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We numerically study the retraction of an axisymmetric viscous filament in a passive
surrounding fluid. The analysis focuses on the evolution of the tip velocity, from the
early stage of the filament retraction until it reaches its final equilibrium spherical shape.
The problem is governed by two control parameters: the Ohnesorge number, Oh, which
measures the relative importance of viscous and surface tension effects, and the initial
aspect ratio of the filament, A. We investigate the influence of Oh over a wide range
of aspect ratios. The small-Oh regime is characterized by the occurrence of a spherical
blob at the extremity of the filament. This feature has a key impact on the tip dynamics,
which moves with an oscillating velocity whose mean value is close to the Taylor-Culick
prediction. The oscillatory behavior of the tip velocity is explained through a simple
mass-spring model. This regime is also characterized by the presence of capillary waves,
with a phase velocity slightly larger than the Taylor-Culick velocity. Surface oscillations
are also observed when the filament reaches its final spherical shape; the corresponding
period agrees well with predictions of the linear theory. At intermediate Oh and large A,
the tip velocity reaches a value close to the Taylor-Culick prediction. However, for smaller
aspect ratios, the maximum tip velocity is much smaller than this prediction, and does not
exhibit any oscillation. The recoil dynamics is qualitatively and quantitatively different at
high Oh. In this case, the radius of the filament grows uniformly over time and no blob
forms, making the tip velocity decrease after a short transient. A self-similar solution is
found to closely match the numerical results in this regime.

DOI: 10.1103/PhysRevFluids.5.073602

I. INTRODUCTION

The capillary-driven retraction of liquid ligaments is involved in a broad variety of natural
phenomena and industrial applications, such as break-up of ocean spume, atomization in fuel
injectors or the ink-jet printing technology, to mention just a few [1]. Of particular interest in
these applications is the prediction of the ligament’s fate: will it break in a series of droplets or
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maintain its integrity and retract as a single drop? This information may be qualitatively obtained by
equating the time needed for the capillary instability to develop to the time required for the filament
to recoil [2]. Clearly, the tip velocity is a key quantity in such a model. However, despite much
recent progress in the understanding of the retraction of viscous filaments, the detailed evolution
of this velocity remains unclear. Improving the understanding of the mechanisms governing the tip
velocity in various flow regimes is the primary goal of this paper.

Taylor [3] and Culick [4] independently showed that the tip velocity of a capillary-driven
retracting inviscid planar sheet reaches a steady value, now referred to as the Taylor-Culick velocity.
This formula was obtained by balancing surface tension and inertia effects, assuming that the
mass of the retracting sheet accumulates in a circular rim. McEntee & Mysels [5] confirmed the
Taylor-Culick prediction for soap films with a thickness larger than 1 μm. In the limit where
viscous effects are dominant, Brenner & Gueyffer [6] showed numerically that the retraction process
changes dramatically: no rim forms, and the thickness of the entire sheet continuously increases over
time. Despite this change of shape, the Taylor-Culick velocity is recovered in the long-time limit
[7,8]. However, recent experiments by Murano & Okumura [9] in a Hele-Shaw cell shed a new
light on the range of validity of the Taylor-Culick model. In the viscously dominated regime, the
retraction velocity is governed by a capillary-viscous balance rather than a capillary-inertia balance.
These results support in some sense the experimental findings of McEntee & Mysels [5] since the
latter did not recover the Taylor-Culick prediction with very thin films (less than 1-μm-thick) for
which viscous effects dominate.

Prestretched axisymmetric filaments are prone to breaking up into a series of droplets provided
viscous effects are small enough. Indeed, Notz and Basaran [10] and Schulkes [11] showed
numerically the dramatic effect of the Ohnesorge number Oh on the retraction dynamics. For
large Oh, i.e., effects of viscosity in the bulk and at the interface significantly larger than capillary
effects, the filament may recoil and turn into a spherical drop without breaking up. In contrast,
for small Oh, it frequently breaks into a series of droplets. A large stream of work has focused
on the corresponding breakup mechanisms. Recently, Anthony et al. [12] performed an extensive
numerical investigation of the retraction dynamics over a wide range of Ohnesorge number and
initial aspect ratio A, and proposed a classification of the different breakup modes as a function
of these two control parameters. The end-pinching mechanism [13,14] prevails at low Oh, while
the classical Rayleigh-Plateau mechanism dominates at high Oh. For low Oh and intermediate A,
a different breakup mode, recently described by Wang et al. [15], may occur. This “capillary wave
breakup” mode, results from interactions of capillary waves traveling at the filament surface and
originating from its ends. Still for low Oh, Hoepffner and Paré [16] observed that the filament may
escape from end-pinching due to the formation and detachment of a Venturi-like flow inside the
blob. This escape from pinching, which may occur at multiple times, results in a discontinuous
variation of the critical aspect ratio leading to breakup as a function of Oh [12,16].

The situation in which a filament recedes without breaking has received less attention. Keller
[17] extended the initial analysis of Taylor and Culick for planar sheets to the case of axisymmetric
filaments. His model was revisited by Hoepffner and Paré [16] and Pierson and Magnaudet [18] who
pointed out that the original prediction for the corresponding “Taylor-Culick” retraction velocity
has to be lowered by a factor of

√
2. Notz and Basaran [10] showed that the blob velocity does not

reach a steady value but rather oscillates about the Taylor-Culick velocity for Oh � 0.1. Recently,
Contò et al. [19] made use of a matched asymptotic expansion approach to determine the long-time
filament profile. They identified three distinct regions, namely a steady section far from the tip, a
growing spherical blob and an intermediate matching region. However, their analysis assumes the
blob velocity to be given by the Taylor-Culick prediction, which significantly limits the generality
of their conclusions. That the Taylor-Culick prediction provides a poor estimate of the actual tip
velocity was recently emphasized in experiments performed by Planchette et al. [20] using inkjet
printer heads. In these experiments, the tip velocities were consistently found to be significantly
smaller than this prediction, and an empirical model accounting for viscous effects had to be
designed to better fit the measured velocities.
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FIG. 1. Sketch of the physical configuration, with the definition of the geometrical and physical parameters
used.

The above review suggests that observations reported in the recent literature seriously question
the actual range of validity of the Taylor-Culick prediction as a function of the Ohnesorge number
and initial aspect ratio of the filament. The present paper is the first part of a detailed investigation
aimed at shedding some light into this question. A companion paper [21] is devoted to the recoil
velocity of a viscous planar sheet. In the present contribution, we focus on the recoil velocity of an
axisymmetric filament, considering inertia-dominated and viscous-dominated regimes. To address
the above question, we use a combination of physical arguments and fully resolved simulations for
three distinct values of the Ohnesorge number: Oh = 0.1 (inertia-dominated regime), Oh = 1 for
which inertial and viscous effects have a similar magnitude, and Oh = 10 (viscously dominated
regime). The next section of the paper presents the problem under consideration, the foundations of
the Taylor-Culick approximation, and the numerical methodology. The open source solver Basilisk
is used to solve the axisymmetric governing equations of the two-phase medium with surface
tension at the interface. The characteristics of this numerical approach are summarized in Sec. II D.
Sections III and IV analyze the computational results obtained for Oh = 0.1 and Oh = {1, 10},
respectively. For low- and high-Oh values, the retraction velocity is compared with analytical
models obtained using the long-wave approximation of the Navier-Stokes equations pioneered by
Eggers and Dupont [22]. Our main findings are summarized in Sec. V.

II. PROBLEM AND METHODS

A. Problem description

We consider the retraction of a Newtonian viscous filament with initial length 2L0 immersed in
another Newtonian viscous fluid. Initially, the filament is assumed to be a long cylindrical column of
radius R0 with semispherical ends, referred to as tips, and a mid-section located in the plane z = 0
(Fig. 1). We assume that both fluids are initially at rest. In real experiments, e.g., atomization of a
jet, the filament has a more complex initial shape and the velocity within it is nonzero. Nevertheless
this simple initial configuration, already widely used in previous investigations [10–12], provides
a reference starting point to understand more realistic situations. Influence of the initial shape on
the successive stages of the dynamics is discussed in the Appendix. The inner and outer fluids have
densities ρ and ρs and dynamical viscosities μ and μs, respectively, and their common interface
has an interfacial tension γ . The problem is characterized by four dimensionless parameters: the
geometrical aspect ratio A = L0/R0, the Ohnesorge number Oh = μ/

√
ρR0γ , and the viscosity

and density ratios ρs/ρ and μs/μ, respectively. To encompass both viscous-capillary and inertia-
capillary regimes, the Ohnesorge number is selected in the range 0.1 � Oh � 10. The lowest limit,
Oh = 0.1 is chosen to avoid complete pinching of the filament. The aspect ratio is varied in the
range 5 � A � 40, which makes the long-wave approximation developed in Ref. [22] legitimate.
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Although a surrounding fluid is always present in experiments [5,9,16,20], its effects are not
considered in most available numerical studies [10,11]. An exception is Song and Tryggvason [23]
who considered a retracting sheet in the small-Oh regime. For ρs/ρ � 0.1 and μs/μ � 0.1, they
found the effect of the surrounding fluid to be minor. In the present work, the viscosity and density
ratios are chosen such that the surrounding fluid has no influence on the retraction velocity. For this
purpose, a density ratio ρs/ρ = 0.01 and a viscosity ratio μs/μ = 0.001 are selected. The same
density ratio was used in Ref. [16] with a numerical approach similar to the one employed here.

B. Scaling analysis for a slender filament

Before performing a parametric numerical study, it is useful to define some characteristic
quantities related to the retraction process. A suitable framework is the long-wave model derived by
Eggers and Dupont [22]. Assuming that the drop is slender [i.e., its current radius R(z, t ) and length
L(t ) are such that R � L], and neglecting effects of the surrounding fluid, the governing equations
may be reduced to a pair of partial differential equations:

∂R2

∂t
+ ∂uzR2

∂z
= 0, (1)

∂uz

∂t
+ uz

∂uz

∂z
= − γ

ρ

∂κ

∂z
+ 3

μ

ρR2

∂

∂z

(
R2 ∂uz

∂z

)
. (2)

In (1) and (2), uz is the axial fluid velocity and κ denotes the local mean curvature whose definition
reads

κ = 1/R
[1 + (∂R/∂z)2]1/2

− ∂2R/∂z2

[1 + (∂R/∂z)2]3/2
. (3)

To leading order, κ tends toward 1/R when R/L → 0. Except for the mean curvature κ , the
above set of equations is the lowest-order result of an asymptotic expansion of the axisymmetric
Navier-Stokes equations with respect to the radial coordinate [22]. The longitudinal velocity uz does
not depend on the radial coordinate, while the radial velocity is assumed to be small but nonzero.
To make this model valid in the tip vicinity, where the slope of the interface is very large, the full
expression (3) of κ is employed in (2), instead of its lowest-order approximation κ ≈ 1/R. This
combination is not the result of a formal asymptotic procedure, as the flow within the filament
remains essentially one-dimensional. Nevertheless, the above model successfully describes the
breakup of a liquid jet and the release of a drop from a circular orifice [22], as well as the retraction
of a liquid ligament for Oh = 1 [10]. For Oh = 0.01, the latter authors pointed out that this model
is unable to capture the pinching location. Indeed the occurrence of a vortex ring (which cannot be
predicted in the framework of the long-wave approximation due to the limitation evidenced above)
makes the ligament escape from pinch-off, as evidenced by Ref. [16]. In the present investigation,
Oh is chosen large enough to prevent the occurrence of this phenomenon.

Equation (2) is normalized by defining dimensionless (starred) quantities as uz = Uu∗
z , κ =

κ∗/R0, z = L0z∗, R = R0R∗, and t = T t∗ = (L0/U )t∗. The characteristic scale U for the velocity
is a priori unknown and must be determined a posteriori. The dimensionless form of (2) then
becomes

ρR0U 2

γ

(
∂u∗

z

∂t∗ + u∗
z

∂u∗
z

∂z∗

)
= −∂κ∗

∂z∗ + μU

γA
3

R∗2

∂

∂z∗

(
R∗2 ∂u∗

z

∂z∗

)
. (4)

In (4) the capillary term is chosen of order unity since it drives the whole motion in the regimes
considered hereinafter. Two distinct asymptotic regimes take place when either inertia or viscous
effects are negligible. If inertia effects balance the capillary force, (4) implies

U ≡ Ui = [γ /(ρR0)]1/2, (5)

073602-4



REVISITING THE TAYLOR-CULICK APPROXIMATION: …

which is the usual Taylor-Culick velocity [3,4,16,18]; the associated timescale is T = Ati, with
ti = (ρR3

0/γ )1/2 the inertia-capillary timescale. In this regime, (4) may be rewritten as

∂u∗
z

∂t∗ + u∗
z

∂u∗
z

∂z∗ = −∂κ∗

∂z∗ + Oh

A
3

R∗2

∂

∂z∗

(
R∗2 ∂u∗

z

∂z∗

)
. (6)

In (6) the viscous term is negligible provided Oh � A. Hence with Oh = O(1), inertia effects
remain dominant if the initial aspect ratio of the filament is large enough. The second asymptotic
limit corresponds to the situation in which viscous effects balance the capillary force. In this case,
the characteristic velocity is U = (γ /μ)A = UvA, which is merely the product of the capillary
velocity, Uv = γ /μ, with the filament aspect ratio. The characteristic timescale is then the viscous-
capillary time, i.e., T ≡ tv with tv = (μ/γ )R0. Inserting these scalings in (4) yields

A2

Oh2

(
∂u∗

z

∂t∗ + u∗
z

∂u∗
z

∂z∗

)
= −∂κ∗

∂z∗ + 3

R∗2

∂

∂z∗

(
R∗2 ∂u∗

z

∂z∗

)
. (7)

According to (7), inertia is negligible only if Oh � A. Hence, even for large Oh, inertia remains
significant if the initial aspect ratio is large enough.

C. Foundations of the Taylor-Culick approximation

For future purpose, it is useful to remind the governing set of equations and fundamental
assumptions underlying the classical Taylor-Culick prediction. Details may be found in Ref. [8]
for the two-dimensional case, and in Appendix C of Ref. [18] for the axisymmetric geometry. In
the latter reference it was showed that, provided assumptions to be detailed below are satisfied,
integration of (1)–(3) from the symmetry plane (z = 0) to the tip (z = L) yields the evolution of the
total momentum of the filament P = πρ

∫ L
0 R2uz dz in the form

dP
dt

= γπR(z = 0) = γπR0 . (8)

This result is obtained provided (i) μ∂uz/∂z ≈ 0 at z = 0, so that viscous effects have no influence
even though viscosity is nonzero and (ii) the filament radius is uniform far from the tip, making the
mean curvature reduce to 1/R0 in the midplane z = 0. While the former assumption is not severe
when the Ohnesorge number is small, it becomes more questionable as Oh increases, since z = 0 is
the origin of the extensional flow that takes place along the filament. Assumption (ii) is valid when
the tip is far from the symmetry plane, i.e., in the early stages of the retraction process, but it cannot
hold during the late stages. Assuming in addition that (iii) the entire mass of fluid set in motion by
the recoil process feeds a spherical blob in the tip region (see Fig. 1), while the cylindrical body
of fluid between the blob and the symmetry plane stays at rest, implies that P reduces to the blob
momentum, MbUb, where Mb stands for the mass of fluid enclosed within the blob and Ub is the
velocity of the blob center of mass. Assumption (iii) is questionable because a transition region
necessarily stands between the spherical blob with mean curvature 2/Rb and the cylindrical body
of the filament with mean curvature 1/R [19,24].

A final assumption is required to link Ub and L(t ). Obviously, the simplest connection between
the two is achieved by assuming that (iv) the velocity within the blob is uniform, in which case
Ub = −dL/dt . Actually, the velocity distribution cannot stay uniform, as the growth of the blob
implies the existence a source-type flow within it. Nevertheless this assumption may be considered
valid provided the blob radius grows at a rate much slower than R−1

0 dL/dt . Using (iii) and (iv), the
mass flow rate entering the blob is Ṁb ≈ πρUbR2

0. Integrating over time and noting that the initial
mass of the blob is 2πρR3

0/3 implies that at any time Mb(t ) = πρR2
0[L0 − L(t )] + 2πρR3

0/3.
The blob momentum being initially zero, integration of (8) yields

dL
dt

(
L0 − L + 2

3
R0

)
+ γ t

ρR0
= 0 . (9)
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FIG. 2. Sketch of the computational domain for A = 5. Each gray region corresponds to a specific level of
grid refinement. The cell size varies by a factor of two between two successive levels.

Making use of the initial condition L(t = 0) = L0, integration of (9) provides the blob velocity
as

Ub = Uit(
t2 + 4

9 t2
i

)1/2 . (10)

D. Governing equations and numerical method

The variable-density and viscosity Navier-Stokes equations with surface tension are written in
the form

∇ · u = 0, (11)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · (2μD) + fγ , (12)

∂ρ

∂t
+ ∇ · (ρu) = 0, (13)

where u denotes the fluid velocity, p the pressure, D the strain-rate tensor, and fγ is the local density
of the capillary force per unit volume. Equations (11)–(13) are solved thanks to the approach
implemented in the BASILISK open source code [25]. The corresponding finite-volume spatial
discretization makes use of a graded quadtree partitioning. All variables are collocated at the cell
center. A piecewise-linear geometrical Volume of Fluid method is used to solve (13) [26]. Time
advancement of the viscous term in the momentum equation is achieved with an implicit scheme,
while the advection equation is solved using the Bell-Colella-Glaz algorithm [27]. Incompressibility
is enforced at the end of the time step through a projection technique. The heat equation and the
Poisson equation respectively resulting from the implicit treatment of viscous terms and from the
projection technique are solved thanks to a multigrid solver, the relative tolerance of which is chosen
to be less than 1 × 10−5 in all cases. A consistent discretization of the pressure and the capillary
force is also used to avoid parasitic currents (see Popinet [28] for more details).

Axisymmetric computations are performed on a fixed grid in a cylindrical domain with a square
cross section. The outer boundaries are located sufficiently far away from the filament to avoid
confinement effects. For this purpose the length of the domain is set to L0 + 5R0 (Fig. 2). Rotational
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FIG. 3. Successive shapes of a retracting filament with Oh = 0.1 and A = 10 (assuming R0 = 1). The
time step between two successive snapshots is �t = 2ti.

symmetry is imposed on the filament axis (r = 0), while standard symmetry conditions are imposed
on all other boundaries. The grid is more refined in the central region corresponding to the filament
and its immediate surroundings, 0 � r � 3R0 − 4R0 (depending on the initial aspect ratio), so
as to properly describe the flow within the filament and the boundary layers on both sides of the
interface. Depending on Oh, at least 20 cells (for large Oh) and up to approximatively 80 cells
(for low Oh) per initial filament radius are uniformly distributed in this region. In comparison, 16
radial elements stand along the filament radius in the simulations of Anthony et al. [12]. In the outer
region, r � 3R0 − 4R0, the grid is uniform in the axial (z) direction but the cell size increases with
r. More specifically, this size doubles every time r increases by 0.5R0, until a maximum cell size of
approximatively R0/2 is reached. A specific refinement aimed at capturing the filament dynamics
in the late stages (i.e., when the tip gets close to the symmetry plane z = 0) is achieved in the region
0 � z � 3R0 − 4R0 for r � 6R0. Figure 2 illustrates these choices in the case A = 5. A specific
script used to run the simulations presented in this paper may be found in Ref. [29].

III. LOW OHNESORGE NUMBER: Oh = 0.1

In what follows we examine the tip velocity of a retracting filament, from the very beginning of
the recoil until the stage where the filament has virtually recovered its equilibrium spherical shape.
In this section we focus on the low-but-finite value Oh = 0.1, with four initial aspect ratios, A =
{5, 10, 20, 40}. In the next section, we shall consider two higher values of the Ohnesorge number,
Oh = {1, 10}. It must be stressed that under such conditions, the filament is not expected to break
up according to the regime map provided by [12].

We start by considering the low-but-finite Oh conditions under which viscous effects are expected
to play only a secondary role in the blob region during the retraction process. The “secondary role”
terminology must not be misunderstood. Indeed, the simulations in Refs. [10,12] reveal dramatic
differences in the ultimate fate of filaments with a given A in the range 0 < Oh � 0.1. Nevertheless,
as none of the ligaments considered here is expected to break up, this terminology is relevant for the
problem on which the present paper focuses.

A. Early stage

Figure 3 displays the early evolution of the interface. As the filament recedes, most of its surface
retains its initial cylindrical shape while a spherical blob forms at the tip, as observed in previous
low-Oh investigations, especially the pioneering simulations by Notz and Basaran [10]. Thus present
low-Oh results support assumptions (ii) and (iii) discussed in Sec. II C.

Figure 4 displays the numerical evolution of the tip velocity, defined as Ut = −dL/dt , for four
different initial aspect ratios. Numerically, this velocity is obtained by determining the tip position
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FIG. 4. Tip velocity vs time during the early stages of the retraction process for Oh = 0.1 and different
initial aspect ratios. : A = 5, : A = 10, : A = 20, : A = 40, : prediction (10),

: guide for the eye with slope 3Ui/(2ti ), : numerical results from Ref. [10] for A = 15.

(z = L) using the height function defined in [26], combined with a simple upwind scheme. Except
at the very beginning of the recoil, say, 0 � t/ti � 0.4, Ut is found to be independent from the initial
aspect ratio, since all curves collapse onto a master curve. Hence, for small Oh, A does not influence
the evolution of Ut ≈ Ub, as (10) predicts. Significant oscillations of the tip velocity are observed at
the very beginning of the recoil process, making the initial evolution of Ut depart from (10). These
oscillations have two distinct origins. First, given the selected initial shape of the ligament, an abrupt
1/R0 jump in the mean curvature takes place in the plane where the cylindrical column connects
to the hemispherical end. Then, for numerical reasons similar to those discussed in Ref. [26] in the
case of a static drop, there is a transient imbalance between the computed capillary force evaluated
from the prescribed initial shape and the computed pressure gradient. The disturbances resulting
from these two sources generate capillary waves which are gradually damped by viscous effects
within the ligament. The oscillations observed in Fig. 4 are not specific to the initial geometry
selected here. In the Appendix, we show that selecting a different initial shape (corresponding to a
prolate spheroidal tip region) also yields the generation of such oscillations. The two evolutions of
the tip velocity are found to be markedly different for t � ti, but become very close to each other
beyond this initial transient. Another indication that this transient does not affect significantly the
upcoming behavior is provided by the comparison with results from Notz and Basaran [10] obtained
with a finite-element discretization. As Fig. 4 shows, the evolution of the tip velocity extracted from
Fig. 22 of the latter reference (with A = 15) is very close to that observed in the present simulations
for t � ti.

Another entirely physical mechanism makes (10) unable to predict the early evolution of Ut .
Considering that the blob radius grows uniformly with radial velocity Ṙb, the tip recedes with
velocity Ub − Ṙb, while the front of the blob recedes with velocity Ub + Ṙb, resulting in an entering
flow rate πR2

0(Ub + Ṙb). At very short times, the blob is still almost a half-sphere, the volume of
which changes at a rate 2πR2

0Ṙb, implying Ṙb = Ub. Hence, radial velocities at the blob surface
are initially of the order of Ub, making the velocity distribution within the blob significantly not
uniform and therefore contradicting assumption (iv) in Sec. II C. Nevertheless, (10) is seen to
reduce to Ub/Ui ∼ 3t/(2ti ) in the short-time limit t/ti � 1, and the corresponding prediction for the
acceleration, U̇b = γ /(ρR2

0), closely agrees with the numerical evolution shown in Fig. 4 beyond
the initial oscillation period. It is quite surprising that the pre-factor in the right-hand side of (8)
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FIG. 5. Tip velocity and neck radius vs time for Oh = 0.1 and different aspect ratios : A = 5, :
A = 10, : A = 20, : A = 40. : neck radius for A = 40.

and the assumption of an initially spherical blob geometry provide a good estimate of the initial tip
acceleration, despite the fact that all conditions required for (8) to hold are not satisfied. This makes
us suspect that this agreement is partly fortuitous. Indeed, in the Appendix we show that the initial
tip acceleration highly depends on the initial geometry of the tip region. More computations are thus
required to properly delineate the effect of the initial geometry of the end region on the initial tip
acceleration.

B. Intermediate stage

Beyond the acceleration stage, Fig. 4 reveals a striking characteristics: whatever the filament
aspect ratio in the considered range, the long-term tip velocity does not reach the Taylor-Culick
prediction Ui. Rather this velocity starts to decrease for t � 2ti. To further investigate the mecha-
nisms that govern this evolution, it is desirable to introduce a timescale that properly normalizes
the duration of the recoil process irrespective of the aspect ratio. Since Ut has been found to be
independent from A, the relevant timescale is Ati; this is also the timescale ensuring the balance
between capillary and inertial effects in (6).

Figure 5 displays the tip velocity from the beginning of the retraction until the moment at which
the tip approaches the midplane z = 0. The evolution of the neck radius Rn, defined as the minimum
radius located just in front of the blob (see Fig. 1), is also displayed. This representation makes
new features apparent. For A = 5, the tip velocity reaches a maximum close to 0.9Ui and starts
decreasing for t/Ati ≈ 0.3. In contrast, for A > 10, Ut oscillates about an average value which,
over the time interval displayed in the figure, is close to 0.9 but slowly increases over time (this is
especially clear for A = 40). These observations are in line with those of Notz and Basaran [10]
who, for the same Oh and A = 15, found the tip velocity to exhibit damped oscillations about an
average value Ut ≈ 0.83. While the magnitude of the oscillations seen in Fig. 5 does not significantly
depend on A, the number of periods increases with A. The frequency of the oscillations is also found
to be independent from the aspect ratio when A is large enough. Indeed, once expressed with respect
to ti instead of Ati, the time period is found to be ≈9 and 8.8 for A = 40 and A = 20, respectively.
Figure 5 also shows (for A = 40) that this oscillatory behavior is associated with small oscillations
in the neck radius, with some phase shift between the tip velocity and neck radius oscillations.
The amplitude of the latter is approximately 0.02R0. Injecting this value in (5) as if the radius
of the filament were oscillating at every longitudinal position in the same way as the neck, yields
oscillations of the tip velocity of the order of 0.01Ui, which is typically 2–3 times smaller than the
amplitude observed in Fig. 5. Moreover, the figure reveals that the two quantities approximately
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oscillate in quadrature, while (5) predicts that they should oscillate phase-opposed. Hence, while
there is little doubt that variations of the tip velocity and oscillations of the neck radius are closely
connected, the coupling between them cannot be understood directly through (5). In other words,
the framework of the Taylor-Culick approximation is too simple to account for this coupling.

The mechanism responsible for the tip oscillations may be understood and quantified through
the following simple mass-spring model. From t0 = ti/3 until t = ti, we assume that the velocity
of the blob center of mass is Ub(t ) ≈ 3

2Ui
t−t0

ti
, which corresponds to the dotted line in Fig. 4.

Then Ub(t ) stays close to Ui for ti � t � 2ti, beyond which the oscillations set in, starting with
a decrease of Ub(t ) (see Figs. 4 and 5). The mass increase of the blob from t = t0 up to t = 2ti
is πρR2

0

∫ 2ti
t0

Ub(t ) dt = 4π
3 ρR3

0. Since the initial mass of the hemispherical blob is 2π
3 ρR3

0, its
total mass at time t = 2ti has increased to 2πρR3

0. Assuming that the blob has reached an almost
spherical shape at t = 2ti and keeps it at later times, any further variation of the blob radius by
an amount x changes the restoring capillary force in the plane of the forming neck by 2πγ x. In
the reference frame of the neck, it also changes the tip velocity by −2dx/dt , since the distance
from the tip to the neck increases by 2x. Therefore, if the blob is schematically considered as a
point mass 2πρR3

0 standing at the tip, any variation in the rate of change of the blob radius, i.e.,
in dx/dt , results in an inertia force −4πρR3

0d2x/dt2 at the tip. This situation is equivalent to a
mass-spring system with mass m = 4πρR3

0 and stiffness k = 2πγ , the radian frequency of which
is � = (k/m)1/2 = ( γ

2ρR3
0
)1/2 = 1/(

√
2ti ). Hence, for t � 2ti, further variations of the blob radius

induce oscillations of the tip velocity with a characteristic period T� = 2π/� = 2π
√

2ti ≈ 8.89ti.
According to this model, one should have T�/Ati = 8.89A−1, a prediction which agrees within 2%
with the periods determined from Fig. 5 for A = 20 and 40. Although this excellent agreement is
certainly partly fortuitous, given the rough assumptions of the model, this prediction gives a strong
support to the mechanism on which this model is grounded. That is, assuming that the variations of
the blob radius dictate those of both the tip velocity and the capillary force at the neck for t � 2ti is
sufficient to predict quantitatively the frequency of the oscillations observed in the former. It is worth
noting that the radius of a spherical drop with a volume 2πR3

0 corresponding to that of the blob at
time t = 2ti is (3/2)1/3R0 so that, according to the dispersion relation (15) below, its fundamental
oscillation frequency is 2

√
2/3 ≈ 1.63 times larger than �. Hence, the tip is found to oscillate with

a frequency approximately 40% lower than that of the capillary oscillations of the drop “equivalent”
to the blob. Additional computations with a different initial tip geometry, such as those reported in
the Appendix, indicate that the influence of this initial condition extends over a transient that ends in
the range 1 � t/ti < 2. This suggests that the above conclusions, expected to apply only for t > 2ti,
hold irrespective of the details of the initial shape of the filament.

The tip oscillations play the role of a wave maker and trigger the formation of capillary waves
upstream of the growing blob. The propagation of these waves along the cylindrical part of the
filament is illustrated in Fig. 6. Positive and negative vortical regions alternate on both sides of the
interface, as already noticed by Gordillo et al. [24] (for two-dimensional sheets) and Wang et al.
[15]. The origin of this vorticity pattern is readily understood by noting that the vorticity at the free
surface is directly proportional to the product of the axial curvature and tangential velocity [30].
The former changes sign every half wavelength while the latter does not, yielding the observed
alternate pattern. It is to be noticed that in the above scenario, alternation of positive and negative
vorticity is seen as a consequence of the existence of capillary waves, themselves resulting from tip
oscillations. This differs from (but does not contradict) the mechanism suggested in Refs. [23] and
[15], according to which the interaction between the positive vorticity at the blob surface and the
negative one in the neck region yields a tertiary vortex carrying positive vorticity upstream of the
neck, which imposes a local increase in the radius of the filament. This process being self-repeating,
Refs. [23] and [15] proposed that the alternation of positive and negative vorticity produces the
capillary wave train. Thus, what is seen as a consequence of the oscillations of the tip velocity in the
mechanism proposed here is considered as the origin of the capillary waves in the aforementioned
two studies which ignored these oscillations.
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FIG. 6. Interface and vorticity contours for Oh = 0.1 and A = 20 at (a) time t/ti = 10 and (b) time t/ti =
12; the azimuthal vorticity ωθ is normalized with Ui/R0.

Simulations with A = 20 and A = 40 yield the same wavelength for the capillary waves,
λ ≈ 3.25R0. With Oh = 0.01 and A = 25, Wang et al. [15] also observed capillary waves that
keep an almost constant wavelength, λ ≈ 3R0. Gathering the two sets of results suggests that the
wavelength is independent from the filament aspect ratio when A is large enough, and only weakly
depends on Oh for Oh � 0.1. It must be observed that in both cases λ is less than 2πR0, the shortest
wavelength that may become unstable due to the Rayleigh-Plateau instability. The corresponding
inviscid dispersion relation for small stable disturbances [31] may be written in the form(

c

Ui

)2

= (kR0)2 − 1

kR0

I ′
0(kR0)

I0(kR0)
, (14)

where c(k) is the phase velocity of the disturbance with wave number k = 2π/λ and I0 denotes
the zeroth-order Kelvin function. Inserting the observed value of λ in (14) yields c ≈ 1.18Ui,
which suggests that the capillary waves are traveling slightly faster than the tip. This prediction
is confirmed quantitatively by comparing the distance traveled by a crest or a trough of the wave
train between the top and bottom panels of Fig. 6 with the distance traveled by the tip during the
same time lapse. It turns out that the former is approximately 1.17 times larger than the latter. The
oscillation period of the capillary waves may be estimated as λ/c ≈ 2.75ti, a value approximatively
3 times smaller that the oscillation period of the tip (8.89ti). This reinforces our statement that the
tip oscillation triggers the formation of capillary waves and not the other way around.

To close the loop, let us finally come back to the origin of the deviation between the evolution
of the tip velocity and the Taylor-Culick prediction for t > ti. In the long-term limit t � ti, the
blob radius Rb(t ) is much larger than R0. The blob volume now results essentially from the
cumulated flow through the neck since the beginning of the recoil, so that 4

3πR3
b ≈ πR2

0Ubt ,
assuming that the blob velocity stayed approximately constant in the meantime. The rate of change
of the blob radius then obeys approximately 4πR2

bṘb ≈ πR2
0Ub which, assuming Ub ≈ Ui, implies

Ṙb ≈ (6ti/t )2/3Ui. Therefore the tip velocity is expected to approach the Taylor-Culick value
following the law Ut (t ) = Ui − Ṙb(t ) ≈ Ui[1 − (6ti/t )2/3]. As Fig. 7 shows, this prediction is in
fairly good agreement with the numerical evolutions observed with long filaments. This agreement
makes the origin of the deviation Ui − Ut (t ) clear: as far as the growth of the blob induces a
significant radial velocity Ṙb, the fluid velocity within the blob cannot be uniform, contradicting
assumption (iv) in the Taylor-Culick argument (see Sec. II C). Sünderhauf et al. [7] reported similar
observations for a retracting planar sheet in the low-Oh regime. In this case, the tip velocity first
reaches a plateau corresponding to Ut ≈ 0.8Ui, before tending gradually toward Ui. So, in all cases,
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FIG. 7. Tip velocity vs time for Oh = 0.1 and different initial aspect ratios. : A = 20, :
A = 40, − : Ui[1 − (6ti/t )2/3].

the Taylor-Culick velocity is reached only after the recoil has lasted long enough for the assumption
of a uniform velocity within the blob to become realistic. Obviously this requires the initial aspect
ratio A to be large enough for the condition t � ti to be met without the filament breaking up in the
meantime or already collecting into an approximately spherical drop. At this point, it is probably
relevant to quote Keller who concluded his extension of the Taylor-Culick model to cylindrical
threads in Ref. [17] as follows (using present notations): “The present analysis . . . cannot be viewed
as a precise theory, but rather as an indication of the way in which the various parameters influence
the motion of the edge. . . . However its results are probably asymptotic to the exact hydrodynamic
results for gradually varying threads and films for times long compared to some characteristic time.
For an initially uniform thread of radius R0 . . . , the characteristic time is ti = (ρR3

0/γ )1/2.”

C. Final stage

Provided the filament does not break up at some point of the recoil, the final stage of its evolution
starts when the dimensionless time t/(Ati ) becomes of order unity. Then the filament aspect ratio
becomes of O(1) and the surface oscillates before the spherical equilibrium shape is recovered.
Figure 8(a) displays the evolution of the dimensionless tip velocity Ut/Ui for four different initial
aspect ratios. Whatever A, the tip velocity surpasses the Taylor-Culick prediction at some instant
of time such that t = O(tiA), reaching values Ut/Ui ≈ 1.8 before abruptly falling down to Ut/Ui ≈
−1. These positive and negative peaks in the tip velocity may be interpreted in terms of capillary
pressure. This is made clear by comparing the evolution of Ut [Fig. 8(a)] and that of the pressure
distribution within the filament [Figs. 8(b)–8(e)]. In Fig. 8(b) the latter is made of a quasispherical
blob connected to what remains of the cylindrical column, the length of which is of O(R0). The
capillary pressure inside the blob is approximately constant. In Figs. 8(c) and 8(d), the cylindrical
column is gone and a wave starting from the top of the blob and moving toward its axis makes the
curvature within the (z, r) plane become locally negative. The increased curvature in the tip region
results in a pressure maximum there, yielding a strong increase in the tip velocity. The wave then
propagates in the opposite direction [Fig. 8(e)], making the pressure reach a minimum on the axis,
which yields a strong decrease in the tip velocity. This process repeats itself but viscous damping
makes the oscillation amplitude decrease and the filament eventually relaxes toward its equilibrium
spherical shape. The period and decay rate of the observed oscillations may be compared to the
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FIG. 8. Late evolution of the filament for Oh = 0.1 and different aspect ratios. (a) Tip velocity. :
A = 5, : A = 10, : A = 20, : A = 40. (b)–(e) Distribution of the normalized pressure
p/(ρU 2

i ) within the filament for A = 5. Snapshots in the bottom row are taken at time instants (increasing
from left to right) identified with a vertical dashed line in the top figure; the time step between two successive
images is 0.6ti.

classical predictions of the linear Rayleigh-Lamb theory [32],

ωl =
√

γ

ρR3
f

(l − 1)l (l + 2) , βl = μ(l − 1)(2l + 1)

ρR2
f

, (15)

where l is the considered mode of oscillation in the usual nomenclature of spherical harmonics,
ωl and βl are the radian frequency and decay rate of mode l , respectively, and R f is the final
equilibrium radius of the filament R f /R0 ≈ (3A/2)1/3, assuming A � 1. For obvious symmetry
reasons, only even modes can exist in the present configuration. Moreover, in the early stage of
the recoil, the curvature changes sign in the transition region between the cylindrical body of the
filament and the blob. Since the surface would keep a positive curvature everywhere if only the mode
l = 2 were present, mode l = 4 is necessarily involved. Indeed, expanding the interface position in
the (r, z) plane into spherical harmonics reveals that these two modes dominate the deformation
of the interface. More specifically, mode l = 4 is initially dominant but is gradually superseded by
mode l = 2. For the latter, predictions (15) yield

To

ti
= π

√
3A
4

, βti = 5

(
3

2
A

)−2/3

Oh . (16)

Figure 9 compares the numerical results obtained for t � Ati with the above predictions. The
observed period agrees well with the first of (16), even though the oscillation amplitudes are large.
The agreement on the decay rate is quite poor for t � 2Ati, presumably because the nonlinearities
dissipate a substantial part of the kinetic energy of the oscillations. At later times, the oscillation
amplitudes are much reduced and the observed decay rate is in better agreement with the predictions
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FIG. 9. Characteristics of capillary oscillations during the final stage for Oh = 0.1. Left: Period of the
oscillations vs the initial aspect ratio, A; +: Simulation results, −: linear prediction (16) for mode l = 2.
Right: final decay of the oscillations vs time; : A = 10, : A = 40, dotted line: linear prediction
(16) for mode l = 2.

provided by the second of (16). The same prediction also gives insight into the subtle dependence of
the decay rate with respect to A, as observed in Fig. 8. Selecting ti as the timescale, the decay rate is
found to be a decreasing function of A. In contrast, normalizing β with Ati makes the dimensionless
decay rate proportional to A1/3. This weak increase of Atiβ with the filament aspect ratio is the
reason why in Fig. 8 the oscillations have a slightly smaller amplitude for A = 40 than for A = 5
at a given dimensionless time.

IV. MODERATE AND HIGH OHNESORGE NUMBERS

A. Oh = 1

Figure 10 displays the evolution of the tip velocity at Oh = 1 for four initial aspect ratios.
According to the left panel, the initial acceleration process is only weakly dependent on the aspect
ratio and becomes virtually independent from it for t/ti � 0.7. It is strikingly different from the
evolution predicted by (10). Indeed, with Oh = 0.1, Fig. 4 indicates that the maximum tip velocity
is reached at t/ti ≈ 1.5, while in the present case, it takes twice as long to reach this maximum
in the case of the shortest filament, and even longer for the more slender ones. Beyond a short
initial transient, say, for t/ti � 0.5 with A = 40, the computed evolutions for long enough filaments
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FIG. 10. Tip velocity vs time for a filament with Oh = 1 and different initial aspect ratios. Left: Early stage
of recoil; right: intermediate and late stages. : A = 5, : A = 10, : A = 20, : A = 40;

: short-time prediction (10), : numerical results from Ref. [10] for A = 15.
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(A � 10) are in excellent agreement with those reported in [10] for A = 15. The right panel displays
the complete evolution of the tip velocity vs. the dimensionless time Ati throughout the “life” of
the filament. For sufficiently high A, the tip velocity almost reaches a plateau where it is close to
the Taylor-Culick prediction. In contrast, no such plateau takes place for A � 10. No oscillations
are observed during the final stage with such short filaments. Instead, the tip velocity monotonically
tends to zero. Only for A � 20 is a reversal of the tip velocity observed, before the filament comes
to rest. This might seem paradoxical at first glance, since the second of (16) predicts a slight increase
of the decay rate with the aspect ratio, once normalized with Ati. However, the shape oscillations
result from a conversion of kinetic energy into surface energy and vice versa, and the figure indicates
that the larger A the larger the maximum of the tip velocity is. Therefore, the longer the filament the
larger the available kinetic energy at the beginning of the final stage is. This influence of the aspect
ratio on the kinetic energy turns out to surpass that on the decay rate, making long filaments more
prone to oscillate during the final stage.

B. Early stage of recoil for Oh � 1

When the Ohnesorge number is large, the recoil is mostly slowed by viscous effects rather
than inertia. Therefore the tip velocity is primarily dictated by a balance between contributions of
viscosity and surface tension, as discussed in Sec. II B. However, starting from rest, the fluid velocity
cannot jump abruptly to a quasistationary distribution. For this reason, the time rate-of-change term
∂uz/∂t in (7) cannot be omitted during the early stage of the recoil. The relevant momentum equation
thus reads

∂uz

∂t
= −γ

ρ

∂κ

∂z
+ 3

μ

ρR2

∂

∂z

(
R2 ∂uz

∂z

)
. (17)

To determine the initial evolution of the tip velocity, we follow the approach pioneered by Savva
and Bush [8] for a retracting planar sheet. To this end, several assumptions are required. (i) The
initial filament is made of a long cylindrical column with a hemispherical end; (ii) the filament
may be considered as infinitely long, and its radius remains uniform and constant during the initial
stage of the recoil; (iii) the velocity in the hemispherical blob is uniform. (iv) Last, the filament is
set in motion by the 1/R0 discontinuity in the mean curvature at the matching point between the
hemispherical end and the cylindrical column, and this discontinuity persists throughout the initial
stage. Equation (17) then reduces to

∂uz

∂t
= − γ

ρR0
δ(z) + 3

μ

ρ

∂2uz

∂z2
, (18)

where δ is the Dirac delta function resulting from the discontinuity of the mean curvature, and we
provisionally consider that the origin of the z axis is shifted to the position at which the column
connects to the hemispherical end. Integrating (18) from z = −ε to z = +ε and considering the
limit ε → 0 yields

∂uz

∂z
(z = 0−, t ) = −1

3

γ

μR0
. (19)

Hence, for z � 0, i.e., within the cylindrical column, (17) reduces to

∂uz

∂t
= 3

μ

ρ

∂2uz

∂z2
. (20)

This governing equation is subject to (19) for z →= 0−, to the boundary condition uz(z, t ) → 0
for z → −∞ (as the fluid is still at rest far from the discontinuity), and to the initial condition
uz(z, 0) = 0 for all z < 0.

Since the filament is considered infinitely long, its radius R0 is the only geometrical length
scale left in the above problem. Therefore, the timescale involved in the heat equation (20) is the
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FIG. 11. Tip velocity vs time for Oh = 10 and different initial aspect ratios during the initial transient.
: A = 5, : A = 10, : A = 20, : A = 40, : prediction (22).

diffusive time td = ρR2
0/μ = t2

i /tv characterizing viscous diffusion at the scale of the filament cross
section, with tv = (μ/γ )R0 the characteristic viscous-capillary time defined in Sec. II B. Since
surface tension only appears in the boundary condition (19), td is a purely diffusive timescale. The
solution of the above problem reads [33]

uz

Uv

= 2√
3π

√
t

td
exp

(
− z2/R2

0

12t/td

)
+ z/R0

3
erfc

( −z/R0

2
√

3t/td

)
, (21)

with Uv = γ /μ. Thus the tip velocity Ut = uz(z = 0−, t ) evolves as

Ut

Uv

= 2√
3π

√
t

td
. (22)

The tip velocity still scales linearly with surface tension but is now inversely proportional to the
square root of the fluid viscosity.

Figure 11 displays the evolution of the tip velocity in the early stages of the recoil. For 0 � t/td �
5, all curves collapse on the same master curve which is accurately predicted by (22). In contrast,
for t/td � 5, an increasing departure from the theory is observed for the shortest filament (A = 5),
the tip velocity of which weakly decreases over time beyond t/td � 12. With A = 10, the evolution
of the tip velocity departs from (22) only for t/td � 15, while no significant departure is observed
for the largest two aspect ratios over the time window shown in the figure. These observations may
be rationalized by coming back to (17) and considering that the filament has actually a finite length.
In this case, the time rate-of-change term is of the same order as the viscous term up to a time of
O(A2td ) after the recoil starts. Therefore, the longer the filament the larger the time period over
which (22) holds, as Fig. 11 confirms.

C. Long-time behavior for Oh � 1

Figure 12 displays the evolution of the tip velocity throughout the recoil. Following the analysis
performed in Sec. II B, the velocity is normalized by the viscous-capillary scale AUv . Similar to
what was observed with Oh = 1, the tip velocity reaches a maximum, say, Utm, after the initial
transient examined above. However, no plateau is observed here. Instead, the tip velocity starts to
decrease just after the maximum is reached. Keeping in mind that AUv/Ui = A/Oh, it turns out
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FIG. 12. Tip velocity vs time for Oh = 10 and different initial aspect ratios. : A = 5, : A =
10, : A = 20, : A = 40.

that Utm ranges from ≈0.65Ui for the longest filament to ≈0.14Ui for the shortest one. Hence Utm

is much lower than the Taylor-Culick prediction in all cases. For short enough filaments, the recoil
is already quasisteady by the time the maximum is reached. In such cases, Utm scales as AUv , in
line with the conclusions of the dimensional analysis. In contrast, Utm/(AUv ) is found to decrease
significantly with A for the longest two filaments, an indication that the corresponding stage is not
governed by a pure viscous-capillary balance. In other words, inertia is still important at this stage
of the evolution of sufficiently long filaments. This is in line with the scaling analysis performed
on (7), which led to the conclusion that inertia can only be neglected provided Oh � A. A direct
consequence of this limitation of the pure viscous-capillary balance is that Utm cannot grow linearly
with A for long enough filaments. Instead, the larger the aspect ratio the stronger the influence of
fluid inertia. Therefore, for a given Oh and filaments such that A/Oh is not small, the longer the
filament the closer the maximum tip velocity is to the Taylor-Culick prediction. Here, for instance,
Utm/Ui increases from ≈0.45 for A = 20 to 0.65 for A = 40.

Figure 13 displays successive snapshots of the filament surface for an initial aspect ratio A =
10. The initial shape made of a cylindrical column with a hemispherical end is found to survive
throughout the “life” of the filament, suggesting a self-similar evolution. In problems dominated by
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r

FIG. 13. Successive shapes of a retracting filament with Oh = 10 and A = 10 (assuming R0 = 1). The
time step between two successive snapshots is �t = 1.2tv .
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FIG. 14. Evolution of the filament radius in the midplane z = 0 for Oh = 10. : A = 5, : A =
10, : A = 20, : A = 40, : theoretical prediction (24).

a viscous-capillary balance, the relevant similarity variables are [34,35]

η = − z
γ

μ
(t + t0)

, uz(η) = γ

μ
U (η), R(η, t ) = γ

μ
(t + t0)R(η) , (23)

where it is assumed that z = 0 corresponds to the tip position and t0 is the time shift required
to ensure that R(z, t = 0) = R0 far from the tip, i.e., for η → ∞. Inserting the above definitions
into the mass and momentum governing equations yields a coupled set of differential equations.
Although no closed-form solution can be obtained, it may be shown that, to leading order, R(η) →
1/6 for η → ∞ [34]. Therefore (23) predicts that, far from the tip, the filament radius evolves as

R(η → ∞, t ) = γ

μ

(t + t0)

6
= R0

(
1 + 1

6

t

tv

)
. (24)

Figure 14 shows how this prediction compares with the numerical evolution observed in the
midplane z = 0. After an initial transient, the duration of which is only significant for the longest
two filaments, the radius of the column is found to increase linearly in time. The corresponding slope
closely follows the theoretical prediction (24). Assuming that the blob remains hemispherical and
making use of the conservation of the filament volume 2πR2(L − R) + 4/3πR3, the tip velocity
(here equal to the blob velocity) is found to be

dL
dt

= Uv

3

{
1

6
− A − 1/3

[1 + t/(6tv )]3

}
. (25)

Therefore, with Ut = −dL/dt , (25) predicts Ut/Uv → A/3 for t/tv � 1, and Ut/Uv → 72A(tv/t )3

for t/tv � 1, assuming A � 1 in both cases.
Figure 15 compares the numerical evolutions of the tip velocity obtained for the four initial

aspect ratios with the prediction (25). The agreement is excellent for the shortest two filaments,
including the estimate of the maximum velocity, which corresponds to the short-time limit of (25).
The agreement deteriorates as the aspect ratio increases. The larger A the longer it takes for the
tip velocity to follow the above viscous-capillary prediction, a direct effect of the persistence of
significant inertial effects for long filaments that do not satisfy the condition Oh � A.
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FIG. 15. Evolution of the tip velocity for Oh = 10. : A = 5, : A = 10, : A = 20,
: A = 40; dotted lines: theoretical prediction (25).

V. SUMMARY AND CONCLUDING REMARKS

Using fully resolved numerical simulations, we examined the evolution of the tip velocity Ut (t )
of a capillary-driven retracting viscous filament over a wide range of values of the Ohnesorge
number, i.e., of the relative magnitude of viscous and capillary effects. For small Oh-values, no
matter what the initial aspect ratio of the filament is, the Taylor-Culick prediction matches the tip
velocity observed beyond the initial acceleration stage pretty well. Only a slight overestimate is
noticed, mainly because the velocity within the blob is nonuniform, which contradicts one of the
assumptions involved in the Taylor-Culick model. Still at low Oh, oscillations of the tip velocity are
observed throughout the recoil process. A simple mass-spring model considering how a change in
the blob radius modifies the blob inertia and the capillary restoring force allows the period of these
oscillations to be quantitatively predicted. These oscillations trigger the formation of capillary waves
which propagate slightly faster than the tip at the surface of filaments with a sufficiently large aspect
ratio. The final stage of the recoil is characterized by damped oscillations of the filament surface as
it relaxes toward its equilibrium spherical shape. Beyond the initial period of their existence, during
which their amplitude is large, these oscillations are found to obey predictions of the linear theory
corresponding to the fundamental l = 2 mode.

For Oh = O(1), viscous effects significantly delay the retraction process. The initial acceleration
stage lasts for a longer time than in the low-Oh regime, and the larger A the longer the duration
of this first stage. Then the evolution of the tip velocity dramatically depends on the filament
aspect ratio. For “short” filaments, say, A � 10, Ut reaches a maximum significantly lower than
the Taylor-Culick value, before decreasing monotonically to zero. In contrast, the tip velocity of
“long” filaments such that A � 20 reaches a plateau close to the Taylor-Culick prediction, before
decreasing to zero after having changed its sign. This single change of sign during the final stage of
the recoil is what is left of the damped oscillations observed during the same stage in the low-Oh
regime. The filament evolution becomes strikingly different when the Ohnesorge number is made
one order of magnitude larger. In this regime, no blob forms and the filament radius grows almost
uniformly as the recoil goes on. For short enough filaments, the tip velocity obeys a viscous-capillary
scaling and its maximum increases linearly with A. In contrast, inertial effects remain significant
during most stages of the recoil of long enough filaments such that A/Oh � 1. The dynamics of
filaments governed by a viscous-capillary balance was shown to obey a self-similar evolution. The
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corresponding theoretical solution accurately predicts both the maximum of the tip velocity (reached
during the early stage) and the power law characterizing its decay in the long-time limit.

In real applications, the initial shape of the filament is more complex than the canonical
cylindrical column+ hemispherical end geometry considered here [20]. Therefore one can question
the generality of the results reported in the present study, as well as those of previous studies based
on the same initial geometry. In the low-Oh regime, the evolutions of Ut discussed in the Appendix
and Sec. III A show that the initial tip acceleration dramatically depends on the initial geometry
and volume of the blob. However, the corresponding dynamics become virtually indistinguishable
beyond a time period of the order of the inertia-capillary timescale. This makes the later stages of the
evolution of the tip velocity, especially its gradual approach to the Taylor-Culick prediction, robust
with respect to slight changes in the initial geometry. The recoil dynamics being essentially driven
by inertia and capillary forces in the blob region, details of the boundary condition at the opposite
end of the ligament do not matter. The situation is dramatically different when the Ohneorge number
is large. In this regime, the self-similar nature of the evolution makes the initial geometry drive
entirely the long-term shape of the filament. Moreover, viscous forces being of primary importance,
this evolution is influenced by the boundary condition at the opposite end of the tip, i.e., by the
elongational strain rate at the position at which the filament is held. This point is discussed in more
detail in the companion paper [21] focused on a viscous retracting sheet.
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APPENDIX: EFFECT OF THE INITIAL SHAPE OF THE FILAMENT ON THE RECOIL
PROCESS IN THE LOW-Oh REGIME

Tong and Wang [36] performed numerical simulations of retracting filaments with different initial
end shapes. They observed an important influence of the end shape on the likelihood of the filament
pinch-off. However, they did not investigate the corresponding potential effects on the tip velocity.
With this objective in mind, we performed computations for several additional end shapes in the
low-Oh regime. Here we focus on the case where the initial shape of the filament consists of a
long cylindrical column ended with a prolate spheroid of half-length 2R0 and radius R0. The initial
aspect ratio of the filament is set to A = 20. Because of this prolate spheroidal end, the transition
from a mean curvature κ = 1/R0 along to column to a larger curvature at the tip is more gradual
than in the case of a spherical end, for which κ jumps abruptly from κ = 1/R0 to κ = 2/R0.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

U
t/

U
i

t/ti

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

U
t/

U
i

t/ti

FIG. 16. Tip velocity versus time for Oh = 0.1 and A = 20. (left) Early stage stage of the recoil process;
(right): intermediate stage. −−: prolate spheroidal end; : spherical end; −: prediction (10); : numerical
results from Ref. [10] for A = 15.
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FIG. 17. Same as Fig. 16 for Oh = 0.05.

Figure 16 displays the evolution of the tip velocity for the two different initial end shapes in
the case the Ohnesorge number is set to 0.1. The two evolutions exhibit large differences at the
beginning of the recoil process, with a much sharper increase in the case of the prolate end. This
is no surprise since the two distributions of the interface curvature in the tip region differ. Strong
oscillations are observed with both geometries, due to the two sources of disturbances associated
with the initial condition (see the discussion in Sec. III A). Nevertheless, both evolutions converge
for t � ti and only tiny differences subsist beyond t ≈ 1.2ti.

To determine how much the above conclusions are influenced by small viscous effects, we
repeated the above two computations with Oh = 0.05. The results are displayed in Fig. 17. Again,
the initial shape is seen to play a major role during the initial stage of the recoil. The overshoots
noticed in the tip velocity within this early period have a larger magnitude than those found with
Oh = 0.1, a direct consequence of the weaker viscous damping resulting from the twice as small
viscosity. Nevertheless, the two evolutions become very close to each other beyond t/ti ≈ 1.7,
although some tiny differences in amplitude and phase remain at later times between the two
series of oscillations. Therefore the critical time beyond which the initial geometry does not keep
a significant influence on the filament dynamics is found to increase with Oh−1 = td/ti, where td is
the diffusive time introduced in Sec. IV B. Not unlikely, this increase suggests that the dynamics of
long filaments corresponding to very small values of Oh, say, Oh = O(10−2) or less, may still be
influenced by the initial shape over much longer periods of time. Since break-up is likely to occur
through the end-pinching or capillary wave mechanisms at a quite early stage under such extreme
conditions [12], there is little doubt that the corresponding dynamics remains influenced by the
initial shape throughout the “life” of the filament.

Coming back to the flow conditions considered in the present study, the results reported in
Figs. 16 and 17 indicate that the dynamics observed beyond an O(ti )-long initial stage are robust
with respect to the choice of the initial shape. This strengthens the validity of the reasoning
underlying the Taylor-Culick prediction, as well as the physical arguments used to explain the origin
of the oscillations observed in the tip velocity.
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