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In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of
thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper,
we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information
processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response
matrix is well-defined and is shown symmetric with both of the information affinity and the conventional
thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for
information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in
linear irreversible thermodynamics.
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I. INTRODUCTION

Linear irreversible thermodynamics has played important
roles in physics, chemistry, and quantitative biology. In
particular, the Onsager reciprocity [1,2], characterizing the
symmetry of linear transport coefficients, gives deep insight
into a variety of phenomena, from the thermoelectric effect
[3–5] to membrane transport processes in biological sys-
tems [6–10]. The Onsager reciprocity can be placed in the
framework of stochastic thermodynamics [11–13], which is
an extension of thermodynamics to small fluctuating systems.
More precisely, the Onsager reciprocity and its nonlinear
generalization can be derived from the fluctuation theorem
[14–17]. The Onsager reciprocity also plays a central role in the
finite-time thermodynamics: The efficiency of thermodynamic
engines at maximum power (i.e., the work per unit time)
[18] has been studied on the basis of the Onsager reciprocity
[19,20]. Furthermore, novel properties of the linear response
matrix beyond the Onsager reciprocity have been found for
periodically driven systems [21,22].

Stochastic thermodynamics has been further extended to
information processing such as measurement and feedback
control, which accompanies the refined second law of ther-
modynamics by taking information into account [23–31].
This research direction sheds new light on the problem
of “Maxwell’s demon,” and the demon has experimentally
been investigated [32–34]. Thermodynamics of information
has also been applied to biological signal transduction and
adaptation processes [35–42]. Furthermore, thermodynam-
ics of autonomous information processing has attracted
much attention, where an autonomous Maxwell’s demon
reduces the entropy of an engine by continuous measurement
and feedback control without any direct energy exchange
[43–59]. Such a thermodynamic system is called an au-
tonomous information-driven engine. It has been shown that
continuous information flow can be treated on an equal footing
with thermodynamic currents, and the concept of information
affinity has been introduced [48]. However, general linear
irreversible thermodynamics has not been addressed in these
previous researches. In particular, it has been a fundamental
open question whether the Onsager reciprocity is still valid

in the presence of the information flow and the information
affinity.

In this paper, we establish linear irreversible thermodynam-
ics for a broad class of autonomous heat engines in the presence
of continuous information flow. We show that the Onsager
reciprocity is indeed valid with the information affinity, which
implies a nontrivial symmetry between thermodynamic and
informational currents and affinities. As a special application,
we derive the information-thermodynamic efficiency at maxi-
mum power of information-driven engines [58,60–62], which,
in the linear regime, is universally bounded by the half of the
maximum efficiency.

Our linear irreversible thermodynamics is applicable if only
a driven engine is close to equilibrium, even when the entire
system including Maxwell’s demon is far from equilibrium.
This makes a sharp contrast to conventional linear irreversible
thermodynamics, where the entire system must be close to
equilibrium. This feature of our framework is based on a
fundamental lemma that is proved in this paper, which states
that if all affinities including the information affinity are zero,
all the conjugate currents are zero. This lemma ensures that
linear irreversible thermodynamics is a consistent framework
even in the presence of the information affinity.

We note that there is previous work about the Onsager
reciprocity for heat engines driven by “information reservoirs”
[58,59]. In that work, however, the role of information flow and
information affinity was not taken into account. Furthermore,
the entire system must be close to equilibrium in their
setup, as is the case for conventional linear thermodynamics
without information. Our work establishes linear irreversible
thermodynamics including continuous information flow.

Our result would be applicable to analyze the role of infor-
mation in biological systems. In fact, a variety of phenomena
in biological systems are found in the linear nonequilibrium
regime [63]. Membrane transport is one such phenomena
[6–8], where the Onsager reciprocity has experimentally
been verified [9]. Recently the Onsager coefficient has been
determined from experimental data of living yeast [10]. We
also note that biochemical information processing has been
studied with stochastic models similar to our setup [38,41,57].
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We emphasize that our theory is applicable if only some
biochemical reactions are close to equilibrium, even when an
entire biological system is far from equilibrium.

Throughout this paper, we assume that a system obeys a
continuous-time Markov jump process with finite states. We
also assume that the system has the time-reversal symmetry,
where any variable does not change its sign by the time-reversal
transformation. In particular, we assume that there is no
magnetic field.

This paper is organized as follows. In Sec. II we discuss the
essentials of our results with a simple model of autonomous
information-driven engines, which we call the four-state
model. We introduce the four-state model in Sec. II A and
review previous results on thermodynamics of information in
Sec. II B. We then state a specific form of our main results for
the four-state model in Sec. II C. We apply our results to derive
the efficiency at maximum power in Sec. II D. In Sec. III we
formulate the general setup and discuss our main results. We
formulate the setup in Sec. III A and review thermodynamics of
information in Sec. III B. We present the Onsager reciprocity
in the general form in Sec. III C and prove it in Sec. III D.
In Sec. IV we conclude this paper with some remarks. In
Appendix A we prove the aforementioned technical lemma.
In Appendix B we show the explicit steady distribution of the
four-state model.

II. A PARADIGMATIC MODEL

Before going to the general argument, we illustrate the
essentials of our results by considering a minimal model of
information-driven autonomous engines, which we call the
four-state model. This model consists of two subsystems
with respectively two states, and thus the whole system
has four possible states. The two subsystems autonomously
interact with each other, where they do not directly exchange
energy but exchange information. Therefore, one of the two
subsystems is regarded as a Maxwell’s demon that contin-
uously measures the other system and performs feedback
control. Our model is equivalent, or almost equivalent, to
well-studied autonomous information engines discussed in
Refs. [12,40,41,44,48,52,57,64,65], which are closely related
to transport in biological systems.

A. Setup

The four-state model is a bipartite system that consists of
two subsystems X and Y . We refer to the composite system
as Z. X (Y ) is attached to two-particle reservoirs XL and
XR (YL and YR) at inverse temperature β. Each system has
a single site where a particle comes in from or goes out to
one of the attached particle reservoirs. The chemical potential
differences between X (Y ) and the particle reservoirs are given
by μXL and μXR (μYL and μYR) (see also Fig. 1). The energy
of X (Y ) is εX (εY ) when it is filled with a particle and zero
when it is empty.

The state of each system is represented by the num-
ber of particles in the site (i.e., filled or empty). The
entire states of composite system Z are labeled as z =
(x0,y0),(x1,y0),(x0,y1),(x1,y1), where x0 and y0 (x1 and y1)
represent that the site of X and Y is empty (filled), respectively.

(a) (b)

FIG. 1. (a) Schematic of the four-state model. A single-particle
site of X (Y ) exchanges particles with two-particle reservoirs XL and
XR (YL and YR) with chemical potentials μXL and μXR (μYL and
μYR). The height of the barriers between X (Y ) and the two reservoirs
are characterized by �(XL)

y and �(XR)
y (�(YL)

x and �(YR)
x ), which depend

on the state of Y (X). (b) State space of the four-state model. Vertices
(i.e., nodes) represent the four states, and bidirected edges represent
the forward and backward transitions between two states induced by
particle reservoirs with nonzero transition rates.

Let p(z,t) be the probability of state z of the composite
system at time t . The time evolution of p(z,t) is described by
the master equation:

d

dt
p(z,t) =

∑
z′,ν

[
W

(ν)
zz′ p(z′,t) − W

(ν)
z′z p(z,t)

]
, (1)

where W
(ν)
zz′ is the time-independent transition rate from z′ to z

induced by reservoir ν (= XL,XR,YL,YR). We assume that
subsystems do not change their own states simultaneously in a
single transition, which is equivalent to the bipartite condition
of the transition rates:

W
(ν)
zz′ =

⎧⎪⎨
⎪⎩

W
(ν)
xx ′ |y (x �= x ′,y = y ′,ν = XL, XR)

W
(ν)
yy ′ |x (x = x ′,y �= y ′,ν = YL, YR)

0 (otherwise).

(2)

We assume that the transition rates satisfy the local detailed
balance conditions:

W
(ν)
x1x0|yi

W
(ν)
x0x1|yi

= exp[−β(εX − μν)],

W
(ν)
y1y0|xi

W
(ν)
y0y1|xi

= exp[−β(εY − μν)]. (3)

Our theory is applicable independent of the details of the
transition rates, as long as they satisfy Eq. (3). As a specific
example, the transition rates can be of the form

W
(ν)
x1x0|yi

= �(ν)
yi

f
(ν)
X ,

W
(ν)
x0x1|yi

= �(ν)
yi

(
1 − f

(ν)
X

)
,

W
(ν)
y1y0|xi

= �(ν)
xi

f
(ν)
Y ,

W
(ν)
y0y1|xi

= �(ν)
xi

(
1 − f

(ν)
Y

)
, (4)
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where f
(ν)
X := {1 + exp[β(εX − μν)]}−1 and f

(ν)
Y := {1 +

exp[β(εY − μν)]}−1 are the Fermi distribution functions, and
�(ν)

yi
(�(ν)

xi
) is a positive constant that characterizes the height

of the potential barrier between X (Y ) and reservoir ν. The
potential barrier of X, characterized by �(ν)

yi
, depends on the

state of Y , and vice versa.
As mentioned above, the transition rates between a site and

the attached reservoirs are determined by the other site. On
the other hand, the two subsystems do not directly exchange
energy, because the energy of each site is independent of
the state of the other. These assumptions make it reasonable
to call our system an information-driven engine. Intuitively,
each subsystem continuously measures the other system and
performs feedback control by changing the energy barrier
between the other system and the attached reservoirs. In
the special case that �(XL)

y0
= 1, �(XR)

y0
= 0, �(XL)

y1
= 0, and

�(XR)
y1

= 1, X exchanges a particle only with XL (XR) when
Y is empty (filled), respectively. This is a typical model of
an autonomous Maxwell’s demon, where the demon inserts
a wall between the engine and reservoirs, depending on the
number of particles in the engine [52].

B. Second law and information flow

In this subsection, we briefly review previous results on
the generalized second law including information flow, which
has been discussed in Ref. [48]. Let pss(z) be the steady
state distribution of the four-state model. The thermodynamic
affinity of X is characterized by the chemical potential
difference between XL and XR as

FX := β(μXL − μXR). (5)

The net particle current from XL to XR, which is conjugate
with FX, is given by

JX : = W
(XR)
x0x1|y0

pss(x1,y0) − W
(XR)
x1x0|y0

pss(x0,y0)

+W
(XR)
x0x1|y1

pss(x1,y1) − W
(XR)
x1x0|y1

pss(x0,y1). (6)

The sum of the rates of the entropy change in reservoirs XL

and XR is then expressed as

σX
r := JXFX. (7)

We can also define FY , JY , and σY
r in the same manner.

We next consider the concepts of information flow and
information affinity [48]. We first introduce the stochastic
mutual information [28] between X and Y :

I (x; y) := lnpss(x,y) − ln[pss(x)pss(y)], (8)

whose ensemble average is the mutual information in
the steady state. Here pss(x) = ∑

y pss(x,y) represents the
marginal distribution of X, and pss(y) is that for Y . The
information affinity is defined as

FI : = I (x1; y0) − I (x0; y0) + I (x0; y1) − I (x1; y1) (9)

= ln
pss(x0,y1)pss(x1,y0)

pss(x0,y0)pss(x1,y1)
. (10)

Correspondingly, the probability current that is conjugate
with FI is defined as

JI : =
(
W

(YL)
y1y0|x0

+ W
(YR)
y1y0|x0

)
pss(x0,y0)

−
(
W

(YL)
y0y1|x0

+ W
(YR)
y0y1|x0

)
pss(x0,y1). (11)

Using Eqs. (10) and (11), the information flow is defined as

I := JIFI , (12)

which represents the change rate in the mutual information
induced by transitions in X.

We now consider the generalized second law of thermody-
namics for the four-state model. First, the conventional second
law for the entire system is given by

σ := σX
r + σY

r � 0, (13)

which implies that the total entropy production written as σ is
nonnegative. In Ref. [48] it has been shown that the second law
(13) can be decomposed into two inequalities that constitute
the generalized second law. We introduce the partial entropy
productions [52] associated with X and Y as

σX := σX
r + I = JXFX + JIFI , (14)

σY := σY
r − I = JY FY − JIFI , (15)

which make the decomposition of the total entropy production

σX + σY = (
σX

r + I
) + (

σY
r − I

) = σ. (16)

The generalized second law states that the partial entropy
productions are nonnegative individually:

σX � 0, σ Y � 0. (17)

Both of these inequalities are stronger than the conventional
second law (13). In the generalized second law (17), the
conventional thermodynamic entropy production (7) and the
information flow are treated on an equal footing. Therefore, in-
equality (17) can be regarded as the second law of information
thermodynamics for continuous information processing.

Inequality (17) implies that the entropy change in the
reservoirs, σX

r and σY
r , are bounded by the informational flow

−I and I, respectively. For example, in the case of I > 0
(i.e., Y plays the role of the demon), the conventional entropy
change of X can be negative up to −I. In contrast, Y needs an
additional cost of at least I for the continuous measurement
and feedback control.

C. Onsager coefficient and reciprocity

We now discuss our main results for the four-state model.
First, we can show that if all of the affinities including the
information affinities are zero, all of the currents are zero:

FX = 0, FI = 0 ⇒ JX = 0, JI = 0. (18)

We will prove this in Appendix A in a more general setup.
As a consequence of (18), we find that our linear irreversible

thermodynamics is applicable if only FX and FI are nearly
zero, even when the entire system is far from equilibrium
as FY is not close to zero. In other words, our framework
is applicable if only the engine is close to equilibrium both
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in terms of the thermodynamic and information affinities,
even when the demon itself is far from equilibrium. This is a
crucial characteristic of our formulation, which is contrastive
to conventional linear irreversible thermodynamics, where the
entire system must be close to equilibrium. We emphasize that
this characteristic is not a result of the time-scale separation.
Even if the engine and the demon have the same time scale and
they interact with each other, we can apply linear irreversible
thermodynamics only to the engine by taking into account the
information affinity.

Let us discuss the above point more quantitatively. Even if
FY �= 0, we can make FX = 0 and FI = 0 by appropriately
choosing the parameters in the transition rates (4). In fact,
as explicitly shown in Appendix B, if we assume that � :=
�(ν)

yi
= �(ν)

xi
does not depend on ν, xi, yi , then FI = 0 holds

independent of FX and FY . In such a situation, the energy
barrier cannot change depending on the state of the engine or
the demon, which means that the demon cannot insert a wall
between the engine and the reservoirs. This intuitive picture is
consistent with the absence of the information affinity, FI = 0.
Therefore, we can make FX � 0 and FI � 0 just by making
μXL � μXR and � := �(ν)

yi
� �(ν)

xi
, even when FY �� 0 (i.e.,

μYL �� μYR).
We now define the Onsager coefficients associated with the

thermodynamic and informational affinities:

LXX : = ∂JX[FX,FI ]

∂FX

∣∣∣∣ FX = 0
FI = 0

,

LXI : = ∂JX[FX,FI ]

∂FI

∣∣∣∣ FX = 0
FI = 0

,

LIX : = ∂JI [FX,FI ]

∂FX

∣∣∣∣ FX = 0
FI = 0

,

LII : = ∂JI [FX,FI ]

∂FI

∣∣∣∣ FX = 0
FI = 0

. (19)

This is indeed well-defined, because condition (18) ensures
that JX and JI are single-valued functions of FX and FI around
FX = 0 and FI = 0. The currents can then be expanded to the
linear order as

JX = LXXFX + LXIFI ,

JI = LIXFX + LIIFI . (20)

The linear expansion (20) as a consequence of (18) implies
that linear irreversible thermodynamics is well-defined even
in the presence of information flow.

Since the information affinity is not one of the conventional
thermodynamic affinities, we cannot apply the conventional
argument in linear irreversible thermodynamics to prove the
Onsager reciprocity for the coefficient (19). However, the
Onsager reciprocity indeed holds:

LXI = LIX, (21)

which is our main result in the case of the four-state model. We
will prove Eq. (21) for a more general setup in Sec. III. The
Onsager reciprocity (21) implies that information thermody-

namics has the same structure as conventional thermodynam-
ics in the linear regime. We again emphasize that this is not a
straightforward consequence of (17). In fact, a standard proof
of the Onsager reciprocity based on the fluctuation-dissipation
theorem (or equivalently, the fluctuation theorem) does not
apply to information thermodynamics. Instead, we need a
careful generalization of the Schnakenberg network theory
[11] as discussed in Sec. III.

We note that by using Eqs. (20) and (21), the generalized
second law σX � 0 in (17) reduces to

LXX � 0, LII � 0, LXXLII − L2
XI � 0. (22)

D. Information-thermodynamic efficiency at maximum power

As a special application of Eq. (21), we derive the universal
bound for the efficiency at maximum power of information-
driven engines in the linear regime. The efficiency at maximum
power for conventional linear irreversible thermodynamics
is known to be the half of the maximum efficiency in
thermodynamics, which has been derived on the basis of the
Onsager reciprocity [19]. Therefore, it is naturally expected
that the information-thermodynamic efficiency at maximum
power is also the half of the maximum efficiency. In the
following, we will show that this is indeed the case.

We assume that Y plays the role of the demon and X

is driven by the information flow, that is, JXFX < 0. The
information-thermodynamic efficiency is then defined as

η := −JXFX

JIFI

, (23)

which satisfies η � ηmax := 1 from the first inequality in (17),
and the equality is achievable in the strong coupling condition.
The power is defined as the work extraction per unit time:

P := −JXFX. (24)

We note that, strictly speaking, P is the power multiplied by
the inverse temperature.

We now fix FI and the Onsager coefficients, and then
optimize FX to make P maximum. First, the maximum value
of P is achieved if FX takes the optimal value F ∗

X that is given
by

F ∗
X := − LXI

2LXX

FI . (25)

With F ∗
X, the efficiency is calculated as

η∗ = q2

2(2 − q2)
, (26)

where q represents the coupling constant defined as

q := LXI√
LXXLII

. (27)

Since the third inequality in (22) implies −1 � q � 1,
Eq. (26) leads to the upper bound for η∗ as

η∗ � 1
2 , (28)

where the equality is achieved with the strong cou-
pling condition |q| = 1. Inequality (28) implies that the
information-thermodynamic efficiency at maximum power is
given by the half of the maximum efficiency ηmax = 1.
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FIG. 2. A directed graph of the four-state model and its cycle
basis. The solid lines represent two transitions between two state, and
the dotted lines represent edges of a cycle basis. Note that we can
arbitrarily choose the direction of each edge.

III. GENERAL BIPARTITE SYSTEMS

We next consider linear irreversible thermodynamics of
information-driven engines in the general setup of bipartite
Markov jump processes. The argument in the previous section
is regarded as a special case of that in the present section.
Our formulation is based on the Schnakenberg network
theory [11].

A. Setup

We consider a bipartite Markov jump process of system Z

that consists of two subsystems X and Y . States of Z are labeled
by z = (x,y). The probability distribution of z at time t is
denoted by p(z,t), which obeys the master equation in the same
form as Eq. (1). We consider the steady state of Z, where the
probability distribution is written in a time-independent form
p(z,t) =: pss(z). The transition rates are assumed to satisfy
the bipartite condition: W

(ν)
zz′ = 0 holds if both of x �= x ′ and

y �= y ′ are satisfied, which implies that x and y do not change
simultaneously. We also assume that

W
(ν)
zz′ �= 0 ⇔ W

(ν)
z′z �= 0, (29)

which implies that for any transition a backward transition
always exists.

To analyze the thermodynamic properties of this system, we
introduce a graph representation of the dynamics. The graph
G := (V,E) consists of the set V of vertices and the set E of
directed edges. A vertex in the graph represents a state of Z.
A directed edge represents forward and backward transitions
between two states of Z induced by reservoir ν with nonzero
transition rate. In other words, a single directed edge e :=
(z′ ν−→ z) corresponds to a pair of transitions (W (ν)

zz′ ,W
(ν)
z′z ) with

W
(ν)
zz′ �= 0 and W

(ν)
z′z �= 0. We note that we can arbitrarily choose

the direction of an edge. For example, the state space of the
four-state model [Fig. 1(b)] is described as Fig. 2 in the directed
graph representation. Under this assignment, (z′ ν−→ z) ∈ E ⇒
(z

ν−→ z′) /∈ E is satisfied. Because the system is bipartite, each

edge describes a transition in X or Y . A transition in X is
described as ((x ′,y)

ν−→ (x,y)) (x �= x ′), while a transition in
Y is described as ((x,y ′)

ν−→ (x,y)) (y �= y ′). Correspondingly,
we divide the set of all edges into two sets; one is the set of
transitions in X, and the other is those in Y :

EX := {e = ((x ′,y)
ν−→ (x,y)) ∈ E} (x �= x ′),

EY := {e = ((x,y ′)
ν−→ (x,y)) ∈ E} (y �= y ′). (30)

We here consider the cycle decomposition [11] to analyze
this system. We first introduce a directed cycle C as a
directed sequence of connected edges with the same initial
and terminal vertex in G: C = (z1

ν1−→ z2 · · · νn−→ z1), where
either (zi

νi−→ zi+1) ∈ E or (zi+1
νi−→ zi) ∈ E holds for any i

with identifying zn+1 with z1. We then define a cycle basis
C = {C1,C2, . . . ,Cs} as a set of directed cycles such that any
other cycles in G can be expressed by a linear combination
of cycles in C [66]. Although a cycle basis is not unique,
the number of the cycles in a cycle basis is always given by
s := |E | − |V| + 1, where |E | is the number of edges and |V|
is the number of vertices. We also note that a cycle basis is
not necessarily a fundamental cycle basis in our argument, in
contrast to the original argument by Schnakenberg [11].

For edge e ∈ E , we define the edge affinity and edge current
as

Fe := ln
W

(ν)
zz′

W
(ν)
z′z

, (31)

Je := W
(ν)
zz′ pss(z

′) − W
(ν)
z′z pss(z), (32)

where Fe is finite due to condition (29). The total entropy
production in Z is then given by

σ :=
∑
e∈E

JeFe. (33)

We define the backward transition edge of e = (z′ ν−→ z)
as e† := (z

ν−→ z′). Following the argument by Schnakenberg
[11], we define a |E | × s cycle matrix S by

S(e,Ck) :=
⎧⎨
⎩

1 (if e ∈ Ck),
−1 (if e† ∈ Ck),
0 (otherwise),

(34)

where S(e,Ck) is the matrix element of S with e ∈ E and
Ck ∈ C. Here, e ∈ Ck means that e is one of the edges in Ck .
We then assign the affinity F (Ck) to cycle Ck by

F (Ck) :=
∑
e∈E

S(e,Ck)Fe, (35)

and assign the current J (Ck) to cycle Ck as the solution of

Je =
∑
Ck∈C

S(e,Ck)J (Ck). (36)

We note that the cycle matrix S is full rank [66], and therefore
J (Ck) always exists and is uniquely determined by Eq. (36).
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By using the above notations, we can express the total entropy
production as [11]

σ =
∑
e∈E

JeFe (37)

=
∑
e∈E

∑
Ck∈C

S(e,Ck)J (Ck)Fe (38)

=
∑
Ck∈C

J (Ck)F (Ck). (39)

We next define the effective affinity of edge e = (z′ ν−→ z)
[11]:

Fe := Fe + ln
pss(z′)
pss(z)

. (40)

The effective affinity of edge e ∈ E is regarded as the conjugate
of the current of e, due to the fact that Fe = 0 holds if and only
if Je = 0. In contrast, we refer to Fe as a bare thermodynamic
affinity. Using the definition (35) and the cyclic property, we
obtain

F (Ck) =
∑
e∈E

S(e,Ck)Fe. (41)

The thermodynamic properties of the system are expressed in
terms of affinities and currents of a cycle basis.

B. Partial affinity and partial entropy production

We next introduce important concepts to formulate linear
irreversible thermodynamics with information flow in line
with Ref. [48]. First, we define the partial affinities of cycles
associated with X by

FX(Ck) :=
∑
e∈EX

S(e,Ck)Fe. (42)

We remark that the partial affinity is different from the cycle
affinity, because the summation is not taken over E but
only over EX. We then define the partial entropy production
associated with X by

σX =
∑
Ck∈C

J (Ck)FX(Ck), (43)

which satisfies the generalized second law [48]:

σX � 0. (44)

We next classify cycles in a cycle basis into the following
three classes: a local cycle of X, a local cycle of Y , and a
global cycle. A local cycle of X is defined as a cycle which
consists only of edges in X, like {(x1,y)

ν1−→ (x2,y)
ν2−→ · · · νn−→

(x1,y)}. Let CX := {CX
1 ,CX

2 , . . . ,CX
n } be the set of local cycles

of X in C, which has n cycles. We define CY := {CY
1 , . . . ,CY

m}
in the same manner, which has m cycles. A global cycle is
defined as a cycle that consists of edges in both X and Y . Let
CG := {CG

1 , . . . ,CG
l } be the set of global cycles in C, which has

l cycles. We then have C = CX ∪ CY ∪ CG by definition. We
note that n + m + l = |E | − |V| + 1 holds for any cycle basis,
while each of n,m, l depends on the choice of a cycle basis.
In the following, we choose a cycle basis such that m (= |CY |)

takes the maximum value for a given graph (see Appendix A
for details).

With the above classification of cycles, we have the
following properties of the affinities. We first consider a local
cycle CX

k ∈ CX. By noting that S(e,CX
k ) = 0 for e �∈ EX, we

have from Eq. (41)

FX
(
CX

k

) = F
(
CX

k

)
, (45)

which implies that the partial affinity of X for a local cycle of
X is given by the sum of the bare thermodynamic affinities. We
next consider a local cycle CY

k ∈ CY . By noting that S(e,CY
k ) =

0 for e ∈ EX and CY
k ∈ CY , we have

FX
(
CY

k

) = 0, (46)

which implies that the partial affinity of X for a local cycle of
Y vanishes. For a global cycle CG

k ∈ CG, we have

FX
(
CG

k

) = FX
(
CG

k

) + F I
(
CG

k

)
, (47)

where the first term on the right-hand side is defined as

FX
(
CG

k

)
:=

∑
e∈EX

S
(
e,CG

k

)
Fe, (48)

and the second term is the information affinity [48]:

F I
(
CG

k

)
:=

∑
e∈EX

S
(
e,CG

k

)
ln

pss(z′)
pss(z)

(49)

=
∑
e∈EX

S
(
e,CG

k

)
(I (x ′; y) − I (x; y)). (50)

In the second line above, we used∑
e∈EX

S
(
e,CG

k

)
ln

pss(x ′)
pss(x)

= 0. (51)

The information affinity describes the change rate in the mutual
information in the edges of Ck associated with X. In contrast,
FX(CG

k ) includes the bare thermodynamic affinities (i.e., Fe).
We note that our theory is applicable to situations where X

and Y exchange energy (i.e., FX(CG
k ) �= 0).

The partial entropy production (43) is then rewritten as

σX =
∑

CX
k ∈CX

J
(
CX

k

)
F

(
CX

k

) +
∑

CG
k ∈CG

J
(
CG

k

)
FX

(
CG

k

)
. (52)

We note that if FX(CG
k ) = 0 for any CG

k ∈ CG, the second term
on the right-hand side of (52) only describes the information
flow:

I :=
∑

CG
k ∈CG

J
(
CG

k

)
F I

(
CG

k

)
. (53)

As a simple example, we revisit the four-state model
discussed in Sec. II. Figure 2 shows a cycle basis of the
four-state model. There are five cycles in the cycle basis, which
are classified into the local and global cycles as

CX
1 : = {(x0,y0)

XL−→ (x1,y0)
XR−→ (x0,y0)},

CX
2 : = {(x0,y1)

XL−→ (x1,y1)
XR−→ (x0,y1)},

CY
1 : = {(x0,y0)

YL−→ (x0,y1)
YR−→ (x0,y0)},
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CY
2 : = {(x1,y0)

YL−→ (x1,y1)
YR−→ (x1,y0)},

CG
1 : = {(x0,y0)

YL−→ (x0,y1)
XL−→ (x1,y1)

YL−→ (x1,y0)
XL−→ (x0,y0)}. (54)

Therefore, the partial entropy production (52) reduces to

σX = J
(
CX

1

)
FX

(
CX

1

) + J
(
CX

2

)
FX

(
CX

2

)
+ J

(
CG

1

)
FX

(
CG

1

)
, (55)

where

J
(
CX

1

)
: = W

(XR)
x0x1|y0

pss(x1,y0) − W
(XR)
x1x0|y0

pss(x0,y0),

J
(
CX

2

)
: = W

(XR)
x0x1|y1

pss(x1,y1) − W
(XR)
x1x0|y1

pss(x0,y1),

J
(
CG

1

)
: =

(
W

(YL)
y1y0|x0

+ W
(YR)
y1y0|x0

)
pss(x0,y0)

−
(
W

(YL)
y0y1|x0

+ W
(YR)
y0y1|x0

)
pss(x0,y1),

FX
(
CX

1

) = FX
(
CX

2

)
:= β(μXL − μXR),

FX
(
CG

1

)
: = ln

pss(x0,y1)pss(x1,y0)

pss(x0,y0)pss(x1,y1)
. (56)

Comparing Eqs. (56) with Eqs. (5), (6), (10), and (11), we
obtain

JX = J
(
CX

1

) + J
(
CX

2

)
,

JI = J
(
CG

1

)
,

FX = FX
(
CX

1

) = FX
(
CX

2

)
,

FI = FX
(
CG

1

)
. (57)

Inequality (44) reduces to the first inequality of (17) in the
four-state model.

C. Onsager reciprocity for the general setup

We now discuss our main results for general bipartite
systems. We first abbreviate

FX
k := FX(Ck),

J X
k := JX(Ck), (58)

where we defined NX := {1, . . . ,n} and NG := {n +
1, . . . ,n + l} with N := NX ∪ NG, and labeled cycles as

Ck :=
{

CX
k k ∈ NX

CG
k−n k ∈ NG.

(59)

As shown in Appendix A, we have

∀k ∈ N, FX
k = 0 ⇒ ∀k ∈ N, J X

k = 0, (60)

which is a general form of condition (18). We emphasize that
condition (60) is not a consequence of the conventional linear
irreversible thermodynamics, because FX

k are not affinities of
the cycle basis. As is the case for the four-state model, condi-
tion (18) implies that our linear irreversible thermodynamics
is applicable if only FX

k � 0 for any k ∈ N , even when the
entire system is far from equilibrium.

Condition (60) ensures the validity of the linear expansion

J X
i =

n+l∑
j=1

LX
ijFX

j (61)

for i ∈ N . Therefore, the Onsager coefficient is well-defined:

LX
ij := ∂J X

i

∂FX
j

∣∣∣∣∣
∀k,FX

k =0

, (62)

which implies that linear irreversible thermodynamics with
information affinities is a consistent framework. We note
that for i ∈ NX and j ∈ NG,Lij describes the driving of
a conventional thermodynamic current by the information
affinity, while for i ∈ NG and j ∈ NX,Lij describes the
driving of an information current by the conventional affinity.

We can then show the Onsager reciprocity:

LX
ij = LX

ji, (63)

which is the main result of this paper in the general setup.
We will prove Eq. (63) in the next subsection. Equality (21)
in Sec. II is a special case of Eq. (63). For i ∈ NX and
j ∈ NG, or for i ∈ NG and j ∈ NX, the Onsager reciprocity
represents a novel symmetry between the thermodynamic and
informational quantities.

D. Proof of the main result

In this subsection, we prove our main result (63). Before
that, we briefly mention the outline of the proof of the zero
currents condition (60), while the complete proof is shown in
Appendix A. If all affinities of cycles in the cycle basis are
zero, then all currents of the cycles are zero, because S is full
rank. However, this fact does not directly lead to condition
(60), because FX

k are not affinities of the cycle basis. To
prove condition (60), we need to use the graph contraction
method (see Appendix A for details). Roughly speaking, we
can construct a new Markov jump system whose cycle affinities
are FX

k and whose currents are J X
k .

We now prove Eq. (63) by assuming condition (60). From
condition (60), J X

i can be expanded with FX
j :

J X
i =

∑
j

LijFX
j + O

[(
FX

j

)2]
. (64)

Since S(e,Ck) = 0 holds for e ∈ EX and Ck ∈ CY , Je with
e ∈ EX can be expressed as a linear combination of J X

k :

Je =
∑
k∈N

S(e,Ck)J X
k . (65)

We note that from Eqs. (64) and (65), the linear regime in terms
of the partial affinities (i.e., FX

k � 0,∀k ∈ N ) is equivalent to
the linear regime in terms of the edge currents (i.e., Je �
0,∀e ∈ EX). We next expand Fe to the linear order of Je as

Fe = ln
W

(ν)
zz′ pss(z′)

W
(ν)
z′z pss(z)

(66)

= ln

[
1 + W

(ν)
zz′ pss(z′) − W

(ν)
z′z pss(z)

W
(ν)
z′z pss(z)

]
(67)
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= ln

[
1 + Je

αe
−1 + O(Je)

]
(68)

= αeJe + O
(
J 2

e

)
, (69)

where we defined

αe := 1

W
(ν)
z′z pss(z)

∣∣∣∣∣
Je=0

= 1

W
(ν)
zz′ pss(z′)

∣∣∣∣∣
Je=0

(70)

and assumed that 0 < αe < ∞. Using linear expansions (65)
and (69), the affinities in X are calculated as

FX
i =

∑
e∈EX

S(e,Ci)Fe (71)

=
∑
e∈EX

S(e,Ci)αeJe + O
(
J 2

e

)
(72)

=
∑
e∈EX

∑
j

S(e,Ci)αeS(e,Cj )J X
j + O

[(
J X

j

)2
]
. (73)

By defining a (s − m) × (s − m) matrix M as

Mij =
∑
e∈EX

S(e,Ci)αeS(e,Cj ), (74)

and insulting (64) into Eq. (73), we find

FX
i =

∑
j,k

MijLjkFX
k + O

[(
FX

k

)2
]
. (75)

Since FX
i is arbitrary, M is given by the inverse matrix of L:

L = M−1. (76)

The form of (74) implies that M is a symmetric matrix Mij =
Mji . This proves that the Onsager matrix L is also symmetric,
which leads to the Onsager reciprocity (63).

Although the above proof of the Onsager reciprocity is
apparently similar to the original argument of Schnackenberg
[11], here we essentially invoked condition (60). We need to
introduce the graph contraction method to prove condition
(60), as described in Appendix A. In contrast, the graph
contraction is not needed in previous works with information
reservoirs [58,59], which again ensures that our work is
fundamentally different from previous work.

IV. CONCLUSION

In this paper, we have developed the framework of linear
irreversible thermodynamics for Markov jump systems with
continuous information flow. We have shown that the infor-
mation affinity and the information current play equivalent
roles to conventional thermodynamic affinities and currents
in linear irreversible thermodynamics. Our main result is the
Onsager reciprocity (63) with the information affinity.

As a characteristic of our formulation, it is applicable even
when the entire system is far from equilibrium. Provided only
that the thermodynamic affinities and the information affinities
of the driven engine are close to zero, linear irreversible
thermodynamics applies to the engine, without looking at
the demon that can be far from equilibrium. This is ensured by
the fact that all of the information affinities and thermodynamic

affinities are zero, if and only if all of the conjugate currents
are zero, as represented by (60).

In conventional statistical mechanics, the Onsager reci-
procity is a straightforward consequence of the fluctuation-
dissipation theorem (or the Green-Kubo formula), as the
equilibrium correlation function is symmetric. In the modern
language, the fluctuation-dissipation theorem can be obtained
from the second cumulant of the fluctuation theorem, and
the higher-order generalization of the fluctuation-dissipation
theorem can systematically be obtained from the fluctuation
theorem [14]. In contrast, the fluctuation-dissipation theorem
is not valid in the presence of information affinity. Nev-
ertheless, the Onsager reciprocity with information affinity
(63) is valid, which implies that our Onsager reciprocity is
fundamentally different from the conventional one.

The reason why the fluctuation-dissipation theorem is
not valid in the presence of the information affinity is the
following. The average cycle currents of the contracted system
introduced in Appendix A are the same as the average cycle
currents of the original currents. However, the higher order
cumulants of currents, such as the variance of currents, are
different in general. Therefore, the fluctuation-dissipation
theorem is not valid for the contracted graph. From the same
reason, the Onsager reciprocity cannot be generalized to the
nonlinear response coefficients, unlike the conventional setup
without information.

The Onsager reciprocity is a powerful tool to investigate
nonequilibrium phenomena, which are often found in the
linear regime. Therefore, our results would serve a variety
of researches of autonomous information processing.
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APPENDIX A: GRAPH CONTRACTION AND
THE PROOF OF (60)

To prove condition (60), we introduce the contraction of a
graph [66]. Let us consider a directed graph G = (V,E) with
the same notation as in Sec. III. The contraction of edge e =
(zk

ν ′−→ zl) ∈ E with k �= l is defined as follows. We first remove
edge e, and identify its vertices zk, zl to a new vertex zm, and
then construct a new graph G/e := (Ṽ,Ẽ) such that

Ṽ := {z̃(i)|i ∈ V} (A1)

and

Ẽ := {(z̃(i)
ν−→ z̃(j ))|(zi

ν−→ zj ) ∈ E\{e}}. (A2)

Here \ denotes the set difference, and z̃(i) represents a map on
vertices defined as

z̃(i) :=
{
zm (i = k,l)
zi (otherwise). (A3)
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Correspondingly, we define the master equation on the
contracted graph G/e as

d

dt
p(z̃(i),t) =

∑
z̃(j ),ν

[
W̃

(ν)
z̃(i)z̃(j )p(z̃(j ),t) − W̃

(ν)
z̃(j )z̃(i)p(z̃(i),t)

]
,

(A4)
where we defined new transition rates as

W̃
(ν)
z̃(i)z̃(j ) =

{ pss (zj )
pss(zk )+pss(zl )

W (ν)
zizj

(z̃(j ) = m)

W (ν)
zizj

(otherwise).
(A5)

Note that the contraction can make a loop (i.e., transition from a
state to itself), and in such a case, we distinguish two directions
of the loop as W̃

(ν)
zmzm+ := W̃

(ν)
z̃(i)z̃(j ) and W̃

(ν)
zmzm− := W̃

(ν)
z̃(j )z̃(i),

while these transition rates play no role in Eq. (A4). It is
easy to show that the steady state probability distribution of
the contracted Markov jump system satisfies

p̃ss(z̃(i)) =
{

pss(zk) + pss(zl) (i = k,l)

pss(zi) (otherwise).
(A6)

The foregoing contraction does not change currents (i.e., Jẽ′ =
Je′ ) or effective affinities (i.e., Fẽ′ = Fe′ ), where ẽ′ = (z̃(i)

ν−→
z̃(j )) is an edge in Ẽ corresponding to edge e′ = (zi

ν−→ zj ) ∈
E . If we contract a loop (i.e., e = (zk

ν ′−→ zk)), we just eliminate
the loop and do not change other edges or the corresponding
transition rates, which neither changes currents nor effective
affinities.

We now split the set of edges E into two disjoint
subsets: EX and EY , and consider a new graph G/EY :=
G/e1/e2 · · · /e|EY | by recursively contracting all the edges in
EY = {e1,e2, . . . ,e|EY |}. This operation does not depend on the
order of contraction of edges. In the following, we construct
the cycle basis of the contracted graph.

To define the contraction of cycle C, we introduce a
new notation of a cycle: C = (V(C),E(C)), where V(C) and
E(C) are respectively the set of vertices and edges of C.
By introducing the contracted set of vertices and edges of
C defined as

Ṽ(C) := {z̃(i)|zi ∈ V(C)} (A7)

and

Ẽ(C) := {(z̃(i)
ν−→ z̃(j ))|(zi

ν−→ zj ) ∈ E(C)\{e}}, (A8)

we define the contracted cycle C/e := (Ṽ(C),Ẽ(C)) on the
contracted graph. We also define C/EY := C/e1/e2 · · · /e|EY |
in the same manner as G/EY , and this operation does not
depend on the order of contraction of edges. Note that the
cycle matrices of the original graph and the contracted graph
satisfy S(ẽ,Ci/EY ) = S(e,Ci) for e ∈ EX and i ∈ N .

Let C = CX ∪ CG ∪ CY be a cycle basis of the graph G,
where |CY | takes the maximum for the given graph. For such a
cycle basis, C/EY := {C1/EY , . . . ,Cn+l/EY } is the cycle basis
of the contracted graph G/EY .

We show an example of the contraction with the four-state
model in Fig. 3. The original graph is G = {V,E}, where V =
{z1,z2,z3,z4} and E = {e1,e2,e3,e4,e5,e6,e7,e8}. The cycle

FIG. 3. The original graph of the four-state model G = (V,E) and
its contracted graph G/EY = (Ṽ,Ẽ), where EY = {e5,e6,e7,e8}.

basis of the original graph C = {CX
1 ,CX

2 ,CG
1 ,CY

1 ,CY
2 } is

CX
1 := {z1

e2−→ z2
e1−→ z1},

CX
2 := {z3

e4−→ z4
e3−→ z3},

CG
1 := {z1

e5−→ z3
e4−→ z4

e
†
7−→ z2

e
†
2−→ z1},

CY
1 := {z1

e5−→ z3
e6−→ z1},

CY
2 := {z2

e7−→ z4
e8−→ z2}. (A9)

We split the transition set E into two disjoint subsets EX :=
{e1,e2,e3,e4} and EY := {e5,e6,e7,e8}. The contracted graph is
then written as G/EY = (V/EY ,E/EY ) with V/EY = {z13,z24}
and E/EY = EX = {e1,e2,e3,e4}. The cycle basis of the con-
tracted graph is written as C/EY = {CX

1 /EY ,CX
2 /EY ,CG

1 /EY }
with

CX
1 /EY = {z13

e2−→ z24
e1−→ z13},

CX
2 /EY = {z13

e4−→ z24
e3−→ z13},

CG
1 /EY = {z13

e4−→ z24
e
†
2−→ z13}. (A10)

From the above argument, we obtain the correspondence
between the cycle affinities and the currents of the contracted
system, and the partial affinities and the currents of the original
system. First, the cycle affinities of the contracted system are
equivalent to the partial affinities of the original system:

F (Ci/EY ) : =
∑
ẽ∈EX

S(ẽ,Ci/EY )Fẽ (A11)

=
∑
e∈EX

S̃(e,Ci)Fe (A12)

= FX(Ci) (A13)

for cycle Ci ∈ CX ∪ CG. Second, the cycle currents of the
contracted system are equivalent to those of the original
system,

J (Ci/EY ) = J (Ci), (A14)

because both of J (Ci/EY ) and J (Ci) are the solutions of

Jẽ =:
∑

Ci∈C/EY

S(ẽ,Ci/EY )J (Ci/EY ) (A15)
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and

Je =
∑

Ci∈CX∪CG

S(e,Ci)J (Ci), (A16)

and both Jẽ = Je and S(ẽ,Ci/EY ) = S(e,Ci) hold for e ∈ EX.
Since C/EY = {C1/EY , . . . ,Cn+l/EY } is a cycle basis,

∀i ∈ N, F (Ci/EY ) = 0 ⇒ ∀i ∈ N, J (Ci/EY ) = 0

(A17)

is satisfied. This directly leads to condition (60):

∀i ∈ N, FX(Ci) = 0 ⇒ ∀i ∈ N, J (Ci) = 0. (A18)

APPENDIX B: STEADY STATE DISTRIBUTION OF THE
FOUR-STATE MODEL

We explicitly show the steady state distribution of the four-
state model. We consider the master equation (1) with the
transition rates (2) and (4). We define

Wxixj |yk
:=

∑
ν

W
(ν)
xixj |yk

. (B1)

By applying the method in [11], we obtain the steady solution
of Eq. (1):

pss(xi,yi) = q(xi,yi)∑
x,y q(x,y)

, (B2)

where

q(x0,y0) : = Wx0x1|y0Wy0y1|x1 (Wx1x0|y1 + Wy0y1|x0 )

+Wy0y1|x0Wx0x1|y1 (Wx0x1|y0 + Wy1y0|x1 ),

q(x1,y0) : = Wx1x0|y0Wy0y1|x0 (Wx0x1|y1 + Wy0y1|x1 )

+Wy0y1|x1Wx1x0|y1 (Wx1x0|y0 + Wy1y0|x0 ),

q(x0,y1) : = Wy1y0|x0Wx0x1|y0 (Wx0x1|y1 + Wy0y1|x1 )

+Wx0x1|y1Wy1y0|x1 (Wx1x0|y0 + Wy1y0|x0 ),

q(x1,y1) : = Wy1y0|x1Wx1x0|y0 (Wx1x0|y1 + Wy0y1|x0 )

+Wx1x0|y1Wy1y0|x0 (Wx0x1|y0 + Wy1y0|x1 ). (B3)

If � := �(ν)
yi

= �(ν)
xi

does not depend on ν, xi, yi , we can
simplify the steady solution as

pss(x0,y0) = N
[
2 − (

f
(XL)
X + f

(XR)
X

)][
2 − (

f
(YL)
Y + f

(YR)
Y

)]
,

pss(x1,y0) = N
[
f

(XL)
X + f

(XR)
X

][
2 − (

f
(YL)
Y + f

(YR)
Y

)]
,

pss(x0,y1) = N
[
2 − (

f
(XL)
X + f

(XR)
X

)](
f

(YL)
Y + f

(YR)
Y

)
,

pss(x1,y1) = N
(
f

(XL)
X + f

(XR)
X

)(
f

(YL)
Y + f

(YR)
Y

)
, (B4)

where N > 0 is a normalization constant. In this special case,
we have

pss(x0,y1)pss(x1,y0)

pss(x0,y0)pss(x1,y1)
= 1, (B5)

and therefore

FI = 0 (B6)

for any FX and FY .
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