200 independent realizations at three time
instances: t1 = 20, t2 = 50, and t3 = 80. Here ϕ = 10−2. (b) Convergence characteristics for decreasing grid
size, where Dev. is average deviation of ensemble-averaged interface profiles to the finest resolution profile in
(a).
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FIG. 5. Interface profiles of a bounded film at four time instants, t1 = 0.0 (purple dashed line), t2 = 0.001
(black solid line), t3 = 0.1 (blue dotted line), and t4 = 1.0 (red dash-dotted line). The parameters chosen are
ϕ = 10−3 and L = 100. The inset shows how the waves develop on the nonuniform grid (with exponential
distribution and markers representing nodal positions), with a higher density as one goes from left to right.

where |H |rms represents the root-mean square of wave perturbations in the frequency domain, k is
the dimensionless wave number, and L is the dimensionless length of the film.

Figure 5 shows a typical simulation result of the development of thermal capillary waves, where
perturbations, driven by thermal fluctuations, grow against time to generate significant capillary
waves at the later stage (see the dash-dotted red line in Fig. 5). Note that, to test our nonuniform grid
implementation, the grid nodes are nonuniformly distributed with the largest grid size �xmax = 0.1
at x = 0 and the smallest grid size �xmin = 0.001 at x = L. We use the spatial correlated noise with
Lc = 0.1 � �x. The noise is uncorrelated in time with �t = 10−3.

To gather statistics, 50 independent simulations (or “realizations”) are performed. The solution
is divided into two regions: x < L/2 with coarse grids and x > L/2 with dense ones, to check the
influence of the different grid sizes. On each region, a discrete Fourier transform of h(x, t ) is applied
to get the power spectral density. We then ensemble average the power spectral density at each time
instant over the realizations and take the square root to produce the numerical results in Fig. 6 (dash
lines with markers). Good agreement with the theory for thermal capillary waves [Eq. (15)] can be
found for both regions (see red and blue line), validating the accuracy of our numerical scheme on
extreme nonuniform grids.

IV. NUMERICAL SIMULATIONS FOR PHYSICAL INSIGHT

Having verified our numerical scheme, in this section we use the SLE solver established to
explore three bounded thin-film flows with strong nonlinear dynamics: (1) droplet spreading on a
precursor film, (2) sessile droplet coalescence, and (3) thin-film rupture, all of which are ubiquitous
phenomena observed both in nature and many industrial processes [36,37].
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FIG. 6. The root-mean square of (wave) disturbance amplitude vs the wave number at three time instants,
t1 = 0.2, t2 = 0.4, and t3 = 0.6; a comparison of ensemble-averaged SLE simulations (dashed lines with
markers) and the analytical result (solid lines).

A. Droplet spreading on a precursor film

We now consider the nonlinear dynamics of a droplet spreading on a precursor film, for which
the deterministic scaling is given by Tanner’s law [3], and the more recent work of Davidovitch [23]
resulted in a law that accounted for thermal fluctuations. In particular, these are given by{
	 ∼ t 1/7, Hydrodynamic (deterministic) spreading (Tanner’s law) [3]
	 ∼ t 1/4, Spreading driven by thermal fluctuations (Fluctuation-enhanced Tanner’s law) [23].

(16)

Here 	 represents a characteristic lateral scale, which is estimated using the average second moment
of h [see Eq. (D1) in Appendix D] [23]. The larger power law (1/4) in Davidovitch’s theory
demonstrates that the nanoscale spreading is enhanced by thermal fluctuations. However, these two
theories are only valid for spreading with the no-slip boundary condition (ls = 0), which is often
inaccurate at the nanoscale. Therefore, we use the SLE with the slip boundary condition (ls �= 0) to
derive “slip-modified” power laws for the spreading (see Appendix D for the detailed derivation):{

	 ∼ t 1/6, Slip-modified Tanner’s law,

	 ∼ t 1/3, Slip-modified fluctuation-enhanced Tanner’s law.
(17)

Note that the power laws are larger than those based on the no-slip boundary condition, predicting
that the spreading is accelerated by slip, as we might expect.

The initial droplet profile for the numerical solutions is given by a section of a sinusoidal function
with a precursor film set over the whole simulation domain. This approach has been widely used
[22–24,38] and designed not only for numerical convenience, but also to circumvent the contact-line
dynamics (which are fascinating, but not the focus of this article). To avoid rupture of the thin
precursor film (the thickness of precursor film is less than one percent of the initial height of the
droplet), we follow Ref. [23] and switch off the thermal fluctuations on it. Notably, it is unclear
whether this “artificial limiter” modifies the numerical path in the stochastic process. More advanced
approaches, like a Brownian bridge technique [39] or the inclusion of disjoining pressures, are
certainly worthy of future investigation in this regard, but given the slightly artificial nature of the
precursor film here they are considered beyond the scope of this article. When the droplet spreads to
a precursor-film node and “pulls it up,” namely, hi > h∗, the fluctuations on this node are activated.
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FIG. 7. Spreading profiles at three time instants, t1 = 10 (black lines), t2 = 102 (blue lines), and t3 = 103

(red lines) with the no-slip boundary. where the solid lines represent one selected realization. The dash-dotted
lines are the average from 50 realizations. The dotted lines are the (LE) solution of the deterministic equation.
The inset shows the local behaviors of the selected realization (solid lines in the full plot). The lines symbols
represent the adaptive grid nodes.

Moreover, since we are interested only in the spreading driven by surface tension and fluctuations
in this work, the disjoining pressure is neglected (A = 0).

To accurately capture the spreading power laws, one needs to simulate the drop spreading for
several decades of length. Thus it is computationally expensive to perform simulations on grids
uniformly distributed in both the “drop” and “precursor film,” in which the height of many nodes
will vary very little over each time step. To reduce computational costs, we utilize our nonuniform
adaptive grids with �xmin = 0.01 on the “drop” and �xmax = 0.1 on the “film,” with the nodes in
front of the advancing contact angles refined automatically (�xi = �xmin) to capture the spreading
dynamics (see the inset in Fig. 7). Here each SLE realization on the uniform grids need about 4 core
hours, while one simulation on the nonuniform adaptive grids costs less than 0.2 core hours; i.e., the
speed-up is about 20.

Figure 7 shows the droplet profiles at different time steps, where the stochastic profiles are the
average of the 50 independent realizations with ϕ = 10−3. Note that the initial spreading is much
“faster” than that at the later stage ( t3 − t2 is much larger than t2 − t1) due to the initially stronger
capillary forces (from the larger curvatures near where the drop meets the precursor), while at
the later stage the thermal fluctuations play a significant role and accelerate the process (see the
comparison between dotted lines and dash-dotted lines in Fig. 7).

The characteristic lateral scales (i.e., the drop’s width) are plotted in Fig. 8, where the numerical
solutions match not only previous analytical solutions with the no-slip boundary condition (black
lines) [23], but also our “slip-modified” power laws (red lines) very well, giving us further confi-
dence that our numerical scheme captures nanoscale flow physics both accurately and efficiently.
Notably, in both boundary conditions, there exists a transfer from hydrodynamic spreading (Tanner’s
law) to the fluctuation-driven spreading (Davidovitch’s law), showing that the noise dominates over
deterministic relaxation only at the later stages of the spreading (t  1).

B. Bounded droplet coalescence

Previous studies for droplet coalescence on a substrate have been carried out in the thin-film
regime [4,40,41] without any influence of thermal fluctuations taken into account (i.e., using the
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FIG. 8. Influence of the slip on the characteristic lateral scale, where black lines and red lines represent
no-slip and slip results, respectively. The slip length ls = 1.0. The dash-dotted lines are the solutions of the
deterministic cases. The solid lines are the solutions of the stochastic cases with ϕ = 10−3. Dashed lines
represent similarity solutions in Eqs. (16) and (17).

LE), where surface tension is considered as the main driving force. However, Perumanath et al.
[10] have shown that the fluctuations are crucial to the dynamics of coalescence of two “free”
nanodroplets in a vacuum with MD. A similar influence of noise can be expected in the coalescence
of two “bounded” nanodroplets, which will be explored by the SLE solver in this section. To verify
our numerical predictions, we perform independent MD realizations for both symmetric-drop and
asymmetric-drop coalescence (see details of MD settings in Appendix E). Note that we focus on
two-dimensional cases here.

The MD results of two coalescence cases are presented in Fig. 9 with two separate droplets on
the substrate set as the initial conditions. The initial distance between the two droplets is 50 nm.

(a) Symmetric-drop coalescence (b) Asymmetric-drop coalescence

t = t0

t = t0 − 16.7

t = t0 − 11.1

t = t0 + 33.2

t = t0 + 46.5

t = t0

t = t0 − 12.2

t = t0 − 6.1

t = t0 + 24.4

t = t0 + 48.7

FIG. 9. MD results for the coalescence. (a) Symmetric-drop coalescence with the same initial droplet radius
(at t = t0 − 16.7), R = 10 nm. (b) Asymmetric-drop coalescence with different initial droplet radii (at t =
t0 − 12.2): R1 = 15 nm and R2 = 10 nm.
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FIG. 10. Asymmetric-drop coalescence profiles predicted in a representative simulation by the LE (dash-
dotted lines) and SLE (solid lines) at three time instants: t1 = 0.8, t2 = 6.4, and t3 = 13.8. The inset shows the
grid node distributions.

Because of the fully wettable substrate, both droplets spread first until their contact lines meet. The
moment when the two droplets first connect and form a “molecular bridge” is defined as t0, shown
in Fig. 9. After that, the liquid bridge grows and the two droplets eventually merge into one.

Similar to Sec. IV A, here the disjoining pressure is also neglected (A = 0). The dimensionless
fluctuation intensity (ϕ = 5.1 × 10−3) is calculated from the liquid transport properties of MD (see
the details in Appendix E). To set the initial configuration for the SLE, h(x, 0), the MD interface
profile of each realization at t0 is extracted from uniform bins along the x axis based on a threshold
density. Then we shift all the coalescence points to the same position and use the averaged interface
profiles as h(x, 0) for the SLE. Simulations are carried out on fixed nonuniform grids with more
nodes interpolated near the coalescence point of h(x, 0) (see the inset in Fig. 10). The grids are
exponentially distributed with �xmin = 0.01 at hmin(t0) and �xmax = 0.1 on the precursor film on
both sides to capture large gradients near the coalescence point. Additionally, we set the spatial
correlation length Lc = 0.1 � �x and use a constant time step �t = 10−3. The numerical process
is stable with this time step for the configuration of coalescence, so the temporally correlated noise
model is not activated here.

The time evolution of the the minimum bridge height, hmin(t ), is shown in Fig. 11, where the
MD coalescence time, t0 is set as zero for the comparison. From a theoretical aspect, hmin(t0)
is expected to be zero. However, in MD, with finite-sized particles, the thickness of the initial
“molecular bridge,” hmin(t0), is approximately equal to the molecular scale. In both symmetric and
asymmetric cases, good agreement between SLE and MD predictions is found at all times for the
mean values, but also, importantly, for the standard deviation. Notably, the deterministic model
(LE) is not able to accurately capture the dynamics at these scales, highlighting the significant role
that thermal fluctuations must play. Moreover, the stochastic hmin(t ) always appears smaller than
that predicted by the (deterministic) LE for the same time, demonstrating that noise decelerates
the coalescence. This finding is contrary to previous results for other nanoscale interfacial flows,
where typically thermal fluctuations accelerate processes; such as in jet instability [9], thread rupture
[34], and droplet spreading [23]. Therefore, it is concluded that the thermal noise cannot always
assumed to be a driving force in the interface dynamics at the nanoscale, and its role is determined
by the particular fluid configuration. Hernández-Sánchez et al. proposed a power law from the LE
to describe coalescence dynamics and demonstrated their model with experiments in [4]. However,
this power law is not found in Fig. 11, even in the LE solutions (black dashed lines in Fig. 11). At
present, the reason is unclear and should be the subject of future investigation.
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FIG. 11. Time evolution of the bridge height during drop coalescence: comparison between MD and
the numerical solutions for the LE and SLE, for symmetric-drop coalescence in (a) and asymmetric-drop
coalescence in (b). The SLE results are an average from 50 realizations and the MD ones come from 20
realizations. The error bars and shadows in (a) and (b) represent the standard deviations of the MD and the
SLE, respectively.

The ensemble-averaged profiles plotted in Fig. 12 show good overall agreement between the MD
results (solid lines) and the SLE solutions (dashed lines). For the asymmetric case, the averaged
bottom point (hmin) moves towards the smaller droplet with time, driven by the surface tension.
As noted above, the deterministic predictions (dash-dotted lines) do not capture the details of the
profiles of the MD results, while the SLE results show remarkably good agreement. Moreover,
the SLE solution can reproduce the MD result at a fraction of the computational cost of MD.
For the asymmetric-drop coalescence simulation in this section, one MD realization takes more
than 200 core hours, while one SLE simulation takes less than 0.2 core hour; i.e., the speed-up is
about 103.

C. Thin-film rupture

The bounded film can become unstable (and rupture) due to the van der Waals forces, as found
in experiments with polymeric liquids [42]. This phenomenon has been successfully described by

FIG. 12. Coalescence profile predicted by the SLE/LE and the MD at three time instants, t1 (black lines),
t2 (blue lines), and t3 (red lines). (a) Symmetric-drop coalescence: t1 = t0 + 0.83, t2 = t0 + 12.52, and t3 =
t0 + 22.15. (b) Asymmetric-drop coalescence: t1 = t0 + 0.83, t2 = t0 + 6.37, and t3 = t0 + 13.85.
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FIG. 13. Thin-film rupture profiles at three time instants. The dashed lines are the (deterministic) LE result
with t1 = 1.0 (black), t2 = 51.0 (red), and t3 = 52.6 (blue). The solid lines are from one realization for the SLE
(ϕ = 10−3) with t1 = 1.0 (black), t2 = 13.0 (red), and t3 = 14.0 (blue). The inset shows the adaptive grids at
the rupture point.

the LE [42] with a similarity solution, hmin(t ) ∼ (tb − t )1/5 [43], where the van der Waals forces are
modeled by the disjoining pressure term (∂�/∂x) in Eq. (1). As the scale at the final stage of the
rupture reaches several nanometers, thermal fluctuations are expected to play a significant role in
rupture with a potentially modified similarity solution due to the fluctuations, which is, remarkably,
not included in previous studies [21,22,38,42]. Therefore, we use our SLE solver in this section to
investigate the influence of thermal fluctuations on the rupture dynamics.

We set the correlated length Lc = 0.15 and correlated time scale Tc = 10−5. The dimensionless
Hamaker constant A = 0.2. As � ∼ 1/h3, the disjoining pressure term increases rapidly at the final
stage of the rupture, resulting in two challenges for capturing the dynamics numerically: (1) the
spatial derivatives are very large at the rupture point (see the sharp “spikes” in Fig. 13) and (2) the
breakup happens extremely fast at the final stage (the time for the final breakup, t3 − t2, is much
smaller than the time for the early perturbation development, t2 − t1, in Fig. 13). To overcome these
challenges, we employ both spatial and temporal refinement with the simple criteria �x ∼ h(x, t )
and �t ∼ hmin(t ). Initially, �x = 0.15 and �t = 10−5, and they are decreased automatically to
1.5 × 10−4 and 10−8 respectively, to capture the dynamics at the length scale of 10−2h0 (see the
inset in Fig. 14).

Figure 14 shows the time evolution of the minimum film height with different fluctuation
intensities. Since we focus on the dynamics near rupture, hmin is plotted against time to rupture,
tr − t , where tr is the time of rupture. The error bars represent the standard deviation from 50
independent SLE realizations. It is not surprising to find stronger fluctuations (larger ϕ) lead to
larger standard deviations, but, it transpires that, these do not affect the “dynamic path” significantly
in this regime (see the mean values in Fig. 14). A further interesting finding is that all numerical
predictions (with different values of ϕ) match the similarity solution proposed by Zhang and Lister
[43] fairly well to the instant of rupture (see inset in Fig. 14), indicating that van der Waals forces,
rather than thermal fluctuations, dominate the final stages of thin-film rupture at the nanoscale.
This finding is perhaps not surprising given the singular nature of the disjoining pressure term. The
conclusion is also supported by the profiles in Fig. 13, where the stochastic spike is very similar to
the deterministic one, despite the obvious oscillations located on two sides of the film. Therefore,
in this particular regime, thermal fluctuations can play a role in accelerating instability generation,
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FIG. 14. The temporal evolution of the minimum film height for different values of ϕ. Here green lines
represent the simulation result of LE. Black, red, and blue lines are the average of 50 SLE realizations, where
the error bars are the standard deviation. Inset shows the comparison with the similarity solution [43].

as described in Refs. [17,20,22], but once disjoining pressure become significant, it overwhelms the
influence of fluctuations and dominates the dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this work, a simple yet effective numerical scheme for the SLE has been developed to predict
the interface dynamics of different classes of nanoscale bounded thin-film flows. The Fornberg
scheme and correlated-noise model is employed in the solver for the nonuniform adaptive grids,
offering the capability of capturing local dynamics accurately and efficiently. Based on verification
with theoretical models and comparisons to MD results, this solver is demonstrated to be a powerful
tool for studying both linear and nonlinear thin-film flows.

Potential directions for future research are related to the physics predicted by the SLE in
spreading, coalescence, and rupture. In this article, thermal fluctuations are found to (1) accelerate
the droplet spreading, (2) surprisingly decelerate the bounded droplet coalescence, and (3) not affect
the final stages of film rupture. In the future, it will be interesting to see whether these findings
can be verified experimentally by using colloid-polymer mixture with ultralow surface tension,
which has been applied to generate significant thermal fluctuations in interfacial flows at several
micrometers [7,13,14,18]. Additionally, the coalescence dynamics has been shown to be described
by the analytical (similarity) solution in the deterministic (LE) cases [4]. So a similar analytical
solution is expected to predict the “fluctuation-dominated” coalescence, which would be worthy of
further investigations.

Moreover, the results presented in this paper are obtained for two-dimensional flows. Inter-
esting dynamics in three-dimensional thin-film flows, such as different film-rupture patterns [42]
and fingering instability in wetting and dewetting [2,44], has been thoroughly studied by the
three-dimensional LE. Therefore, it would be interesting to extend our numerical scheme to the
three-dimensional SLE and explore the influence of thermal fluctuations on these three-dimensional
fluctuating hydrodynamics.
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APPENDIX A: THE FORNBERG SCHEME

Here we present a quick derivation of the Fornberg scheme [31] to show that the errors in the
derivative approximations can be well controlled. Suppose we are given the values of target function
h(x) at x0 < x1 < · · · < xn and we would like to approximate the kth derivative of h(x) at x ∈ 


where 
 = [x0, xn]. The Lagrange interpolation polynomial of h(x) based on hi = h(xi )
n
i=0, i =

0, 1, . . . , j is given by

pn(x) =
n∑

i=0

Li,nhi, (A1)

where {Li,n}n
i=1 are the Lagrange polynomials defined by

Li,n(x) =
n∏

j=0, j �=i

x − x j

xi − x j
. (A2)

It is then immediately known that if h(x) is n + 1 times continuously differentiable on 
, then for
each x ∈ 
,

∥∥h(k)(x) − p(k)
n (x)

∥∥ � ‖π (k)(x)‖ ‖h(n+1)(x)‖
k!(n + 1 − k)!

, (A3)

where k � n, h(k) is the kth derivative of h(x), π (x) = (x − x0)(x − x1) · · · (x − xn) and ‖ ‖ denotes
the supreme norm on 
 [45]. Thus h(k)(x) can be well approximated by p(k)

n (x) for k � n if |xn − x0|
is small,

h(k)(x) ≈ p(k)
n (x) =

n∑
i=0

dkLi,n(x)

dxk
hi =

n∑
i=0

Lk
i,n(x)hi, (A4)

where Lk
i,n(x) is the expression for the Fornberg coefficients and can be calculated recursively. We

know

Li,n(x) = x − xn

xi − xn
Li,n−1(x), for i �= n (A5)

and

Ln,n(x) =
∏n−2

j=0(xn−1 − x j )∏n−1
j=0(xn − x j )

(x − xn−1)Ln−1,n−1(x). (A6)

Then for i �= n

Lk
i,n(x) = dk

dxk

[ x − xn

xi − xn
Li,n−1(x)

]
(A7)

= x − xn

xi − xn
Lk

i,n−1(x) + k

xi − xn
Lk−1

i,n−1(x) (A8)

and

Lk
n,n(x) = dk

dxk

[∏n−2
j=0(xn−1 − x j )∏n−1

j=0(xn − x j )
(x − xn−1)Ln−1,n−1(x)

]
(A9)
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=
∏n−2

j=0(xn−1 − x j )∏n−1
j=0(xn − x j )

[
(x − xn−1)Lk

n−1,n−1(x) + kLk−1
n−1,n−1(x)

]
. (A10)

Since L0,0 represents a single point, it is natural to set L0
0,0 = 0. Further more Ls

j,m = 0 for s > m
because the sth derivative of a mth-order polynomial is always zero. Without loss of generality we
set x = 0 to get

Lk
i,n = 1

xn − xi

(
xnLk

i,n−1 − kLk−1
i,n−1

)
, (A11)

Lk
n,n =

∏n−2
j=0(x j − xn−1)∏n−1

j=0(x j − xn)

[
xn−1Lk

n−1,n−1(x) − kLk−1
n−1,n−1(x)

]
, (A12)

‖h(k) − p(k)
n ‖ � ‖π (k)‖ ‖h(n+1)‖

k!(n + 1 − k)!
� O(δxn+1−k ), (A13)

where δx = max{|x0|, |xn|}. Generally speaking the Fornberg scheme has at least accuracy of order
n + 1 − k.

APPENDIX B: CORRELATED NOISE MODEL

In this Appendix, we introduce the spatially correlated noise model, proposed by Grün in [15],
where an exponential correlation function is employed:

Fcor (x, Lc) =
{

X −1exp
{− 1

2

[
L
Lc

sin(πx/L)
]2}

, for Lc > 0,

δ(x), for Lc = 0.
(B1)

Here Lc is the spatial correlation length, L is the domain length, and X is such that∫ L
0 Fcor (x, Lc) dx = 1.

Diez et al. [22] calculated the integral and found that χq could be expressed by the Bessel
function,

χq = Ik (α)/I0(α), (B2)

where

α =
( L

2Lc

)2

and k = 2πq/L.

Figure 15 shows the eigenvalue spectrum for several values of Lc. Note that for Lc → 0 (i.e., α →
∞), we have χq → 1 for all q, leading to the limiting case of the white (uncorrelated) noise.

The term gq corresponds to the set of orthonormal eigenfunctions according to

gq(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
L cos( 2πqx

L ), for q > 0√
1
L , for q = 0√
2
L sin( 2πqx

L ), for q < 0

. (B3)

Therefore, the discretized expression of the noise term is

Nt
i = 1√�t

q= M+1
2∑

q=− M+1
2

χq Nt
q gq(x), (B4)
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FIG. 15. Linear spectrum of eigenvalues for several values of Lc from Eq. (B2). Here the wave number
k = 2πq/L.

where M is the number of nodes. Samples of Nt
i are illustrated in Fig. 16 with different spatial

correlation lengths. Note that a larger Lc leads to smooth large-wavelength and small-amplitude
noise.

The temporally correlated noise model proposed by Zhao et al. [34] is employed in this work,
shown in Fig. 17, where Tc is the correlation timescale. When the adaptive time steps are reduced to
less than Tc to capture local dynamics (e.g., for the final stage of the film rupture), this temporally
correlated model is activated with time step added using linear interpolation. The discretized
expression of the noise term becomes

Nt
i = 1√

Tc

q= M+1
2∑

q=− M+1
2

χq Nt
q gq(x). (B5)

-20 -10 0 10 20

-800

-600

-400

-200

0

200

400

600

800

FIG. 16. Spatially correlated noise with different Lc.
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FIG. 17. The temporally correlated stochastic term Nt using linear interpolation.

APPENDIX C: DERIVATION OF THEORY FOR THERMAL CAPILLARY WAVES

Without the disjoining pressure term, Eq. (1) becomes

∂t h = −∂x
(
h3∂3

x h −
√

2ϕh3 N
)
. (C1)

For the linear instability, we set h = 1 + ĥ with ĥ � 1 to linearize Eq. (C1):

∂t ĥ + ∂4
x ĥ4 =

√
2ϕ ∂xN . (C2)

Then a finite Fourier transform is applied to Eq. (C2) to get

∂t H + k4H = ik
√

2ϕN, (C3)

where the transformed variables are defined as follows:

H (k, t ) =
∫ L

0
ĥ(x, t )e−ikx dx and N (k, t ) =

∫ L

0
N (x, t )e−ikx dx.

The solution of Eq. (C3) is linearly decomposed into two parts:

H = HLE + Hfluc. (C4)

The first part is the solution to the homogenous form of Eq. (C3) (with ϕ = 0) with some stationary
initial disturbances (H=Hi at t = 0). Since we start from a smooth initial surface, HLE(k, t ) = 0.
The second component of the solution arises from solving the full form of Eq. (C4) without any
initial disturbances; this part of the solution is solely due to fluctuations and is thus denoted Hfluc.
This is obtained by determining the homogeneous equation’s impulse response,

Hres(k, t ) = e−k4t , (C5)

which due to the linear, time-invariant nature of the system, allows us to write

|Hfluc|2 = (ik√2ϕ
)2∣∣∣∣
∫ t

0
N (k, t − τ )Hres(k, τ )dτ

∣∣∣∣
2

. (C6)
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H is both a random and complex variable with zero mean. So the root mean square of H is
sought, which from Eq. (C4) is given by

|H |rms =
√

|HLE + Hfluc|2 =
√

|Hfluc|2. (C7)

Because N is uncorrelated Gaussian white noise, and the variance of the norm of the white noise
|N |2 = L, Eqs. (C5) and (C6) combine to give

|Hfluc|2 = 2ϕk2
∫ t

0
|N (k, t − τ )|2H (k, τ )2 dτ,

= 2ϕk2L
∫ t

0
H2 dτ,

= −ϕL

k2

(
e−2k4t − 1

)
. (C8)

Equations (C7) and (C8) constitute the theory for thermal capillary waves used in Sec. III.

APPENDIX D: DERIVATION FOR THE SPREADING POWER LAWS

In this Appendix, we present the derivations for both no-slip and slip theories, i.e., 	 ∼ t n. The
average second moment of h is applied to estimate the drop’s width 	 [23] whose explicit expression
is

	(t ) =
〈[

1

V

∫
(x − X )2h(x, t ) dx

]〉
, (D1)

where V = ∫ h dx is the constant volume of the droplet, X = (
∫

xh dx)/V is the instantaneous
position of the droplet center, and 〈· · · 〉 represents the ensemble average of all the realizations.

In order to decide the power law (n), a similarity transform is made with the change of variables:

x = bx̆, h = bα h̆, t = bηt̆, (D2)

where b is an arbitrary factor, and α and η are constants that remain to be fixed. The symbol “ ˘”
means ‘transformed’ variables. According to the scaling relation above [x̆ ∼ h̆ ∼ t̆ ∼ O(1)], we can
easily obtain 	 ∼ x ∼ t1/η, namely, the power law is equal to 1/η. For the value of η, we substitute
the transform relations above into the SLE [Eq. (1)] and obtain

∂ h̆

∂ t̆
= −(b3α+η−4)∂x̆

(
h̆3∂3

x̆ h̆
)+ [b(α+η−3)/2]√2ϕ∂x̆

[
h̆3/2N̆ (x̆, t̆ )

]
. (D3)

Here we have two independent force terms on the right-hand side: (1) the deterministic term due
to the surface tension and (2) the stochastic term due to the thermal fluctuations. To hold the
“similarity” of the transform, the scaling powers of the arbitrary scaling factor b should always
be zero, namely, {

3α + η − 4 = 0, for the deterministic term,
α + η − 3 = 0, for the stochastic term. (D4)

In addition, no matter which force drives the spreading, the droplet volume,

V =
∫

h dx = bα+1
∫

h̆ dx̆,

should always be conserved, requiring α = −1. So, we can obtain the value of the left coefficient
η from Eq. (D4), i.e., η = 7 in the surface tension term; and η = 4 in the stochastic term, implying
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TABLE I. Parameters of the mW model.

ε (kJ mol−1) σ (nm) A B p q χ κ a θ0 (degree)

25.87 0.2390 7.050 0.6022 4 0 1.2 23.15 1.8 109.47

two power-law spreading regimes:{
	 ∼ t 1/7, Tanner’s law,

	 ∼ t 1/4, fluctuation enhanced Tanner’s law,
(D5)

which have been proposed by Tanner [3] and Davidovitch et al. [23], respectively.
To take the slip effect into account, Eq. (D4) is modified:

∂ h̆

∂ t̆
= −(b2α+η−4

)
∂x̆
(
3	̃sh̆

2∂3
x̆ h̆
)+ b(η−3)/2

√
2ϕ∂x̆

[√
3	̃sh̆2N̆ (x̆, t̆ )

]
. (D6)

By the same approach, we get{
2α + η − 4 = 0, for the deterministic term,
η − 3 = 0, for the stochastic term, (D7)

where α is still equal to −1. Therefore, we can obtain a “slip-modified” power law for the spreading:{
	 ∼ t 1/6, Slip-modified Tanner’s law,
	 ∼ t 1/3, Slip-modified fluctuation enhanced Tanner’s law.

(D8)

APPENDIX E: MD SETTINGS FOR THE DROPLET COALESCENCE

In this work, we choose the mW model [46] to simulate liquid water. The model mimics the
hydrogen-bonded structure of water through the introduction of a non-bond-angular-dependent term
that encourages tetrahedral configurations. The model contains two terms: (1) φi j depending on the
distances between pairs of atoms (represented by ri j and sik) and (2) φi jk depending on the angles
formed by triplets of atoms (represented by θi jk). The full expression is given by

U =
∑

i

∑
j>i

φi j (ri j ) +
∑

i

∑
j �=i

∑
k> j

φi jk (ri j, sik, θi jk ),

φi j (ri j ) = Aε

[
B

(
σ

ri j

)p

−
(

σ

ri j

)q]
exp

(
σ

ri j − aσ

)
,

φi jk (ri j, sik, θi jk ) = κε(cos θi jk − cos θ0)2 exp

(
χσ

ri j − aσ

)
exp
( χσ

sik − aσ

)
, (E1)

where A, B, p, q, χ , and κ , respectively, give the form and scale to the potential, and θ0 represents
the tetrahedral angles. All the parameters are presented in Table I.

The platinum substrate is assumed to be rigid with an atomic mass of 3.24 × 10−25 kg [47]. The
liquid-solid interaction is modeled by the 12-6 LJ potential with εls/kB = 444 K and σls = 0.28 nm
to create a fully wettable substrate (zero contact angle). The initial configurations of droplets are cut
from a liquid bulk, created from equilibrium NVT simulations with a Nosé-Hoover thermostat at
T = 400 K. The same ensemble and thermostat is used for the main simulations with the time step,
2.5 femtoseconds, and the entire domain width along the z axis, W = 2 nm and the length scale for
nondimensionalization, h0 = 10 nm.

To compare MD results with the predictions of the SLE, the liquid transport properties are
calculated are required. Here dynamic viscosity is found to be μ = 1.64 × 10−4 kg m−1 s−1 by the
Green-Kubo method [48,49], which integrating the time-autocorrelation function of the off-diagonal
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elements of the pressure tensor Pi j so that

μ = Vbulk

kBT

∫ ∞

0
〈Pi j (t )Pi j (0)〉dt (i �= j), (E2)

where Vbulk is the volume of the bulk fluid, kB is the Boltzmann constant, and T is temperature.
The pressure tensor components are obtained using the definition of [50] and the angular brackets
indicate the expectation. The surface tension is calculated from the profiles of the components of
the pressure tensor in a simple liquid-vapor system, using the mechanical definition [51]:

γ = 1

2

∫ Lz

0
[Pn(z) − Pt (z)]dz, (E3)

where Lz is the length of the MD domain, and subscripts ‘n’ and ‘t’ denote normal and tangential
components, respectively. Finally, we have γ = 5.45 × 10−2 N m−1.
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