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Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past
theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-
Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In
this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex
fluid. It is based on the fact that microstructured fluids will generically phase-separate near surfaces, leading
to the presence of low-viscosity layers, which promote slip and decrease viscous friction near the surface of
the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip
length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer.
Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a
two-dimensional sheet and that of a three-dimensional filament, we show that phase-separation systematically
increases the locomotion speeds, possibly by orders of magnitude. We close by confronting our predictions with
recent experimental results.
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I. INTRODUCTION

Over the past few decades, stresses on life at low-Reynolds
number have received significant attention, from both the
physics and biological communities [1–5]. For the most
part, theoretical and experimental studies have focused on
cell locomotion in Newtonian fluids, with an emphasis on
the interplay between biological actuation and whole-cell
response; for example, the relationship between cell geometry,
waving actuation, and the resulting swimming kinematics
[4,6].

Studies on cell motility in fluids typically focus on one of
four types of cells—bacteria [7], spermatozoa [8], ciliates [9],
and single-celled planktonic cells [10]—while recent effort
considered larger, multicellular organisms [11]. In all cases,
the biological environments that the microorganism encounter
may be rheologically complex. For example, Helicobacter
pylori, a bacterium that causes inflammation in the stomach,
swims through gastric mucus to protect itself from the acidic
environment [12]. Mammalian spermatozoa have to progress
through highly elastic cervical mucus, an important phase in
reproductive process [13].

Extending our understanding of cell locomotion in Newto-
nian fluids to complex, gel-like or viscoelastic environments
is a nontrivial task. One quintessential question, whether
non-Newtonian stresses in a complex fluid help increase or
decrease the swimming speed of the cell, remains in many
ways an open problem.

For example, bacteria such as Leptospira and Escherichia
coli swim more rapidly in gel-like unbranched polymer
solutions than in Newtonian fluids [14]. In contrast, for
the nematode Caenorhabditis elegans undergoing undulatory
swimming, the speed was observed to decrease in a slightly
shear-thinning polymeric fluid with strong elastic stresses
[15]. Similar disparities are observed experimentally for
bioinspired synthetic swimmers. Force-free rotating helices
show a transition from hindered to enhanced swimming
in constant-viscosity Boger fluids [16], while a cylindrical
version of Taylor’s swimming sheet displays both increase

and decrease as a function of the rheology of the fluid [17].
In contrast, externally actuated flexible-tail swimmers show a
systematic increase of locomotion speeds in viscoelastic fluids
[18].

Various numerical and theoretical studies have also ad-
dressed this problem, focusing on viscoelastic fluids following
Oldroyd-B rheology. Small-amplitude asymptotic studies for
waving swimmers with fixed shapes predicted a systematic
decrease of swimming velocity [19–21]. Subsequent numer-
ical work for finite waving sheets with large-tail amplitude
showed that an increase was possible for order-one Deborah
numbers [22]. Numerical simulations following the helical
experiments in Ref. [16] confirmed the transition from slow
small-amplitude swimming to fast large-amplitude locomotion
[23]. Integral theorems for small-amplitude motion showed
that the superposition of multiple waves could also lead to an
enhancement transition for a range of Deborah numbers [24].

We thus see that theoretical, computational, and experimen-
tal studies showing both increases and decreases have been
put forward, and the challenge is now to rigorously untangle
the various physical (and sometimes, biological) effects. In
particular, while we now understand how viscoelastic stresses
are able to decrease swimming speeds, physical mechanisms
leading to locomotion enhancement are less clear. Recently,
the flexibility of the swimmer in response to complex stresses
was shown to allow for an increase in the swimming speed
[25,26]. In this paper, we propose a different physical origin
for the observed swimming enhancement. Instead of focusing
on the new non-Newtonian stresses in the fluid, we address one
of the consequences of having a structured fluid, namely the
fact that it is expected to phase-separate near the body of the
swimmer, leading to the well-known phenomenon of apparent
slip.

For a variety of complex fluids with a microstructure
dispersed in a solvent, in particular polymeric fluids and sus-
pensions, the presence of a boundary leads to static phase sepa-
ration at equilibrium: the concentration of the solute drops near
the wall that is covered instead by a thin solvent layer [27]. In
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FIG. 1. (Color online) The two models of apparent slip due
to phase separation considered in this paper: (a) a single-phase
continuum fluid with a finite apparent slip length �; (b) a two-fluid
domain with viscosity μ1 in the bulk and a thin low-viscosity layer
of thickness h and viscosity μ2 < μ1.

the case of rigid suspensions, purely excluded-volume inter-
actions lead to solvent-rich regions near the surface, and the
effect is larger for Brownian particles for which the presence
of a wall breaks the geometrical isotropy [27]. In the case
of polymers, random coils would be distorted if too close to
the wall, and thus they are driven by entropy away from the
boundary.

In all cases, the solvent-rich fluid near the surface has a
viscosity much smaller than that of the bulk fluid. As seen in
many situations, in particular flows in capillary tubes and in
porous media [28], this difference in viscosity leads to apparent
slip when a flow is set up, which is best illustrated in the case
of a shear flow [Fig. 1(b)]: If shear is imposed in a fluid
with a thin-viscosity layer, the difference in viscosities will
lead to a difference in shear rates, and as a result the flow
in the high-viscosity bulk will not extrapolate to zero on the
solid surface, but below it, indicating an overall decrease of
stresses acting on the surface. The fictitious distance below
the surface where the fluid velocity in the top fluid goes to
zero is the (positive) apparent slip length. Microscopically, the
no-slip condition is of course not violated, but given that the
typical thickness of the solvent layer is much smaller than
the other, macroscopic length scales in the problem of interest,
the no-slip boundary condition appears not to hold for the bulk
fluid.

There are two classical ways to theoretically model apparent
slip in complex fluids. The first model is to simply replace the
no-slip boundary condition on the surface by one which the
tangential velocity is allowed to slip. Experimentally measured
slip length has been shown to depend, sometimes in a complex
manner, on the shear stress at the wall [28–31]. The assumption
usually done is to adopt Navier’s slip-length model [32] and
assume that the slip velocity at the wall is linearly proportional
to the wall shear rate, with a proportionality constant with unit
of length, called the slip length, and which we will denote �

in this work [33]. As noted above, the slip length measures
the (fictitious) distance below the boundary where the velocity
would extrapolate to zero, and it is zero in the case of a no-
slip boundary [Fig. 1(a)]. A second procedure to model phase
separation is to explicitly assume the presence of two fluid
layers. The top layer, semi-infinite, has bulk viscosity μ1, while
the bottom layer near the surface has a finite thickness h and
lower viscosity μ2 < μ1 [Fig. 1(b)]. For a shear flow in this
unidirectional setup, the velocity in the thin layer satisfies the
no-slip boundary condition while that the flow in the bulk

fluid extrapolates to zero at the equivalent apparent slip length
� = (μ1/μ2 − 1)h.

In this paper we consider these two different physical
models of phase separation and investigate their consequences
on waving locomotion. In Sec. II we first examine the model
with a finite apparent slip length and apply it to two canonical
setups for low-Reynolds number locomotion, namely the
small-amplitude swimming of a flexible sheet [1] and that
of a flexible filament [34]. In Sec. III we then consider the
same two setups in the situation where the phase-separated
fluid is modeled as a two-fluid layer. In all cases we are able
to derive the swimming speed for each swimmer analytically
and we compare it to the case for the homogenous Newtonian
fluid with a no-slip boundary condition. We demonstrate that
the phase separation leads to a systematic enhancement of the
swimming speed, and suggest that this might play a role in the
recently measured swimming enhancement at low-Reynolds
numbers.

II. SWIMMING IN A FLUID WITH FINITE APPARENT
SLIP LENGTH

In the first section we assume that the phase separation in
the fluid can be adequately captured by an effective slip length
� acting on a Newtonian fluid satisfying the Stokes equations,

∇p = μ∇2u, ∇ · u = 0. (1)

On a fluid-solid boundary S, the jump in normal velocity is zero
by mass conservation while the jump in tangential velocity is
proportional to the local shear rate. If the velocity in the fluid is
denoted u, these boundary conditions can be mathematically
expressed as

[n · u]|S = 0, (2a)

[n × u]|S = 2�[n × (E · n)]|S, (2b)

where [...] is used to denote a jump, n is the normal to the
boundary, E is the symmetric rate-of-strain tensor (i.e., the
symmetric part of the velocity gradient tensor), and � the slip
length.

A. Two-dimensional waving sheet

We first consider a two-dimensional swimmer in the form
of flexible sheet self-propelling in the fluid by passing waves
of normal deformation. This is the classical setup originally
proposed by Taylor [1], and the material points of the sheet,
(xs, ys), are assumed to vary in space and time as a simple
traveling wave of deformation,

ys = b sin k(x − ct), xs = x, (3)

where b is the wave amplitude, k the wave number, and
c the wave speed along the x direction (see notation in
Fig. 2). We solve the problem assuming that the amplitude
is small compared to the wavelength, and thus consider
the asymptotic limit where ε = bk is a small dimensionless
number. Nondimensionalizing the equations using k−1 as
relevant length and ω−1 ≡ (kc)−1 as intrinsic time scale, the
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FIG. 2. (Color online) Geometry of the two-dimensional waving
sheet setup in a fluid with finite slip length. Here b denotes the small
waving amplitude, λ the wavelength, and c the wave speed along
the x direction. The sheet is assumed to swim with speed U in the
negative x direction. The small circle zooms in on a portion of the
swimmer surface and illustrates the presence of a finite slip length �.

wave deformation becomes

ȳs = ε sin(x̄ − t̄) ≡ ε sin ξ, (4)

and for convenience we drop the “bars” in what follows.
The velocity of material points on the sheet is thus given by

us = (0, − ε cos ξ ). (5)

Applying Eq. (2) on the surface of the swimmer we have

(n · u)|(xs ,ys ) = n · us , (6a)

(n × u)|(xs ,ys ) = 2�̄[n × (E · n)]|(xs ,ys ) + n × us , (6b)

with a normal vector n explicitly given as (1 +
ε2 cos2 ξ )−

1
2 [−ε cos ξ,1], and where �̄ ≡ k� is the nondi-

mensionalized slip length. Here we keep the “bar” notation
for the slip length to ensure that the final result is formally
dimensionless.

In order to solve for the Stokes equations in the fluid,
Eq. (1), we employ a stream function ψ such that the velocity
components of u = [u,v] are defined as u = ∂ψ

∂y
and v = − ∂ψ

∂x
.

The boundary condition, Eq. (6), then becomes

ε cos ξ
∂ψ

∂y
(x,ε sin ξ ) + ∂ψ

∂x
(x,ε sin ξ ) = ε cos ξ, (7a)

ε cos ξ
∂ψ

∂x
(x,ε sin ξ ) − ∂ψ

∂y
(x,ε sin ξ )

= �̄(1 + ε2 cos2 ξ )−
1
2

{
(1 − ε2 cos2 ξ )

×
[
∂2ψ

∂x2
(ξ,ε sin ξ ) − ∂2ψ

∂y2
(ξ,ε sin ξ )

]

+ 4ε cos ξ
∂2ψ

∂x∂y
(ξ,ε sin ξ )

}
+ ε2 cos2 ξ. (7b)

The Stokes equation, Eq. (1), transforms into the bihar-
monic equation for ψ [35]

∇4ψ = 0. (8)

In order to obtain the asymptotic solution for the swimming
velocity, we expand the stream function in powers of ε by

ψ = εψ (1) + ε2ψ (2) + ε3ψ (3) + ... (9)

Denoting the velocity of the swimming sheet as −Uex in a
quiescent fluid, we move in the swimming frame, and thus the
velocity at infinity is given by u(y → ∞) = Uex .

Since ψ satisfies the biharmonic equation, and is equal to
Uy at infinity, we construct the general solution as [36]

ψ (1) = V
(1)

1 + U (1)y, (10a)

ψ (2) = V
(2)

1 + V
(2)

2 + U (2)y, (10b)

where

Vn = (An + Bny)e−ny sin nξ + (Cn + Dny)e−ny cos nξ.

(11)
At first order in ε, Eq. (7) becomes

∂ψ (1)

∂x
(x,0) = cos ξ, (12a)

−∂ψ (1)

∂y
(x,0) = �̄

(
∂2ψ (1)

∂x2
− ∂2ψ (1)

∂y2

)∣∣∣∣
(x,0)

. (12b)

Substituting Eq. (10) into the equation above, we obtain A
(1)
1 =

B
(1)
1 = 1, C

(1)
1 = D

(1)
1 = 0, and U (1) = 0. The stream function

at first order is

ψ (1) = (1 + y)e−y sin ξ, (13)

which is the same as the no-slip case. This can be rationalized
by notating that the first-order shear rate is given by(

∂2ψ (1)

∂x2
− ∂2ψ (1)

∂y2

)∣∣∣∣
(x,0)

= (−2ye−y sin ξ )|(x,0) = 0, (14)

which makes the problem equivalent to the no-slip case.
As no propulsion occurs at order ε, one needs to carry the

calculation to order two in order to obtain the leading-order
swimming speed. At order ε2, the boundary conditions are(

cos ξ
∂ψ (1)

∂y
+ ∂ψ (2)

∂x
+ sin ξ

∂2ψ (1)

∂x∂y

)∣∣∣∣
(x,0)

= 0, (15a)

(
cos ξ

∂ψ (1)

∂x
− ∂ψ (2)

∂y
− sin ξ

∂2ψ (1)

∂y2

)∣∣∣∣
(x,0)

= �̄

{(
∂2ψ (2)

∂x2
− ∂2ψ (2)

∂y2

)
+ sin ξ

(
∂3ψ (1)

∂x2∂y
− ∂3ψ (1)

∂y3

)

+ 4 cos ξ
∂2ψ (1)

∂x∂y

}∣∣∣∣
(x,0)

+ 1

2
+ 1

2
cos 2ξ. (15b)

Substituting the expansions for the stream function into this
condition, we obtain

U (2) = 1
2 + �̄. (16)

Comparing this result with the no-slip case, and coming back
to the dimensional variables we finally have

U (2)

U
(2)
no−slip

= 1 + 2k�. (17)

Since the slip length is always positive, we obtain in this
first situation that the swimming speed is always enhanced
by apparent slip.
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FIG. 3. (Color online) Deformation with amplitude δ in the cir-
cular cross-section of a three-dimensional waving filament of radius
ρ. The blue solid line represents the current position of the filament,
and the gray dashed line represents the average location of the
cross-section.

B. Three-dimensional waving filament

We now apply the same apparent-slip model to the case of
a three-dimensional waving filament, the geometry of which
is shown in Fig. 3 [34]. We consider a cylindrical filament
of radius ρ deforming as a traveling wave in the (x,z) plane
where z is along the filament axis and x is perpendicular to it.
We denote by δ the amplitude of the filament deformation in
the x direction.

The location of the material points on the surface of the
filament, using cartesian coordinate centered on the average
location of the cylinder (see Fig. 3), is given by

rs = (δ + ρ cos θ )x + ρ sin θ y + z z, δ = b sin k(z + ct),
(18)

where δ is the distribution of waving amplitudes along z

direction, ρ the filament radius, k the wave number, and c

the wave speed. Here again we assume that the amplitude is
small compared to the wavelength, and compute the result in
the limit where ε = bk is small.

Nondimensionalizing the equations similarly to the pre-
vious section, we have the surface of cylindrical filament
described as

rs = (δ + ρ̄ cos θ )x + ρ̄ sin θ y + z z,
(19)

δ = ε sin(z + t) = ε sin s,

and here again we keep the “bar” notation for the dimensionless
radius, ρ̄ = kρ. Similar to the two-dimensional case, the
velocity on the boundary satisfies the conditions

(n · u)|(δ+ρ̄ cos θ,ρ̄ sin θ,z) = ε cos s cos θ, (20a)

(n × u)|(δ+ρ̄ cos θ,ρ̄ sin θ,z) = 2�̄{n × (E · n)}|(δ+ρ̄ cos θ,ρ̄ sin θ,z)

− ε sin θ cos s z. (20b)

Since the inextensibility condition contributes to the dy-
namics at orders higher than two [34], the vector normal to the
surface is er at the order relevant for this calculation. We can

then expand the velocity around the average position as

u(δ + ρ̄ cos θ,ρ̄ sin θ,z)

≈ [u + x · (∇u)ε sin s]|r=ρ̄

=
{
u + ε sin s

[
∂u

∂r
cos θ −

(
1

r

∂u

∂θ
− v

r

)
sin θ

]}∣∣∣∣
r=ρ̄

er

+
{
v + ε sin s

[
∂v

∂r
cos θ −

(
u

r
+ 1

r

∂v

∂θ

)
sin θ

]}∣∣∣∣
r=ρ̄

eθ

+
{
w + ε sin s

[
∂w

∂r
cos θ − 1

r

∂w

∂θ
sin θ

]}∣∣∣∣
r=ρ̄

ez. (21)

Expanding the velocity in the fluid, u, asymptotically in
powers of ε,

u = εu(1) + ε2u(2) + . . . , (22)

and substituting the expansion and Eq. (21) into the boundary
condition, we obtain that at first order,

u(1)(ρ̄,θ,z) = cos s cos θ, (23a)

v(1)(ρ̄,θ,z) = �̄

(
∂v(1)

∂r
− v(1)

r
+ 1

r

∂u(1)

∂θ

)∣∣∣∣
(r=ρ̄)

−sin θ cos s,

(23b)

w(1)(ρ̄,θ,z) = �̄

(
∂w(1)

∂r
+ ∂u(1)

∂z

)∣∣∣∣
(r=ρ̄)

. (23c)

Solving for the fluid velocity using separation of variables we
get

u(1) = uq(r) cos θ cos s, v(1) = vq(r) sin θ cos s,

w(1) = wq(r) cos θ sin s, (24)

while the first-order boundary conditions are simplified to

uq(ρ̄) = 1, (25a)

vq(ρ̄) = �̄

[
v′

q(ρ̄) − vq(ρ̄)

ρ̄
− 1

ρ̄

]
− 1, (25b)

wq(ρ̄) = �̄[w′
q(ρ̄) − 1]. (25c)

Similar to the original problem treated by Taylor in the case
of a no-slip filament [34], the radial dependence of the velocity
is given by a combination of modified Bessel functions as

uq(r) = BK2(r) + CK0(r) + ArK1(r) + EI2(r)

+FI0(r) + DrI1(r), (26a)

vq(r) = BK2(r) − CK0(r)+EI2(r) − FI0(r), (26b)

wq(r) = BK1(r) + CK1(r) + A[rK0(r) − K1(r)]

−EI1(r) − FI1(r) − D[rI0(r) − I1(r)], (26c)
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with a minus sign in Eq. (26c) coming from different properties between solution of the first and second kind. For the boundary
conditions at infinity, we have D = E = F = 0 and the other three unknown constants A,B,C can be obtained by plugging
Eq. (26) into Eq. (25). Writing C as C = Cnu/Cde, we obtain the following lengthy (but analytical) expressions

Cnu = ρ̄K1(ρ̄)2 − 2ρ̄K0(ρ̄)K2(ρ̄) + 2K1(ρ̄)K2(ρ̄) + �̄

[
− ρ̄

2
K0(ρ̄)K1(ρ̄)

−K0(ρ̄)K2(ρ̄) + 2K1(ρ̄)2 +
(

4

ρ̄
− 5

2
ρ̄

)
K1(ρ̄)K2(ρ̄) + K2(ρ̄)2

]

+ �̄2

[
2K0(ρ̄)K1(ρ̄) − 2ρ̄K1(ρ̄)2 + 6

ρ̄
K0(ρ̄)K2(ρ̄) − 6K1(ρ̄)K2(ρ̄) + 2

ρ̄
K2(ρ̄)2

]
, (27a)

Cde = −2ρ̄K0(ρ̄)2K2(ρ̄) + 2K0(ρ̄)K1(ρ̄)K2(ρ̄) + ρ̄K0(ρ̄)K1(ρ̄)2 + ρ̄K1(ρ̄)2K2(ρ̄)

+ �̄

[
− ρ̄

2
K0(ρ̄)2K1(ρ̄ + 2ρ̄K1(ρ̄)3 + 2K0(ρ̄)K1(ρ̄)2 + K0(ρ̄)K2(ρ̄)2

−K0(ρ̄)2K2(ρ̄)+4K1(ρ̄)2K2(ρ̄) + ρ̄

2
K1(ρ̄)K2(ρ̄)2

+
(

4

ρ̄
− 2ρ̄

)
K0(ρ̄)K1(ρ̄)K2(ρ̄)

]
+ �̄2

[
2K0(ρ̄)2K1(ρ̄) + 6

ρ̄
K0(ρ̄)2K2(ρ̄)

+ 2

ρ̄
K0(ρ̄)K2(ρ̄)2 + 2K1(ρ̄)K2(ρ̄)2

]
, (27b)

B = 1

Cde

{
−ρ̄K1(ρ̄)2 + �̄

[
−5

2
ρ̄K0(ρ̄)K1(ρ̄) − ρ̄

2
K1(ρ̄)K2(ρ̄)

]
− 2�̄2ρ̄K1(ρ̄)2

}
, (28)

and

A = 1

Cde

{
2K1(ρ̄)K2(ρ̄) + �̄

[
2K1(ρ̄)2 + 3K0(ρ̄)K2(ρ̄) + 4

ρ̄
K1(ρ̄)K2(ρ̄) + K2(ρ̄)2

]

+ �̄2

[
2K0(ρ̄)K1(ρ̄) + 6

ρ̄
K0(ρ̄)K2(ρ̄) + 2K1(ρ̄)K2(ρ̄) + 2

ρ̄
K2(ρ̄)2

]}
. (29)

According to Eq. (24), the time-averaged swimming speed w(1) is zero, and as expected we thus need to consider the problem at
order ε2.
Following the slip boundary conditions, the z-component of the flow at order two, w(2), satisfies on the boundary(

w(2) + w′
q cos2 θ sin2 s + 1

r
wq sin2 θ sin2 s

)∣∣∣∣
r=ρ̄

= �̄

{
∂w(2)

∂r
+ ∂u(2)

∂z
+ sin2 s

[
(w′′

q − u′
q) cos2 θ − 1

r

(wq

r
− w′

q + uq + vq

)
sin2 θ

]

+ cos2 s

[
u′

q cos2 θ + uq + vq

r
sin2 θ

]}∣∣∣∣
r=ρ̄

. (30)

Averaging this equation in time and along the azimuthal direction, we obtain explicitly the swimming velocity, U (2), as

4U (2) = w′
q(ρ̄) + wq(ρ̄)

ρ̄
− �̄

[
w′′

q − 1

ρ̄

(
wq

ρ̄
− w′

q

)]∣∣∣∣
r=ρ̄

=
[

2

ρ̄
K1(ρ̄) − K2(ρ̄) − �̄K1(ρ̄)

]
B +

[
2

ρ̄
K1(ρ̄) − K2(ρ̄) − �̄K1(ρ̄)

]
C

+
{

2K0(ρ̄) − ρ̄K1(ρ̄) − 2

ρ̄
K1(ρ̄) + K2(ρ̄) + �̄[5K1(ρ̄) − ρ̄K2(ρ̄)]

}
A. (31)

The result in Eq. (31) can also be evaluated in the no-slip case by simply setting �̄ = 0, and we recover Taylor’s result, namely

U
(2)
no−slip = ρ̄K1(ρ̄)2K2(ρ̄) − ρ̄K0(ρ̄)K2(ρ̄)2

−2ρ̄K0(ρ̄)K1(ρ̄)2 + 4ρ̄K0(ρ̄)2K2(ρ̄) − 4K0(ρ̄)K1(ρ̄)K2(ρ̄) − 2ρ̄K1(ρ̄)2K2(ρ̄)
· (32)
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FIG. 4. (Color online) Ratio of the swimming velocity in the case of slip to the no-slip value, U (2)/U
(2)
no−slip. (a) Dependence on the

dimensionless filament radius, kρ, for three wave numbers (k� = 0.01, 0.1, and 0.5). (b) Dependence on the dimensionless wave number (with
kρ = 0.01, 0.1, and 0.5).

The ratio between the swimming speed in the slip case to that
in the no-slip situation, U (2)/U

(2)
no−slip, is plotted in Fig. 4 as a

function of the dimensionless filament radius [Fig. 4(a)] and
the dimensionless wave number [Fig. 4(b)]. As in the two-
dimensional situation, the presence of slip is seen to always
lead to faster swimming than in the no-slip case, and here the
effect can be potentially very large (the applicability of these
results to recent experiments is discussed in Sec. IV). In Fig. 4
we see that the swimming speed increases monotonically when
either the length scale of the swimmer cross section (ρ) or the
typical length scale of the waving motion, k−1 becomes smaller
than the slip length. In the opposite limit, the no-slip result,
Eq. (32), is recovered when all length scales are much larger
than �.
We further note that it is possible to compute the swimming
speed for small slip length as a power expansion in k� (i.e.,
�̄), U (2) = U

(2)
0 + (k�)U (2)

1 + . . . , with U
(2)
0 being the no-slip

swimming speed. When kρ (i.e., ρ̄) increases to infinity,
the radius of the cylinder becomes much larger than any
other length scale, and we recover U

(2)
1 /U

(2)
0 = 2, leading to

U (2)/U
(2)
no−slip = 1 + 2k�, which as expected agrees with the

results for the two-dimensional sheet.
We conclude by pointing out that although the calculation
above was carried out in the case of planar waving deformation,
similar algebra would govern swimming by propagating
helical waves [37], and in that case ρ would be the radius
of the helical flagellum, or that of the bundle of flagella in the
case of bacteria with multiple flagellar filaments such as E.
coli.

III. SWIMMING IN A TWO-FLUID DOMAIN

In the previous section, we modeled the influence of phase
separation as due to a finite apparent slip length and showed
that it leads to a systematic enhancement of the swimming
speeds. In order to provide an alternative microscopic physical
picture, we instead consider in this section a second model
where we include explicitly the presence of a low-viscosity
layer near the surface of the swimmer, and we apply it to
the two canonical swimmers (waving sheet and filament)
considered in the previous section.

A. Two-dimensional waving sheet

We first consider the swimming sheet setup shown in Fig. 5.
The fluid is composed of two domains: the bulk fluid has
viscosity μ1 while the thin layer near the swimmer has a
smaller viscosity μ2 (μ1 > μ2). The average distance between
the sheet and the fluid-fluid interface, which is the thickness
of the low-viscosity layer, is denoted h and assumed to remain
constant (this assumption is discussed in Sec. IV). All other
notations are similar to the ones in Sec. II A. Following
the same nondimensionalization, we now have the no-slip
boundary conditions on the sheet,

∂ψ2

∂y
(x,ε sin ξ ) = 0,

∂ψ2

∂x
(x,ε sin ξ ) = −ε cos ξ, (33)

while at infinity we have the unknown swimming speed,

∂ψ1

∂y
(x,∞) = −U,

∂ψ1

∂x
(x,∞) = 0. (34)

At the flat interface between the two fluids, we have
continuity of velocities

∂ψ1

∂y
(x,h̄) = ∂ψ2

∂y
(x,h̄),

∂ψ1

∂x
(x,h̄) = ∂ψ2

∂x
(x,h̄) = 0,

(35)

and here again we keep the “bar” notation for the thickness
h̄ ≡ kh. Together with continuity of tangential stresses, which

λ

x
b

U

c

μ1, ψ1

μ2, ψ2h

FIG. 5. (Color online) Geometry of two-dimensional waving
sheet swimming in a two-fluid domain. The bulk fluid has viscosity
μ1 and the thin layer near the swimmer, of mean thickness h, has
viscosity μ2 < μ1. The two stream functions in the fluids are denoted
ψ1 and ψ2. The interface between the two fluids is assumed to remain
flat.
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is written as(
∂2ψ1

∂y2
− ∂2ψ1

∂x2

)∣∣∣∣
(x,h̄)

= β

(
∂2ψ2

∂y2
− ∂2ψ2

∂x2

)∣∣∣∣
(x,h̄)

, (36)

where β denotes the ratio of viscosities, β = μ2/μ1 < 1.
As in Sec. II A we solve the problem as a perturbation ex-

pansion in ε. The general periodic solution for the biharmonic
equation, which vanishes at infinity, is obtained by separation
of variables as

Vn = (any + bn) sin nξe−ny + (cny + dn) cos nξe−ny, (37)

which we use to expand ψ1 as

ψ1 = εψ
(1)
1 + ε2ψ

(2)
2 + . . . (38)

with

ψ
(m)
1 = −U (m)y + V

(m)
1 + · · · + V (m)

m . (39)

Similarly, in the second domain we expand ψ2 as

ψ2 = εψ
(1)
2 + ε2ψ

(2)
2 + . . . (40)

ψ
(m)
2 = W

(m)
1 + · · · + W (m)

m + χ (m)y2 + η(m)y, (41)

where Wn is the general periodic solution for to the biharmonic
equation in a finite domain obtained by separation of variables

Wn = [(Any + Bn) sin nξ + (Cny + Dn) cos nξ ] sinh ny

+ [(Eny + Fn) sin nξ + (Gny + Hn) cos nξ ] cosh ny.

(42)

Expanding the boundary conditions around y = 0, we
obtain at first order

(on sheet)
∂ψ

(1)
2

∂y
(x,0) = 0,

∂ψ
(1)
2

∂x
(x,0) = − cos ξ,

(43a)

(on interface)
∂ψ

(1)
1

∂y
(x,h̄) = ∂ψ

(1)
2

∂y
(x,h̄),

∂ψ
(1)
1

∂x
(x,h̄) = ∂ψ

(1)
2

∂x
(x,h̄) = 0, (43b)(

∂2ψ
(1)
1

∂y2
− ∂2ψ

(1)
1

∂x2

)∣∣∣∣∣
(x,h̄)

= β

(
∂2ψ

(1)
2

∂y2
− ∂2ψ

(1)
2

∂x2

)∣∣∣∣∣
(x,h̄)

,

(43c)

(at infinity)
∂ψ

(1)
1

∂y
(x,∞) = −U (1),

∂ψ
(1)
1

∂x
(x,∞) = 0.

(43d)

Substituting these boundary conditions into the general solu-
tion we obtain the coefficients at first order

U (1) = χ (1) = η(1) = c
(1)
1 = d

(1)
1 = C

(1)
1 = D

(1)
1 = 0, (44a)

a
(1)
1 = βh̄eh̄ sinh h̄

sinh2 h̄ − h̄2 + β(sinh h̄ cosh h̄ − h̄)
, (44b)

b
(1)
1 = −βh̄2eh̄ sinh h̄

sinh2 h̄ − h̄2 + β(sinh h̄ cosh h̄ − h̄)
, (44c)

kh

U
(2

)
/U

(2
)

∞

β = 0.01
β = 0.1
β = 0.5

FIG. 6. (Color online) Ratio between the swimming velocity in
the two-fluid domain, U (2), and the velocity in the presence of a single
fluid, U (2)

∞ , as a function of the dimensionless distance between the
swimmer and the interface, kh, for three values of the viscosity ratio:
β = 0, 0.1, and 0.5.

A
(1)
1 = sinh2 h̄ + β(sinh h̄ cosh h̄)

sinh2 h̄ − h̄2 + β(sinh h̄ cosh h̄ − h̄)
, (44d)

B
(1)
1 = sinh h̄ cosh h̄ + h̄ + β cosh2 h̄

sinh2 h̄ − h̄2 + β(sinh h̄ cosh h̄ − h̄)
· (44e)

At second order, the boundary conditions become

(on sheet)
∂ψ

(2)
2

∂y
(x,0) + sin ξ

∂2ψ
(1)
2

∂y2
(x,0) = 0, (45a)

(on interface)
∂ψ

(2)
1

∂y
(x,h̄) = ∂ψ

(2)
2

∂y
(x,h̄), (45b)

(
∂2ψ

(2)
1

∂y2
− ∂2ψ

(2)
1

∂x2

)∣∣∣∣
(x,h̄)

= β

(
∂2ψ

(2)
2

∂y2
− ∂2ψ

(2)
2

∂x2

)∣∣∣∣
(x,h̄)

,

(45c)

leading to the second-order swimming speed as

U (2) = −η(2) = A
(1)
1 − 1

2 , (46)

and therefore

U (2) = 1

2
+ h̄2 + βh̄

sinh2 h̄ − h̄2 + β(sinh h̄ cosh h̄ − h̄)
· (47)

In Eq. (47), the first term is the one-fluid classical result of
Taylor (U (2)

∞ = 1/2, recovered when h̄ → ∞) and the second
fraction is always positive since h̄ > 0. As a consequence the
swimming speed for a waving sheet in a two-fluid domain is
always faster than in a homogeneous Newtonian fluid.

We display in Fig. 6 the ratio U (2)/U
(2)
∞ as a function of

the dimensionless distance to the interface, kh (i.e., h̄). We
observe that the increase of the swimming speed can become
very large when the thickness of the low-shear layer is smaller
than the wavelength of the swimmer. We also see that the
overall conclusions and speed ratios are rather insensitive to
the exact value of the viscosity ratio, β.

B. Three-dimensional waving filament

In this final section, we extend the two-fluid scenario to the
case of three-dimensional waving filaments. In this case, the
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x

y

θ

ρ δ

μ2, u2

μ1, u1

h

FIG. 7. (Color online) Waving motion of amplitude δ in the
circular cross-section of a three-dimensional waving filament of
radius ρ in a two-fluid domain. The solid blue line (inside) indicates
the instantaneous position of the filament, the dashed gray line
the average location of the cross section, while the solid red line
(outside) shows the interface between the thin low-viscosity layer
(mean thickness h, dynamic viscosity μ2) and the bulk fluid (viscosity
μ1 > μ2).

geometry of the cross-section, shown in Fig. 7, is analogous
to the one addressed in Sec. II B with the added ingredient
that we now have two fluids. The thin, low-viscosity layer, has
mean thickness h and dynamic viscosity μ2, while the bulk
has viscosity μ1 > μ2. All other notation are similar to the
ones used in Sec. II B.

On the surface of the filament (dimensionless form), rs =
(δ + ρ̄ cos θ )x + ρ̄ sin θy + zz, we have the distribution of
surface velocities u2(δ + ρ̄ cos θ,θ,z) = ε cos sx, which can
be written in polar coordinates as

u2(δ + ρ̄ cos θ,θ,z) = ε cos θ cos s,
(48)

v2(δ + ρ̄ cos θ,θ,z) = −ε sin θ cos s.

Expanding the velocity components around the averaged
position of the surface Eq. (21), we obtain at first order,

u
(1)
2 (ρ̄,θ,z) = cos θ cos s, v

(1)
2 (ρ̄,θ,z) = − sin θ cos s,

(49)
w

(1)
2 (ρ̄,θ,z) = 0.

We assume that the interface r = h̄ + ρ̄ ≡ l undergoes
no radial motion and apply continuity of the tangential
components of velocities and traction leading to the conditions

u
(1)
1 (l,θ,z) = u

(1)
2 (l,θ,z) = 0, (50a)

v
(1)
1 (l,θ,z) = v

(1)
2 (l,θ,z), w

(1)
1 (l,θ,z) = w

(1)
2 (l,θ,z), (50b)(

∂w
(1)
1

∂r
+ ∂u

(1)
1

∂z

)∣∣∣∣
r=l

= β

(
∂w

(1)
2

∂r
+ ∂u

(1)
2

∂z

)∣∣∣∣
r=l

, (50c)

[
r
∂
(
v

(1)
1 /r

)
∂r

+ 1

r

∂u
(1)
1

∂θ

]∣∣∣∣
r=l

=β

[
r
∂
(
v

(1)
2 /r

)
∂r

+ 1

r

∂u
(1)
2

∂θ

]∣∣∣∣
r=l

,

(50d)

where, as in Sec. III A, β denotes the ratio of viscosity, β =
μ2/μ1 < 1.

Using separation of variables, we write

u
(1)
1 = u1q(r) cos θ cos s, v

(1)
1 = v1q(r) sin θ cos s,

(51a)
w

(1)
1 = w1q(r) cos θ sin s,

u
(1)
2 = u2q(r) cos θ cos s, v

(1)
2 = v2q(r) sin θ cos s,

(51b)
w

(1)
2 = w2q(r) cos θ sin s,

and substituting Eq. (51) into the Eq. (50), the boundary
conditions become

u2q(ρ̄) = 1, v2q(ρ̄) = −1, w2q(ρ̄) = 0, (52a)

u1q(l) = u2q(l) = 0, v1q(l) = v2q(l), w1q(l) = w2q(l),

(52b)

w′
1q(l) − u1q(l) = β[w′

2q(l) − u2q(l)], (52c)

v′
1q(l) − v1q(l)

l
− u1q(l)

l
= β

[
v′

2q(l) − v2q(l)

l
− u2q(l)

l

]
.

(52d)

We then use the general solution in Eq. (26), with coefficients
A1, B1, C1 for fluid #1, ensuring the correct decay in the far
field, and coefficients A2, B2, C2, D, E, F for fluid #2.

Substituting this general solution into the boundary con-
ditions in Eq. (52), we obtain a linear system with nine
coefficients,

ρ̄K1(ρ̄)A2 + K2(ρ̄)B2 + K0(ρ̄)C2 + ρ̄I1(ρ̄)D

+ I2(ρ̄)E + I0(ρ̄)F = 1, (53a)

K2(ρ̄)B2 − K0(ρ̄)C2 + I2(ρ̄)E − I0(ρ̄)F = −1, (53b)

[ρ̄K0(ρ̄) − K1(ρ̄)]A2 + K1(ρ̄)B2 + K1(ρ̄)C2

− [ρ̄I0(ρ̄) + I1(ρ̄)]D − I1(ρ̄)E − I1(ρ̄)F = 0, (53c)

lK1(l)A1 + K2(l)B1 + K0(l)C1 = 0, (53d)

lK1(l)A2 + K2(l)B2 + K0(l)C2 + lI1(l)D

+ I2(l)E + I0(l)F = 0, (53e)

K2(l)B1 − K0(l)C1 − K2(l)B2 + K0(l)C2

− I2(l)E + I0(l)F = 0, (53f)

[lK0(l) − K1(l)]A1 + K1(l)B1 + K1(l)C1

− [lK0(l) − K1(l)]A2 − K1(l)B2 − K1(l)C2

+ [lI0(l) + I1(l)]D + I1(l)E + I1(l)F = 0, (53g)[
2K0(l) − 2lK1(l) + K1(l)

l

]
A1 +

[
K1(l)

l
− 2K2(l)

]
B1

−
[

2K0(l) − K1(l)

l

]
C1
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(a) (b)

kh kh

kρ = 0.1 γ = 0.1β
U

(2
)
/U

(2
)

∞

kρ = 0.01
kρ = 0.1
kρ = 0.5

β = 0.01
β = 0.1
β = 0.5

FIG. 8. (Color online) Ratio between the swimming velocity in the two-fluid domain, U (2), and that obtained in the case of a single
Newtonian fluid, U (2)

∞ , as a function of the mean dimensionless distance between the cylindrical filament and the fluid interface, kh: (a) the
dimensionless radius is fixed, kρ = 0.1, and three values of viscosity ratios are considered (β = 0.01, 0.1 and 0.5); (b) fixed viscosity ratio
(β = 0.1) and three different values of dimensionless radius (kρ = 0.01, 0.1, and 0.5).

−β

[
2K2(l) − 2lK1(l) + K1(l)

l

]
A2 − β

[
K1(l)

l
− 2K2(l)

]

+β

[
2K0(l) + K1(l)

l

]
C2

+β

[
2I0(l) + 2lI1(l) − I1(l)

l

]
D + β

[
I1(l)

l
+ 2I2(l)

]
E

+β

[
2I0(l) − I1(l)

l

]
F = 0, (53h)

−K1(l)A1 − K3(l)B1 + K1(l)C1

+β[K1(l)A2 + K3(l)B2 − K1(l)C2

+I1(l)D − I3(l)E + I1(l)F ] = 0, (53i)

which can be easily inverted numerically.
The last step consists in moving to next order and computing

the swimming speed. This is done similar to the case with a
finite-slip length, and we apply Eq. (30) with � = 0. The
average of w

(2)
2 on the filament is the swimming speed, U (2),

and we have

U (2) = 1

4

[
w′

2q(ρ̄) + w2q(ρ̄)

ρ̄

]
, (54)

which can be evaluated as

U (2) = 1
4 {−B2K0(ρ̄) − C2K0(ρ̄) + A2[3K0(ρ̄) − ρ̄K1(ρ̄)]

−EI0(ρ̄) − FI0(ρ̄) − D[3I0(ρ̄) + ρ̄I1(ρ̄)]}. (55)

In Fig. 8 we plot the ratio between the swimming speed of
the filament in the two-fluid domain, U (2), and that obtained
in the case of a simple fluid, U

(2)
∞ , for a range of values of

the dimensionless radius (kρ, i.e., ρ̄) and viscosity ratio (β).
The results are reminiscent of the ones shown in Fig. 6 for
the two-dimensional case. The swimming speed is always
increased by the presence of a second fluid, potentially by order
of magnitude when the wavelength of the swimmer and its
radius are large compared to the thickness of the low-viscosity
layer.

IV. DISCUSSION

In this paper, we presented a physical mechanism for
the locomotion enhancement of microscopic swimmers in
a complex fluid. The physical idea is that phase-separation
near the surface of the swimmer leads to the presence of a
low-viscosity layer, which promotes slip and decreases viscous
friction. As a way to intuitively rationalize the results in our
paper, we note—as is well known—that the locomotion in a
fluid is governed by the ratio between the drag coefficients
for the motion relative to the fluid perpendicular to and
along the surface of the swimmer [6]. The presence of a
fluidic interface, or of a finite slip length, affects normal
hydrodynamic forces only weakly but leads to a systematic
decrease of tangential viscous forces, and hence should always
lead to faster swimming, as observed here. In a different
context, but with some physical similarities, swimmers also
always enhance their swimming speed in a network of polymer
molecules [38] and in a porous medium [39].

Beyond the traditional geometrical assumptions made in
our paper, which are similar to a number of classical studies
(namely solving the swimming problems for small amplitude
motion and perfectly sinusoidal waveforms), one severe
restriction of our two-fluid approach is the assumption that
the interface between the two fluids remains flat. This is
akin to saying that the time scale of the waving motion is
much faster than the time scale for the readjustment of the
interface, which is a reasonable assumption only for large
fluid viscosities. That flat interface then provides an effective
confinement to the swimmer, which is known to enhance
locomotion [40]. A more sophisticated physicochemical model
including molecular details of the phase separation would be
required to solve for the dynamics of the thin film and to
untangle the relative importance of viscosity difference versus
confinement in the increase of the swimming speed.

What are the quantitative predictions of our models? In two
dimensions, we obtained that the speed of a two-dimensional
infinite swimming sheet is increased by 1 + 2k� for the
swimming with wave number k. Slip lengths of polymer
solutions, �, have been measured in the range 0.1–10 μm [41].
For a microswimmer with wavelength λ = 2π/k ≈ 10 μm
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[6], the swimming speed can then be increased by O(10%)
up to one order of magnitude. In the three-dimensional case,
we also obtained the increased speed shown in Fig. 4, which
is consistent with the two-dimensional situation. Considering
the same wavelength, and for a filament with radius ρ =
150 nm (so with dimensionless radius kρ ≈ 0.1), the predicted
enhancement ranges from O(30%) up to 40 times the speed in
the Newtonian fluid.

In our second model, we used a two-fluids domain to
describe wall depletion. In both two and three dimensions,
we saw that when the wall depletion layer is very thin,
the enhancement can be very large. A recent experiment by
Gagnon, Shen, and Arratia [42] considered the locomotion of
the nematode C. elegans in concentrated polymer solutions
and showed that the swimming speed can be increased
significantly, by up to 65%. Is our model consistent with this
result? The thickness of the low-viscosity layer in concentrated
polymer solutions is a complex function of mean diameter of
the particles and the concentration can be estimated using the
empirical formula [43]

h

Dp

= 1 − φ

φm

, (56)

where Dp is the mean diameter of the particles, φ the particle
volume fraction, and φm the maximum packing fraction. The
diameter of the particle (Xanthan gum in the experiment of
Ref. [42]) is about 200 μm. For semiconcentrated solution,
φ/φm is 0.4, while for a concentrated solution the value is
0.8, so the slip-layer thickness is around 120 and 40 μm,
respectively. The wavelength of the swimming worm is
2π/k ≈ 1 mm, and the dimensionless diameter kρ is about
0.1. When the ratio of the viscosities β changes from 0.01 to
0.5, the enhancement predicted by our model is about 90–98%,
which is less than a factor of two away from the experimental
results, and indicates that our simplified approach captures the
essential physics of the swimming enhancement.

ACKNOWLEDGMENTS

We thank an anonymous referee for helpful insight. This
work was funded in part by the European Union through
a Marie Curie grant CIG (E.L.) and by the Cambridge
Commonwealth Trust and the Cambridge Overseas Trust
(Y.M.).

[1] G. I. Taylor, Proc. R. Soc. London Ser. A 209, 447 (1951).
[2] J. Lighthill, Mathematical Biofluiddynamics (SIAM,

Philadelphia, 1975).
[3] E. M. Purcell, Am. J. Phys. 45, 3 (1977).
[4] C. Brennen and H. Winet, Ann. Rev. Fluid. Mech. 9, 339 (1977).
[5] D. Bray, Cell Movements (Garland Publishing, New York, NY,

2000).
[6] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601

(2009).
[7] H. C. Berg, E. coli in Motion (Springer-Verlag, New York, NY,

2004).
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[32] C.-L. Navier, Mémoires de l’Académie Royale des Sciences de

l’Institut de France VI, 389440 (1823).
[33] T. Sochi, Polymer Rev. 51, 309 (2011).
[34] G. I. Taylor, Proc. R. Soc. London A 211, 225 (1952).
[35] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics

and Convective Transport Processes (Cambridge University
Press, Cambridge, UK, 2007).

[36] S. Childress, Mechanics of Swimming and Flying (Cambridge
University Press, Cambridge U.K., 1981).

[37] A. T. Chwang and T. Y. Wu, Proc. R. Soc. London B 178, 327
(1971).

[38] Y. Magariyama and S. Kudo, Biophys. J. 83, 733 (2002).
[39] A. M. Leshansky, Phys. Rev. E 80, 051911 (2009).
[40] A. J. Reynolds, J. Fluid Mech. 23, 241 (1965).
[41] V. Mhetar and L. A. Archer, Macromolecules 31, 6639 (1998).
[42] D. Gagnon, X. Shen, and P. E. Arratia, Europhys. Lett. 104,

14004 (2013).
[43] D. M. Kalyon, J. Rheol. 49, 621 (2005).

023004-10

http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1111/j.1469-185X.1974.tb01299.x
http://dx.doi.org/10.1111/j.1469-185X.1974.tb01299.x
http://dx.doi.org/10.1111/j.1469-185X.1974.tb01299.x
http://dx.doi.org/10.1111/j.1469-185X.1974.tb01299.x
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-010313-141426
http://dx.doi.org/10.1146/annurev-fluid-010313-141426
http://dx.doi.org/10.1146/annurev-fluid-010313-141426
http://dx.doi.org/10.1146/annurev-fluid-010313-141426
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1073/pnas.0903438106
http://dx.doi.org/10.1530/jrf.0.0530259
http://dx.doi.org/10.1530/jrf.0.0530259
http://dx.doi.org/10.1530/jrf.0.0530259
http://dx.doi.org/10.1530/jrf.0.0530259
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1038/278349a0
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevE.87.013015
http://dx.doi.org/10.1103/PhysRevE.87.013015
http://dx.doi.org/10.1103/PhysRevE.87.013015
http://dx.doi.org/10.1103/PhysRevE.87.013015
http://dx.doi.org/10.1063/1.4795166
http://dx.doi.org/10.1063/1.4795166
http://dx.doi.org/10.1063/1.4795166
http://dx.doi.org/10.1063/1.4795166
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.104.038101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1103/PhysRevLett.111.068101
http://dx.doi.org/10.1063/1.4891969
http://dx.doi.org/10.1063/1.4891969
http://dx.doi.org/10.1063/1.4891969
http://dx.doi.org/10.1063/1.4891969
http://dx.doi.org/10.1103/PhysRevLett.113.098102
http://dx.doi.org/10.1103/PhysRevLett.113.098102
http://dx.doi.org/10.1103/PhysRevLett.113.098102
http://dx.doi.org/10.1103/PhysRevLett.113.098102
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1209/0295-5075/108/34003
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1122/1.549811
http://dx.doi.org/10.1122/1.549811
http://dx.doi.org/10.1122/1.549811
http://dx.doi.org/10.1122/1.549811
http://dx.doi.org/10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2
http://dx.doi.org/10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2
http://dx.doi.org/10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2
http://dx.doi.org/10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2
http://dx.doi.org/10.1002/pc.750120403
http://dx.doi.org/10.1002/pc.750120403
http://dx.doi.org/10.1002/pc.750120403
http://dx.doi.org/10.1002/pc.750120403
http://dx.doi.org/10.1080/15583724.2011.615961
http://dx.doi.org/10.1080/15583724.2011.615961
http://dx.doi.org/10.1080/15583724.2011.615961
http://dx.doi.org/10.1080/15583724.2011.615961
http://dx.doi.org/10.1098/rspa.1952.0035
http://dx.doi.org/10.1098/rspa.1952.0035
http://dx.doi.org/10.1098/rspa.1952.0035
http://dx.doi.org/10.1098/rspa.1952.0035
http://dx.doi.org/10.1098/rspb.1971.0068
http://dx.doi.org/10.1098/rspb.1971.0068
http://dx.doi.org/10.1098/rspb.1971.0068
http://dx.doi.org/10.1098/rspb.1971.0068
http://dx.doi.org/10.1016/S0006-3495(02)75204-1
http://dx.doi.org/10.1016/S0006-3495(02)75204-1
http://dx.doi.org/10.1016/S0006-3495(02)75204-1
http://dx.doi.org/10.1016/S0006-3495(02)75204-1
http://dx.doi.org/10.1103/PhysRevE.80.051911
http://dx.doi.org/10.1103/PhysRevE.80.051911
http://dx.doi.org/10.1103/PhysRevE.80.051911
http://dx.doi.org/10.1103/PhysRevE.80.051911
http://dx.doi.org/10.1017/S0022112065001337
http://dx.doi.org/10.1017/S0022112065001337
http://dx.doi.org/10.1017/S0022112065001337
http://dx.doi.org/10.1017/S0022112065001337
http://dx.doi.org/10.1021/ma971339h
http://dx.doi.org/10.1021/ma971339h
http://dx.doi.org/10.1021/ma971339h
http://dx.doi.org/10.1021/ma971339h
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1209/0295-5075/104/14004
http://dx.doi.org/10.1122/1.1879043
http://dx.doi.org/10.1122/1.1879043
http://dx.doi.org/10.1122/1.1879043
http://dx.doi.org/10.1122/1.1879043



