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Efficiency at maximum power is found to be of the same order for a feedback ratchet and for its open-loop
counterpart. However, feedback increases the output power up to a factor of five. This increase in output
power is due to the increase in energy input and the effective entropy reduction obtained as a consequence of
feedback. Optimal efficiency at maximum power is reached for time intervals between feedback actions two
orders of magnitude smaller than the characteristic time of diffusion over a ratchet period length. The efficiency
is computed consistently taking into account the correlation between the control actions. We consider a feedback
control protocol for a discrete feedback flashing ratchet, which works against an external load. We maximize the
power output optimizing the parameters of the ratchet, the controller, and the external load. The maximum power
output is found to be upper bounded, so the attainable extracted power is limited. After, we compute an upper
bound for the efficiency of this isothermal feedback ratchet at maximum power output. We make this computation
applying recent developments of the thermodynamics of feedback-controlled systems, which give an equation
to compute the entropy reduction due to information. However, this equation requires the computation of the
probability of each of the possible sequences of the controller’s actions. This computation becomes involved
when the sequence of the controller’s actions is non-Markovian, as is the case in most feedback ratchets. We
here introduce an alternative procedure to set strong bounds to the entropy reduction in order to compute its
value. In this procedure the bounds are evaluated in a quasi-Markovian limit, which emerge when there are big
differences between the stationary probabilities of the system states. These big differences are an effect of the
potential strength, which minimizes the departures from the Markovianicity of the sequence of control actions,
allowing also to minimize the departures from the optimal performance of the system. This procedure can be

applied to other feedback ratchets and, more in general, to other control systems.

DOI: 10.1103/PhysRevE.93.012142

I. INTRODUCTION

Brownian (or Feynman-Smoluchowski) ratchets are de-
vices which rectify the thermal fluctuations of a stochastic
system producing a net flux. In the last decades they have
been widely studied, due to their theoretical importance in
nonequilibrium statistical mechanics [1] and their applications
in a wide range of fields, such as nanotechnology, condensed
matter, or biology [1-3].

One type of Brownian ratchets are the ones known as
flashing ratchets. They consist of a spatially periodic potential
which can be switched on and off, acting on a collection of
Brownian particles. The switching of the potential makes the
system change its steady state, and a net flux of particles
might be generated. Flashing ratchets can be subdivided into
two different classes, depending on the nature of the protocol
used for the on/off switching of the potential. On one hand,
the “open-loop flashing ratchets” [1], where the potential is
switched on and off with an open-loop protocol, which is a
protocol that does not use information of the positions of the
Brownian particles to take the switching decision, for example
a periodic or a random switching of the potential. On the other
hand, the “closed-loop” or “feedback flashing ratchets” [4,5]
are those for which a subsystem, named the controller, gathers
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information about the state of the system, and it uses this
information to decide when the potential is turned on or off.
Flux induced by feedback ratchets has been computed
for different protocols [4-7], even taking into account the
possible presence of time delays [8—10]. In addition, flux
and power performance have been studied as a function of
the amount of information used by the controller [11,12].
In this paper, we address the computation of the efficiency
of a feedback flashing ratchet as an application of the recent
results on the thermodynamics of feedback-controlled systems
presented in Ref. [13]. This and other relevant recent results
[14-23] have been applied to compute the efficiency of
other feedback systems [13,21,24-26]. This recent burst of
theoretical works on the thermodynamics of feedback systems
has been accompanied by experimental realizations [27-29],
and they have made it possible to start to solve several of
the open questions in the field [30,31]. These developments
are built over the proposal of the Maxwell demon [32],
the important early contributions done by Szilard, Landauer,
and Bennett, among others [33-35], and the concepts and
formalism provided by the theory of information [36-38].
This paper is structured as follows. In Sec. I we describe the
ratchet system and the proposed feedback protocol. Later, in
Sec. III we compute the stationary flux of the system with
the protocol and the maximal output power attainable. In
Sec. IV we compute the entropy reduction due to the transfer
of information, the average on and off times, and the efficiency.
Then, in Sec. V we compare the results of maximum power
and efficiency at maximum power for feedback and open-loop
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FIG. 1. Scheme of the dynamics of the particle in the ON and OFF potentials and of the information gathering and actuation of the
controller. The system evolves with the ON or the OFF potential during a time interval At = ndt. After this time, the controller measures the
position of the particle. If it is at a site A or B, the controller switches the potential ON, whereas if the particle is at site C, the potential is
switched OFF. Then the particle evolves again during another time interval Ar until the next measurement.

protocols. Finally, in Sec. VI, we summarize and discuss the
main results of the work.

II. THE MODEL

We consider the one dimensional motion of one Brownian
particle subjected to an external constant force F. We also
consider a discretization in both space and time: the distance
between possible positions of the particles is dx, and the
particle can jump to the nearest positions or stay still each time
step 4¢. In this situation, the particle has a higher probability to
move in the sense of F' than in the opposite one, so we expect a
flux in this sense. In order to force the particle to move against
F, we introduce a potential, which is alternatively switched on
and off.

In absence of the external force, the potential Von(x) is
periodic in space with a period L, Von(x) = Von(x + L), and
in each period there are three discrete positions separated by
adistance [ = §x = L /3. We consider units of L = 1, and we
refer to these three positions as A, B, and C. For each position
the potential reads

V() ifx e A,
Von(x)={% ifxe B, (1)
0 ifxecC.

The potential can be switched ON and OFF by a controller,
introducing a temporal dependency,

V(x,t) = a(t) Von(x), 2)

«(t) being the parameter which controls the switching of the
potential,

if at time ¢ the potential is ON,

1
a(r) = o i 3)
0 if at time ¢ the potential is OFF.

The potential V(x,t) represents the potential energy of the
particle as function of the position and time in absence of
an external force. In the presence of this force F, the total
potential will be given by

Via(x,1) = a(t) Von(x) + F - x. “

See Fig. 1 for a representation of the resulting total potentials.
The probability of finding the particle at location x at time
t evolves according to the master equation

p(x,t +8t) = Ps(x]|x)p(x,t) + Ps;(x|x — 8x)p(x — bx,t)
+ Psi(x]x 4+ dx)p(x + dx,1t), )

where the transition probability between locations x and x’ =
x £ éx is [according to Kramers’ method (see Ref. [39] and
Appendix A) and using/ =6x = L/3 and L = 1]

1 —exp (—18Ddt)

; . (0
Viax",.0) = Vi (x,
+ eXp [ (X tk)BT (X t)]

Py o(8t) = Py (x'|x) = N

with D the diffusion coefficient, kz the Boltzmann constant,
and T the temperature.

If at time ¢ the potential is fixed to either ON or OFF, the
dynamics of the particle can be summarized as the dynamics of
a system with just three states (A, B,C) with jumps between
them. Denoting p,(I) the probability of finding the particle
located at site I € {A,B,C} at time ¢, the evolution of p,(I)
between consecutive time steps may be written as

D5t (A) p:i(A)
Pitst = | Pivs:(B) | =Mc - | p«(B) | =M¢ - p;, @)
Prys:(C) pi(C)
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with C € {ON,OFF}. The transition matrices may be obtained
by employing Eq. (6), and they are given by the expressions

-1 L L
T+ T+b
Morr = 1 + [1 — exp(—1881)] ﬁ -1 ﬁ (8)
b1
1+b 1+b
and
Mon = 1+ [1 — exp (—1881)]
_ Ja _ _ab b 1
Vatb o ltab o Jatb T+ab
Va b
x Jath -1 2 . 9
ab a1 _ b
1+ab Ja+b 1+ab Jatb

inunits of D/ L? = land kT = 1, and where we have defined
the quantities @ and b as

a=exp(Vy), b=exp (2) (10)

From Eq. (7), the evolution of the system after n time steps
while the potential remains ON or OFF is given (for C = ON
or OFF) by

Prynse = (Me)" - py, (11)

and then the transition probability from state [ to state I’ in n
time steps, PC(")(I’ll), is given by

P{"(A|A)  P{(AIB) PY(A|C)
P(BIA)  P(BIB)  PU(BIC) [ = M) (12)
PEClA) PECIB) PE(CIO)

We propose the following protocol for the controller’s
actions. On one hand, if the controller measures the position
of the particle at C at time ¢, it sets the potential OFF between
t and the next controller’s action at ¢ + nét, and thus the
probability of the particle to go to the left is slightly higher than
to go to the right. On the other hand, if the controller measures
the particle at site A or B, it sets the potential ON, so that
the probability of the particle going to the right is increased.
This protocol is summarized in Fig. 1.

—_
|®' +|_ -
S

-2 0
(n)  ~
M i 1+ 18A¢ 1 -1 =5
1 1 -1
—b>+b+1
-2 0 (1+by?
2 b>4+b+1
—2b
0 0 a5

As we can see from this expression, the evolution depends
both on the time interval between the controller’s actions
At and on the time discretization §¢. In the continuous
time limit, the terms proportional to 8¢ and higher orders
go to zero, and we get an evolution matrix that depends
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Let us explain the protocol in more detail. Assume at time
t the particle is at site C, and the controller does a measure of
its position. The potential is then turned to OFF, and it remains
OFF during a time interval At = ndt, where we have defined
At as the time interval between two consecutive controller’s
actions. Then the probability to measure the particle at site /
at time t + At is, by definition, P(()'?F(I |C). Analogously, if
the particle is initially located at site B, the controller switches
the potential to ON, and the probability to find it at location
I at time ¢t + At is given by P(()’I’\}(I|B). Hence, the transition
matrix with the controller’s actions each At is given by

PGR(AIA)
M" = | PSU(BIA)
PE(CIA)

PU(AIB)
PS(B|B)
PU(CIB)

PSR(AIC)
PSpe(B|C)
P(CIO)

13)

Itis possible to obtain an analytical expression of this evolution
matrix by computing the eigenvalues and eigenvectors of
Egs. (8) and (9), decomposing them to their diagonal form
and then computing the n power of the matrices. We do not
reproduce this result because its expression is very involved.
However, in the limit At < 1 (i.e., in the limit of very frequent
controller’s actions), this evolution matrix is much simpler, and
it reads

Ja ab b

1
Jatb ~ Ttab  Jatb  1+b
n) _ Ja b
M"™ =1+ 18A¢ NZY) -1 =3
ab \/E -1
14+ab Ja+b

+ O(Ar). (14)

In most of the cases we consider through this work this first
order approximation on Ar is sufficient. However, in some
other cases it might be interesting to consider an extra term on
this Taylor expansion series. The resulting expression is very
involved, so we do not reproduce it. Nevertheless, in the limit
that the potential height is much higher than the external force
(more precisely, in the limit @ > b?), it is reduced to

b2—2b—2
4 0 (1+b)?
2 —2b2—2b+1
+162A1%| =3 1 =2l
b2 +4b+1
-1~ (1++b>J2r
+ O(A) + OG1). (15)

(

solely on the time interval between control actions A¢. (The
continuous time limit is taken making 6t — 0 and n — oo
with fixed At = nét.) In the next section we discuss why
this limiting case corresponding to a > b?> is physically
relevant.
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FIG. 2. (a) Force that gives the maximal output F* and (b) maximal power output Py, both as functions of the potential height V; for
different temporal discretizations 8¢ for the case n = 1, i.e., when the time between the controller’s actions A¢ coincides with the discretization
time 8¢, At = ndt = &t. Solid lines correspond to the analytical approximations for the limiting cases V <« 1 and V > 1 [respectively, Egs. (20)

and (21)].

III. DYNAMICS: FLUX OF PARTICLES

The evolution equation of p,(I), with the controller’s

actions each Ar,
Prrar =M - p,, (16)

defines a time-invariant Markov process. This process con-
verges to a stationary state [40], described by the stationary
distribution p{, which is given by the system of equations

) — M . p,

(17)
P(A) + p™(B) 4 p™(C) = 1.

J

In this stationary state, the average net flux of the particle
to the right is

I = pM(A)IS(A) + p(BYIGIB) + pM(C)IS(C),
(18)

where J(()?F(C ) is the mean flux during n time steps if
the particle starts at site C and the potential is OFF, and
analogously for Jgf\? (A) and Jgf\}(B) if the potential is ON and
the particle starts from A or B, respectively. The computation
of Eq. (18) is given in Appendix B.

A. Results forn =1

For n = 1, the time between the controller’s actions At coincides with the discretization time 8¢, At = ndt = 8¢, and the flux

in the stationary state is

M _ 1 — exp(—1861)

(—+/ab® —b* +ab + )a

J . (19
s St 4a2b? + 6a3/2b3 4 3ab* + 4a2b + 5a3/2b? 4 2ab3 + 2ab + 2/ab? + b* + 3a + 3./ab + b? (19)
[
From this expression, one can obtain the stopping force, whereas for Vy > 1,
which is defined as the force that cancels the flux. For big 1 — exp(—1867)
enough potential heights, Vy > kgT, the stopping force is F* ~ 3.835, jéll;x ~ 0.05446p—,
Fiop = %VO, whereas for small potential heights, Vy < kgT, 8t (21)

itis Fyop = %Vo. In both limiting cases, the stopping force is
proportional to Vj, as found in the continuous case [11,12].
We can also look for the force F* that maximizes the mean
power P = J(VF at fixed V. The equation that gives F*(V;)
is very involved, so we do approximations for small and large
enough values of Vj. Then we find that for V) < 1 (in units of
kpT),

F* E T 1 — exp(—1861) .
g’ M 726t ’ (20)
P 1 — exp(—1861) V2
e 57658t 0

1 — exp(—1861)
St '

The force F* is represented in Fig. 2(a). We observe
that the numerical value of this optimal force fits well
with the approximations given in Egs. (20) and (21), in the
corresponding regimes of small enough and big enough V.
Figure 2(b) plots the dependency on Vj of the maximal power
output. As for F*, this maximal power output fits well with the
approximations in Egs. (20) and (21) in their corresponding
regimes. In particular, it is important to remark the existence
of an upper bound of the power output, which depends on
the discretization time §¢ but for small enough §¢ converges

Prax ~ 0.2088
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FIG. 3. (a) Force that gives the maximal output F* and (b) maximal power output Py, both as functions of the potential height V; for
different measurement times At. In both figures, we have taken values of ¢ <« At (exactly, 6t = Ar/100), so the discretization effects are
negligible. (The limit ¢ — 0 and n — oo with fixed At = nét corresponds to the continuous time limit.) In the limit V, — oo the maximal
power output reaches a constant value which depends on At (see Sec. III); i.e., the particle cannot extract an arbitrary large power with
this protocol. Moreover, the power output reaches its maximum values for Vy = 10 whereas the force that maximizes this power output is
F < 3.8. Hence, the limit a > b is justified when the system works at maximum power output. Solid lines represent the analytical expressions
obtained for F* and Py, in the limit a 3> b? (see Sec. III). For big enough potential heights, they work well for small enough At, whereas for
At > 1072 the differences between the numerical results and the analytical expressions become greater. The analytical limit for Ar = 107! is

not represented since it differs greatly from the numerical result.

asymptotically to a maximum value. Hence, we can conclude
that the particle is not able to extract an arbitrarily large power
with this control protocol.

B. Results forn > 1

For n > 1, the time between the controller’s actions At is
greater than the discretization time 8¢ (At = ndét > 4t). In this
case, we also start by computing the different contributions to
the average net flux in Eq. (18). The term J(()';)F(C ) is indepen-

dent on n, and can be computed explicitly (see Appendix B),

—exp(—1881) 1 —b

1
(n)
Jore(C) = 351 140

(22)

Nevertheless, the computation of J(()'}\)I(A) and J(()’;\;(B) is more

complicated, and in general it has to be done numerically,
using, for example, the method described in Appendix B. Nev-
ertheless, one can obtain an analytic expression for a limiting
case. We see in Fig. 3 that for big enough values of V, the maxi-
mal power output reaches its maximum value and the force that
maximizes the power does not depend on Vj. In this regime,
the optimal force F™* is 3.8, while Vjy > 3.8. Then, in order to
maximize the power output the value of the potential height
should be greater than the force, and due to the properties of the
exponential function, this implies that a should be some orders
greater than b [defined in Eq. (10)]. Hence, the approximation
a > b* should work very well close to the maximum power
output state of our system. In this limiting case we achieve
simple expressions for the flux terms of Eq. (18),

I8 (A) ~ =545+ 5401+ O(AP),
a>b-

(n) 2 (23)
JSR(B) = 6 —54A1 + O(AF?).
a>b3

Then, replacing Eqgs. (22) and (23) and the solution of Eq. (17)
in Eq. (18), we achieve the expression for the stationary flux.
However, if one does the approximation made in Eq. (14), i.e.,
keeping just the leading order terms in At in the evolution
matrix, one does not obtain the dependency on At of the flux.
One must take into account an extra order [Eq. (15)] in order
to obtain

@ 9 _gb(b2+3b+1)
ast* 20+b) 2 (1+b)
811+4+b—2b>—b°
2 d+bP

At

5t + O(Ar%).  (24)

The third term of this expression, which is proportional to
8t, is due to the discretization of the time coordinate and it
would vanish in the continuous time limit §z — 0 together
with terms of higher powers of éz. (The continuous time limit
is taken making §¢ — 0 and n — oo with fixed At = nét.)
Using this expression, we obtain that in the limit a > b3,

the force that maximizes the power output and this maximal
power output read

F* ~ 3.835 — 133.1(At — 81) + O(Ar?),

25)
Paax ~ 3.759 — 142.2A¢ + 108.451 + +O(A).

In Fig. 3 the maximal power output and its corresponding
force are represented as functions of the potential height Vj
for different measurement times Af in the case 8t < At
(negligible discretization effect). From Fig. 3 it can be seen
that, in the limit V; > 1, the force needed to maximize the
power output is always much less than the potential height,
so the approximation a > b* suits well the maximum power
configuration. We can also note that the maximal power output
reaches a constant maximum value (which depends on At) for
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big enough Vj; i.e., it is not possible to extract an arbitrary
quantity of power from this system.

IV. THERMODYNAMICS: ENTROPY REDUCTION
AND EFFICIENCY

In feedback-controlled systems the controller uses in-
formation on the state of the system to operate on the
system. This information effectively implies an additional
specification of the macrostate and thus a reduction of the
microstates compatible with the macrostate. This implies an
effective reduction of the entropy of the system [13], which
has implication on the attainable power output and gives
an effective free energy contribution that has to be taken
into account to consistently study the thermodynamics of
feedback-controlled systems, in particular in the computation
of their efficiency. In fact, the main difficulty in the study
of the thermodynamics of feedback-controlled systems is the
computation of the entropy reduction due to the measurements
and actions of the controller. We use here the method developed
in Ref. [13] to compute the entropy reduction when successive
controller’s actions are correlated. We represent the successive
controller’s actions by a stochastic process C;, with C;, = 0 if
the potential is set OFF (i.e., the particle is measured at C) at
time ¢ and C; = 1 if the potential is set ON (i.e., the particle is
measured at A or B).

A. Entropy reduction in feedback-controlled systems

For frequent feedback control the correlation between
the controller’s action diminishes the entropy reduction. In
Ref. [13] it was shown that in these cases the entropy reduction
depends on the whole history of the controller’s actions and
on the state of the system at the measurements times. Then
the entropy reduction due to N consecutive actions of the
controller, happening at times #;,1,, . .. ,fy, iS given by

N
TASito = —H(Cry.....C)+ D HC,IC, ... .Cor. Xy,

k=1
(26)

where X, denotes the state of the system at time 7 (X, €
{A, B,C}), H(C,,, ...,C,)is the joint entropy of the variables
{Cy,....Cy}, and H(C,|Cy, ,,....Cy,X,,) is the conditional
entropy as usually defined in information theory, H(Y|X) =
Y ex POHYIX =x)= =¥,y .y p(x,y)In p(y]x) (see
Ref. [36]), but with the logarithm in base e. A detailed
discussion of Eq. (26) and its consequences is provided in
Ref. [13].

In the case under consideration, the controller is said to
be deterministic, as the controller’s action C, is perfectly
determined by the state of the system X, and the past control
actions (C,_,, . ..,Cy,). Consequently, the second term on the
right-hand side of Eq. (26) is exactly zero. Thus, the entropy
reduction is then just given by minus the joint entropy,

TASinfO = _H(CTNv e 9611)
= Z p(Ci, =cn, ...

G = c). 27)

’Cl] = cl)

x InpC, =cn, ...

PHYSICAL REVIEW E 93, 012142 (2016)

In information theory, this is the Shannon entropy of the
sequence of the controller’s actions (the difference is simply a
factor In 2 for the change of base of the logarithm).

The explicit computation of Eq. (27) is still a complicated
issue, as it involves the joint probability p(C;, = cy, ...,C;, =
c1). Starting from an arbitrary initial distribution, a large
amount of simulations would be needed, so in practice it
is almost unrealizable. However, when the system is in the
stationary state it is possible to obtain some bounds, as we
show in the following.

B. Entropy reduction rate of the system in the stationary state

We denote by p,(c) the probability to have at time ¢ the
controller’s action C; = ¢, with ¢ = Qor 1. These probabilities
can be computed directly from the probability distribution of
the particle location,

pi(0) = pi(C),  pi(1) = pi(A) + pi(B). (28)

where we have used that in our protocol the potential is turned
to OFF when the particle is at site C and to ON when it is
elsewhere.

The transition probability between two controller’s ac-
tions ¢ at time ¢ and ¢’ at time t+ Ar is denoted by
P™(Cpnr = ¢'|C, = ¢). If the action at time 7 is ¢ = 0, the
particle must be at site C and the potential must be OFF, so
the transition probabilities from ¢ = 0 are given by

P (Criar = 0IC, = 0) = Py(CIC), 09)
P (Cryar = 11C = 0) = Pga(AIC) + PGpe(BIO).

If the action at time ¢ is ¢ = 1, the particle might be located at
A or B, and the potential has to be ON. Then the probability to
go to C (or to have the action ¢’ = 0) at time 7 + At involves
the conditional probability to be at A or B knowing thatc = 1,
and the transition probabilities from A or B to C with the
potential ON,

pi(A) (n)
pi(A) + pi(B) Fon(C1A)

(B n
Pz(Al))fF ;:(B) PECIB). (30

In the same way, the transition probability fromc = 1 toc’ = 1
is

P(n)(CH-At =0IC,=1)=

ﬁ(n)(cz+At = 1|Cr = 1)
_ pi(A)
~ pi(A)+ pi(B)
pi(B)
p:(A) + pi(B)

Then we can express the evolution of the probability distribu-
tion of the controller’s action as

Py =M B, (32)

[PER(AIA) + PSu(BIA)]

[PR(AIB) + PSI(BIB)]. (1)

where p\” is the vector containing the 5."”(c) [Eq. (28)], and
M isthe 2 x 2 matrix with elements 2" (C,;.a, = '|C; = ¢)
[Egs. (29)—(31)]. The transition matrix 1\715") depends on time
through the location probabilities p,(I), and as a consequence
the evolution defined by Eq. (32) is not time invariant.
However, in the stationary state of the system, the location
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probabilities p,(/) do not depend on time anymore, and
therefore the transition probabilities P"(C;1a; = '|C; = )
do not depend on time either. We denote by P(c’|c) the
transition probabilities when the system is in the stationary
state. The controller’s actions then satisfy

p =M" - p, (33)

a(l + b)2a’*b + 3b3/a + b* + 4ab® + Ja + b)

PHYSICAL REVIEW E 93, 012142 (2016)

where P is the vector containing the 5(c) and M is the
2 x 2 matrix with elements P"(c’|c) which represent the time
evolution of the system in the stationary state. This matrix can
be expressed in frequent control Az < 1 limiting case as

—1

MY =1+ lSAt( :

—Xx> +O(A), (34)

where we have defined the parameter x as

X =

From Eq. (34) it is easy to prove that the zero order
approximation on At for the stationary state is

1 X
5 _
N —X+1<])+(9(At). (36)

This frequent control limit A < 1 is taken after the contin-
uous time limit (§¢— > 0 and n — oo with fixed At = nér);
therefore, §t < Ar < 1.

Unlike X; (the position of the particle at time t), C; is not
a time-invariant Markov process, since the probability to go
to the state C; A, does not depend solely on the previous state
C,. For example, provided the potential at time ¢ is set ON, we
cannot know the probability of remaining ON in the next time
step, since we do not know if the particle was at site A or B
at time ¢. The evolution matrix in Eq. (34) is solely valid in
the stationary regime, when the probability distribution of the
particle’s position is fixed. Hence, the joint entropy in Eq. (27)
cannot be computed using general results about time-invariant
Markov processes [36].

Assuming that the system is in the stationary state at 7, the
reduction of entropy after N actions of the controller, for N
large, is given by

TAS = —H(Ciprn—1yars - -

info

Cy) =—NH(C), (37)

with H(C) the entropy reduction rate. Since the process C,
is not a Markov chain, this rate cannot be reduced to the
conditional entropy H(Cy+a:|Cy,). That is the reason why,
instead of computing the exact value of the entropy reduction
rate, we set bounds to it. Although C; is not a Markov chain,
it is a deterministic function of the position X,, and X, is a
Markov chain. Hence, the entropy reduction rate has upper and
lower bounds (see Appendix C and Ref. [36] for details),

H(Cpanar | Corav—nars - - Cip Xay)
< H(CO) < H(Cysenar | Corv—viar ---.C),  (38)
and, in particular,
Hiow < H(C) < Hyp, (39)
|

1
Ap—How =~ —pP(H)Y) [P M (c|A)In
PP A<M (B) ¢=0

(Va + b)(2a2b? + 4a32b? + 2ab* + 2a%b + 3a3/2b? + ab® + ab + 2\/ab? + b® + 2a + 3b/a + b?)’

(35)

[
where we have defined H,qy and H,, as

I:Ilow = H(CIO+AI | Ctovxto)a I:Iup = H(Cto+At | Czo)~ (40)

It is important to note that the upper bound H,, coincides
with the expression of the entropy reduction rate for a
Markovian sequence. Thus, the difference Hy, — Hioyw will
give an estimate of the departure from the estimation obtained
with the Markovian expression Hyy.

Using both Eq. (39) and the expression of the conditional
Shannon entropy,

H(I1J) ==Y P()Y_ PGl)HInPGlj), (41
jeJ iel
we are going to compute these upper and lower bounds for
the entropy reduction rate. On one hand, the upper bound of
this entropy reduction rate (the expression for a Markovian
sequence) reads

5 X
Hyp=—-18—"—[4In3+2In2 -2 +1
up x+1[ n3+2in +Inx

+21In(AD]AT + O(AL). (42)

On the other hand, in the computation of the lower bound one
must take into account that H(Cyya; | Ciy, X)) = H(Cppyar |
X4,), due to the fact that the evolution is fully determined by the
position and not by the ON-OFF state. The resulting expression
is very involved and we are not going to display it. We just
comment that for small At (frequent control) it behaves as
the upper bound, with terms proportional to At and At In At,
when the second order terms in At are negligible. Instead
of writing the expression of Hyw, we show the difference
between both bounds, Hy, — Hiow, When the probability of the
particle being at A is much smaller than the probability of
being at B,p"(A) <« p"™(B). Although this approximation
might seem arbitrary, it suits well the maximum power output
configuration. For example, for a force near 3.8 and a potential
height much greater than 3.8, the set of values which maximize
the power output (see Fig. 3) gives p(A)/p™(B) ~ 0.12.
Using the approximation p™(A)/p™(B) < 1, we obtain

PYC|B) | ) AT
P+ P - P <c|B)}+o [ ] L@

p(B)
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FIG. 4. Lower bounds of entropy reduction rate per control action H,q, in panel (a) and per time unit H,o, /At in panel (b) as functions of
the time between the controller’s actions At for Vo = 20 and F = F*(V}, Ar) (force that maximizes the power output). The time step has been
chosen small enough (6t = Az/100) to make the discretization eftects vanish. (The limit §# — 0 and n — oo with fixed At = nét corresponds
to the continuous time limit.) The upper bounds, not represented, present a maximal deviation from the lower ones of 2 x 10~% % (because the
evolution is very close to be Markovian). We can see how in the limit Az — 0 (continuous control) the entropy reduction rate per controller’s
action goes to zero, whereas the entropy reduction rate per unit time diverges logarithmically. Moreover, for At 2 1 the entropy reduction per
control action reaches a constant value, since in this case the system reaches equilibrium before the controller acts and then the value is the
same regardless of the time interval between control actions; and the entropy reduction per unit time goes to zero due to the large time interval

between consecutive controller’s actions.

where we have restated the difference in terms of P®(c|A) and
P™(c| B), which give the probabilities to have the controller’s
action ¢ = {0, 1} in the next measurement if the particle is in A
or B in the present measurement. It is important to note that in
the limit p{"(A)/p{"(B) — 0 we have H,, — Hiow — 0, and
H,o,, becomes equal to the value for a Markovian sequence,
Hyp. Therefore, p™(A)/p™(B) < 1 is a quasi-Markovian
approximation.

In the maximum power output configuration, we have
a > b* and At < 1, implying P™(c|A) = P"™(c|B) for
c = 0or 1 [see Eq. (15)], so the difference between the upper
and lower bounds of H(C), given by Eq. (43), is of second
order in pg”)(A)/ pg”)(B). Hence, we expect a very small
difference between Hioy and Hy, in the maximum power
output configuration.

Since both bounds Hiy, and H,, go to zero in the limit
At — 0, the entropy reduction rate H(C) goes to zero in
the limit At — 0; i.e., the entropy reduction per controller’s
action, when it acts continuously, is negligible. On the other
hand, and with the same reasoning, the entropy reduction
rate per unit time [H(C)/At] diverges logarithmically in
this limit. In Fig. 4 are represented the lower bounds of
both H(C) and H(C)/At as functions of At for Vy =20
and its corresponding optimal force F = F*. The upper
bounds are not represented since the relative distance with
the lower bound is extremely small,with a maximum around
2 x 1078 % for the represented case. (For other cases the
deviation might not be so negligible. For example, for V =1
the deviation is of the order of 0.07% or less.) This fact shows
that, although the evolution of the variable C, is not strictly
Markovian, the error made if one assumes a Markovian evo-
lution is extremely low for configurations at maximum power
output.

C. Characteristic ON and OFF times

Before obtaining the efficiency of the system with this
feedback protocol, we compute other important variables: the
average times that the potential will be set ON or OFF before
being switched by the controller. We refer to these times as
ON and OFF times, respectively, and they are denoted by (fon)

and (toFr).
The average time in which the potential is ON is just

oo

(ton) = Z Pé%)NAI,

N=1

(44)

where we defined 7781\? as the probability of having the
potential ON during N — 1 controller’s actions and then
switched to OFF in the N'th action,

P = POV D)), (45)

Then, by replacing now in these expressions Eq. (29) and
computing the summation of the series, we get

A 1
! — + O(A1),

1 e ——
o) = B = T8y

(46)
with x given by Eq. (35). Similarly, the average time in which
the potential is set OFF is

A 1
! — 4+ O(A?).

Pw(1)0) 18 “7)

(torr) =
Since the parameter y is always less than 1, we have (topp) <
(ton). However, for big enough potential heights x tends
to 1, and then the ON and OFF times become similar. For
example, for V) = 20 and F = 3.8 (a maximum power output
configuration), (foN)/{torr) =~ 1.0001 4+ O(A?).
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D. Efficiency

Now we have all the elements required to compute the
efficiency of this system in the stationary state. We follow
the definition of efficiency for isothermal feedback-controlled
ratchets provided in Ref. [13]. We denote W the average output
work achieved per time step, Q the eventual heat transfer,
— AU,on the internal energy transfer from the controller to the
system, and A S.oy the entropy increase of the controller. With
this notation the first and second laws of thermodynamics read

AUcon + Q+ W =0,

(48)
TAScon+ Q = 0.
It is then natural to define the efficiency as
w
n =1, (49)

B TAScont - AUconl -

where T AScont — AUcon: gives the maximum energy that can
be converted into work, the free energy.

In this expression, the mean output work extracted from the
system in At is just

W = AtJ™F. (50)

When it comes to the energy transfer from the controller to
the system, — A U.qy, there are two contributions. The first one
arises when the particle is at site C at time ¢, with the potential
OFF, and at site A at time ¢ + At and the controller turns
the potential to ON, since the particle then feels a potential
increase of V| and carries an energy transfer of

AUSITFZAON — _ pl (AIC)p™(C)Vp.  (51)

The second one happens when the particle, starting from a site
C and with the potential OFF, reaches a site B and the con-
troller turns the potential to ON, the particle feels an increase
of its energy of V)/2, and then the energy transfer reads

AUSSF BN = _PRBIOPIC)L.  (52)
Thus, the energy transfer during the turning on, AUSFF—~ON,
is given by the sum of Eqgs. (51) and (52). The energy transfer
during the turning off of the potential is zero, since at sites C
the energy levels do not change.

Finally, the entropy increase of the controller is at least
the entropy it takes from the system during the controls,
TASeom > —TASY) = H(C). Thus, the maximum attainable
efficiency is

w
_I:Ilow + AUOFF—)ON :

cont

Nup = — (53)

The efficiency at maximal power (F = F*) as a function of
Vo for different measurement times is shown in Fig. 5. There
we can see that there exists a maximum attainable efficiency
for a value of At near 1072. We can also appreciate that, in
the most favorable scenario, working at maximal power the
system seems very inefficient, with a maximum value of 7
around 2.7%.

In order to show that there is a value of At for which the
efficiency at maximal power presents a maximum, in Fig. 6 we
represent the maximal efficiency at P, for different values
of At. In this figure it can be seen that the efficiencies are not

PHYSICAL REVIEW E 93, 012142 (2016)
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FIG. 5. Upper bound of the efficiency, 7,,, at maximal power as
function of the potential height V;, for different values of Ar. The
time step has been chosen small enough (§r = Az/100) to avoid
discretization effects.

very high, with a maximum value around 2.7% for At ~ 1072,
Moreover, for large enough At the maximal efficiency is zero;
i.e., the controller acts so rarely on the system that it does not
succeed to move the particle against the load force F.

V. COMPARISON WITH THE OPEN-LOOP PROTOCOL

In previous sections, we have studied the maximal power
output and the efficiency at this maximal power output
configuration in the feedback protocol proposed in Sec. II.
Now we will compare these results with those corresponding
to an open-loop protocol, for which the potential is switched
alternatively to ON and OFF periodically. The relation of the
results of both protocols will highlight whether the feedback
protocol is worthy or not for this kind of system.

First of all, the evolution matrix in a period of nys time
steps with the potential OFF and then n, time steps with the

3
o)
o
o
~ 2 o 1
& o
% q )
=
1 © 1
o
o
o
%
0 6 ‘_5 ‘_4 ‘.3 ‘-2 ‘-1 G')0
10 10 10 10 10 10 10

At

FIG. 6. Maximal efficiency at maximal power output, 7y, as
function of Ar. For each At the discretization time step 8¢ is two
orders smaller, in order to avoid discretization effects. Near At ~
102 there exists a maximum of efficiency, with a value 2.7%. On
the other hand, for big enough Ar the maximal efficiency is zero,
which means that the time between control actions is so large that the
controller is not able to force the particle to move against the external
force F.
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31 O no feedback X ,
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FIG. 7. Maximal power output Py, as a function of the potential
height V, for the open-loop flashing ratchet with a temporal
discretization of §t = 5 x 1078, and for the feedback flashing ratchet
with measurement interval of A7 = 1072 and 10~3. We chose these
measurement time intervals because for the open-loop protocol the
maximal power output occurs at fy ~ fo ~ 1073, and the maximum
efficiency for the feedback ratchet was achieved at At ~ 1072 (see
Fig. 6). In this figure it is shown that the feedback protocol increases
notably the maximal output power for the system.

potential ON is
Pt+(nontnom)dt = MonNonMor;)gpz» (54)

with Mopr and Moy the matrices expressed in Eqs. (8) and
(9), respectively. In the stationary state of the system,

Ps = Monl\(ano’?g Ps; (55)
we obtain the flux of particles
Js = ps(A)J(A) + ps(B)J(B) + ps(C)J(C),  (56)

where J(A),J(B) and J(C) are the fluxes when the particle is
initially at A, B, and C, respectively. The flux J(A) reads
J(A)=—— [noffJOFF+non > Pé’;"l?)(X|A>Jé;§">(X)},
Noff +Non X={A.B,C}

(57

where Jopp is the flux when the potential is OFF, and is given
by Eq. (22), while JJu”(X) is the flux when the particle is
initially set at X and evolves during n,, time steps. J(()';\‘}“)(B)
is computed in Appendix B 2, and Jo”'(A) and J 4 (C) can
be obtained in the same way. The other quantities J(B) and
J(C) have analogous expressions.

Once the stationary flux has been obtained, the power output
isjust P = J;F. The efficiency 7 of this open-loop protocol is
obtained following the procedure described in Sec. IV D, now
without any entropy reduction terms due to information,

_ w < Prax(ofs + non)dt
—AUcont  Volgs(A) — ps(A) + Lgs(B) — pu(B)}
(58)

n

where (, is the stationary state just before the potential is
turned ON, q, = Mgieps.
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FIG. 8. Efficiencies n for the cases plotted in Fig. 7. This figure
shows that the efficiencies for the open-loop protocol are similar to
the efficiencies for the feedback protocol.

Figure 7 shows the maximal power output for an open-
loop flashing ratchet with a temporal discretization of 8¢ =
5 x 1078 and for a feedback ratchet with measurement times
of At =102 and 1073 as function of the potential height,
Vo. We chose these measurement times since the open-loop
protocol operates at maximal power for OFF and ON times
around 1073, and for the feedback protocol the maximum
efficiency is reached at At ~ 1072, We note that the power
output is notably greater for the feedback protocol than for
the open-loop protocol, showing that the use of information
increases the attainable power output. Figure 8 shows the
efficiency at maximal power output for the previous cases.
The efficiency for the open-loop protocol is of the same order
as for the feedback protocol. Hence, we can conclude that
feedback ratchets can extract more power than open-loop
flashing ratchets, with a similar efficiency. The question now is
where this power increase comes from. In Fig. 9, a comparison
of the input energy rate for open-loop and feedback ratchets
[—AUcont/(ton + torr) and —AU on/At, respectively] shows
that feedback increases the energy input rate. We also see in
this figure that, in the feedback ratchet, the contribution to the
free energy rate from the entropy reduction 7 AScon /At due
to the controller is of the same order as the input energy rate,

120 -3
[0} o Fdbk At=10
1(1?1007 +++*XX+;+ o enery
+4+++++ ¥ &%
3 gor ++7* r « 0 it TAScont
o + o o -2
& 6ol _x B Fdbk At=10
S o %3 energy
40y, X ™ D
5 x B ooooOoOo TASont
2 200 ,»" 50000 No fdbk
- O@éooq ‘ ‘ O energy
0 5 10 15 20
VO

FIG. 9. Inputenergy rate — AU,/ At and contribution to the free
energy rate from the entropy reduction 7 AS,,,./ At for the feedback
ratchet compared with the input energy rate for the open-loop ratchet
—AUcont/(ton + torr), as a function of the potential strength V, for the
cases plotted in Figs. 7 and 8.
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for the case that gives the maximum efficiency, At ~ 10~ and
V() ~ 8.

VI. CONCLUSIONS

In this paper we have computed the efficiency at maximum
power of a feedback ratchet. The main difficulty is the
computation of the entropy reduction when, as in this case,
the controller’s actions are correlated. The recent paper [13]
showed how to compute this entropy reduction in terms
of probabilities of the possible sequence of the controller’s
actions, and applied it to solve simple cases. However, for
most feedback ratchets the sequence of the controller’s actions
is non-Markovian and the computation becomes involved.
Here we have introduced an alternative procedure to set strong
bounds to the entropy reduction in order to compute its value.
This procedure can also be applied to other feedback ratchets,
and more generally to other control systems.

The maximum power output depends not only on the time
interval between consecutive measurements of the position
of the particles, but also on the time discretization. However,
when the discretization time is some orders of magnitude less
than the time between measurements, the continuous time
limit is reached; i.e., the maximum power output becomes
independent of the discretization time.

Once the output power was computed, we aimed to obtain
the efficiency of this feedback ratchet. From the first and
second laws of thermodynamics, it is possible to define an
efficiency [13]. In this efficiency the increase of entropy of
the controller due to the process of measurement plays a
crucial role. This increase of entropy of the controller is at
least (if not greater than) minus the reduction of entropy of the
system. This computation of the entropy reduction is involved
when, as in this case, the sequence of the controller’s actions
is non-Markovian. However, we have obtained an upper and
a lower bound for the entropy reduction. The upper bound is
the same as for a Markovian sequence, while the lower one
is evaluated in a quasi-Markovian limit, which emerges when
there are big differences between the stationary probabilities
of the system states. These big differences are an effect
of potential strength, which minimizes the departures from
the Markovianicity of the sequence of control actions, also
making it possible to minimize the departures from the optimal
performance of the system. We found that both bounds are very
close to each other when the system works at maximum power.
Hence, we could estimate the efficiency at maximum power
with great precision.

The reduction of entropy per control action depends on
the time between measurements (i.e., depends on the time
between the controller’s actions). However, if the time between
measurements is large enough the system reaches a steady
state before the controller acts, and then the decrease of
entropy is always the same and it does not depend on
the time between measurements. On the other hand, when
the time between measurements, At, is small enough, the
entropy reduction per control action goes to zero. However,
it decreases as At In Az, and then the entropy reduction of

the system per unit time diverges logarithmically in this limit,
ASf:QO /At 0 In At. Nevertheless, we do not expect that
—

in experimental realizations this divergence appears, since our

PHYSICAL REVIEW E 93, 012142 (2016)

model will represent the real system until a certain small value
of At, and this value gives a lower cutoff for the theory.

With the previous result, we obtained an upper bound to
the efficiency of this proposed system, and we got that they
are lower than or similar to 2.7% when the system acts at
maximal power output. We also showed that the efficiency
has a maximum for measurement times At ~ 1072 in the
temporal units of L?/D, with L the spatial period of the
potential and D the diffusion coefficient of the system. As
L?/D is the characteristic time of diffusion over a distance L,
this means that maximum efficiency operating at maximum
power is obtained measuring and actuating with the control
at time intervals 100 times shorter than the characteristic
time of diffusion over a period. This implies for spherical
particles of radius » in a medium of viscosity 1, a time interval
of At = 10’2%2 = 10’2::—;L2r. This range of values of At
can be tested experimentally. For example, if the diffusion
coefficient is of the order of 0.1 um?/s (approximately that
given by the Stokes-Einstein formula for particles of 1 um
inside water at 300 K) and L is of the order of 10 um, the
optimal measurement time is around 10 s, and it is very easy
to design a controller which measures positions every 10 s.

Finally, we compare the result of the proposed feedback
ratchet with its open-loop counterpart. We found that the
feedback protocol increases notably the maximal attainable
power output, with a similar efficiency at maximum power.
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APPENDIX A: JUMPING PROBABILITIES

Consider a Brownian particle in a one-dimensional double-
well potential, like the one represented in Fig. 10(a).

Uz)t

IS}

=
8

—
o
fet

FIG. 10. Potentials and jumps considered in Appendix A. In panel
(a), a scheme of the double well is shown. In panel (b), a scheme of
the finite jump potential is plotted.
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The probability density function satisfies the Fokker-Planck
equation,
1

& o0 = (LU (x)p(x,0)] + D o3 p(x,1),  (Al)
with p(x,t) the probability density at time ¢, and D and y the
diffusion and friction coefficients (which are related through
Einstein’s formula kg T = Dy). Following Kramer’s method
as described in [39], we want to reduce the population density

dynamics to a two-discrete-states system dynamics, described
by the master equations

pa(t + At) - Pc—)a : Pc(f) + (1 - Pa—>c) : ,Oa(f),
ot + At) = Pyse - )Ou(t) + (1= Pesy)- pc(t)~
In the above equation, p,(¢) and p.(¢) are defined by

(A2)

b +00
pe(t) = / dx p(x,1), pa(t) = f dx p(x,t).  (A3)
b

—0Q

We also define the stationary probabilities

b +00
P = f dx p*(x), P} = f dx p'(x), (Ad)
—00 b
with the stationary distribution function
U(x)
‘xX)=N - , A5
p°(x) eXp[ kBT} (AS)

where N is a normalization constant. We assume that the
relaxation is fast in each well, so that the distribution p(x,?) is
given by the stationary distribution, with different amplitudes
in wells a and ¢, so

p’(x) - fo(t) forx < b,

(A6)
pf(x) - fu(t) forx > b.

p(x,t) = [

Integrating this relation on each side of b and using Eqs. (A3)
and (A4), we get

pc(t)
I3

Pa()
P

p(x) - forx < b,

A7
P - (A7)

p(x,1) = {

for x > b.

Replacing this expression into the Fokker-Planck equation

PHYSICAL REVIEW E 93, 012142 (2016)
with

?”dx_] X“dx_l
L - R L

Using these expressions in Eqs. (A2) and (AS8), we get that the
jump probabilities read

re _
P-_> — 1 —e (ro+re)At ,
e = rc( )
. (A10)
P L= a 1— —(ra+re)At .
a—sc -t rc( e )

In the case of the potential of Fig. 10(b) with a finite jump U
at x = [ and absorbing boundary conditions at x = 0, 2/, and
assuming that the equilibrium positions ¢ and a are located
at x =1/2 and x = 3[/2, respectively, we find the jumping
probabilities

1 (1 _ef2DAt/12)
1 +exp(=U/y D) ’

b _ _exp(=U/yD)
a—>c —
1 +exp(=U/y D)

Pc—)a =

(A11)
(1 _ e*ZDAt/lz).

Finally, using Einstein’s relation y D = kT and units of L =
1, these equations are reduced to Eq. (6) for/ = L/3.

APPENDIX B: COMPUTATION OF THE FLUX

The flux of particles to the right between times ¢ and ¢ 4 né¢
is defined by

Xt +nét) — X,,(¢)
nét

J[=

1
= EZx[p(x,t—i-nSt)—p(x,t)], (B1)

where X,,(¢) is the mean position of the particle at time .
Using the master equation

n

[Eq. (AD)] gives p(x.t +nét) = Z P™(x|x + kéx)p(x + kéx,t), (B2)
k=—n
0;0a(t) = =14 pa(t) + 7 pe(t),
o P P (A8) we have
01 0c(t) =g pa(t) — 1 pe(t), |
1 n
J=—Yx Z P™(x|x + kdx)p(x + kéx,1) — p(x,1) |. (B3)
nét . =
With the change of variables x — x — kéx, we get
1 n
J, = — J L;l(x — kéx)P™W(x — kéx|x)p(x,t) — xp(x,t)i|
1 n
= Z p(x,t)LZn(x — k8x)P™(x — kéx|x) — xj|
1 n n
= Z p(x,t)|:x <k=z P™(x — kéx|x) — 1) - k;n kSxP™(x — k8x|x)]. (B4)
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From the conservation of probabilities,

> PP(x —kéx|x) =1, (B5)

k=—n

the first term in Eq. (B4) vanishes, and redefining k — —k we
get

" kx
J, = Z p(x,1) Z ;EPW(x + k|x). (B6)
X k=—n

We define A as the set of values of x of type A (and analogously
B and C for B and C). Decomposing the above sum into A, B,
and C contributions and using the translational invariance of
the jumping probabilities, we have

Ji = p(AJ(A) + pi(B)T™(B) + p,(C)I™(C), (BT)

where p;(A) = erA p(x,t) [analogously p,(B) and p,(C)]
and where
7o) = 2 Z Kpoe 1 kx) veed @®9)
8t n ’

=—n

and J™(B) and J™(C) have analogous expressions.

J™(I) is the flux after n time steps for a particle initially at
site /. If a control action happens at time 7, then the jumping
probabilities in J™(A) and J™(C) are given by the potential
OFF [in fact J™(A) = J™(C)], and the jumping probabilities
in J™(B) are given by the potential ON. We thus rewrite the
expression of the flux as

Jy = pi(AYIS(A) + p(B)ISAB) + pi(C)IS(C).  (BY)

1. Computation of J(()'})F(C)

If the particle is initially placed in C, the potential is set
OFF, so it is invariant under translations x — x + dx as we
can see in Fig. 1. Thus, due to this symmetry, the flux after n
time steps is the same as the flux after just one,

JSH(C) = JGa(C). (B10)
Then, using Eq. (B8) we obtain
(n) 6x

Jopp(C) = —(P+ — P-), (B11)

where we have defined P, as the probability P(V(x + 8x|x)
and P_ as P((x — 8x|x). These jumping probabilities are
shown in Eq. (8), and by replacing them in Eq. (B11) we
finally obtain

)
J(€) = (1 = exp(~18A1)] B12)

1—
T+b
2. Computation of J(()”g(A) and J((,';\}(B)
Because the potential is no longer invariant under trans-
lations x — x + §x when the potential is ON, the procedure
used for JgQF(C ) does not apply in this case, and the fluxes
Jgf\;(A) and J(()';)I(B) have to be computed numerically.
Let us obtain first J(()'I’\}(B). The flux is, by defini-
tion, Jon(B) = 23 kp{(x + kéx|x) for x € B. The

—nn

PHYSICAL REVIEW E 93, 012142 (2016)

method we find more convenient in order to compute this quan-
tity recursively is the one based on the Chapman-Kolmogorov
equation,

1
PSN(xo + kdx|xo) = Y Poulxo + kdx|xo + (k + i)8x]

j=—

x POV xo + (k + )dx|xol.  (B13)
The flux J®#~D(B) is computed from the P"~V(x'|xo) for a
fixed xo € B and x" € {xg — (n — 1)dx, ...,xo + (n — 1)éx}.
Then, using the above equation, we compute the P (xy +
kéx|xp) fork € {—n, ...,n} and compute J™(B). As a simple
example, the case n = 1 takes the form
Ja—b
Ja+b

Furthermore, although for a general n we could not provide
a simple expression of this flux, we found that in the limiting
case a > b? this flux can be written as

JR(B) ~ 6—54n8t + O(S12).
a>b?

JSR(B) = ‘;—:[1 — exp(—18A1)] (B14)

(B15)

The computation of Jé’}\)j(A) is completely analogous, and
with the same method the final result is

JER(A) =, 5480+ 540 + O(A).  (B16)

APPENDIX C: ENTROPY REDUCTION RATE BOUNDS

Following Ref. [36] we can define two entropy reduction
rates given by two limits: the per control entropy of the N
controller actions,

. ’Ct())

H (CryrN-1)Ats - -
N

and the conditional entropy of the last controller action given
the past controller actions,

H(C) = ngnoo H (C+v-1ar | Corn—2ars - - - ,Crp ). (C2)

H(C) = Jim , (CI)

Both limits exist and give the same value [36]:
HC) = H' ). (C3)

The upper bound is found from the fact that conditioning
reduces the entropy

H(Ct0+(N/+1)At | CootN'ALs - - - ,Cto)
< H(Cosrvnar | Cosnars - Crorar)
= H(Cip+nar | Corv—nyars - - -Cay)- (C4

Therefore, from Eqgs. (C2), (C3), and (C4) we get the upper
bound

H(C) < H(Cynar | Corv—nars ---:Cry)- (C5)
In particular, for N’ = 1 it gives
H(C) < H(Ciyrar | Cy), (Co)
and we define

Hup = H(CIU+AI | ng)' (C7)
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It is important to note that the upper bound I-_Iup coincides with
the expression for the entropy rate for Markovian processes.
However, here as C, is non-Markovian, this expression gives
only an upper bound.

The lower bound is obtained considering that although C,
is not a Markov chain, it is a deterministic function of the
position X,, and X, is an stationary Markovian process. Using
the results for the bounds of hidden Markov processes [36] we
get the lower bound

H(Ct0+N’At | Clot-(N'=D)ALs « - - ,Cro,Xto) < H(EC). (CB)

PHYSICAL REVIEW E 93, 012142 (2016)

This lower bound also for N’ — oo converges to the entropy
rate, while for N’ = 1 gives the simpler bound

H(Ciprar | Cip. Xsy) < H(C), (C9)
and we define
I:]low = H(CtoJrAt | Ctngt0)~ (C10)

The previous discussion explains how the bounds for H(C)
used in the main text are obtained, in particular those in
Eq. (39).
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