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Kinetic equations for diffusion in the presence of entropic barriers
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We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a
system in the presence of potential barriers. The result is applied to a description of the evolution of systems
whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of
irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the
exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs
equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion
coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the
dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.
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[. INTRODUCTION tion applies irrespectively of the nature of the equilibrium
state of the system. When the system is in contact with a heat
The free energy landscape of a complex system, whehath and its volume remains unaltered, in which case the
represented as a function of an order parameter or reactidfoper thermodynamic potential is the free energy, our equa-
coordinate, presents an intricate aspect consisting of multipléon describes the dynamics in the presence of energetic and
local minima, defining metastable states, separated by barr@ntropic barriers. The validity of our method, however, goes
ers. The nature of the barriers depends on which thermodyreyond this standard situation, and embraces other cases of
namic potential varies when passing from one well to theinterest characterized by other thermodynamic potentials and
other, and their presence plays an important role in the dystatistical ensembles.
namics of the system. Whereas energy barriers are more fre- The paper is distributed in the following way. In Sec. II,
quent in problems of solid state physics, entropy barriers ar&/e present a general derivation of the kinetic equation in the
often encountered in soft condensed matter and biologicdlamework of mesoscopic nonequilibrium thermodynamics.
systems. These barriers may also appear when coarsening theis equation governs the evolution of the probability den-
description of a complex system in order to simplify its dy- Sity in the presence of barriers of any nature. In Sec. Il we
namics. The elimination of some coordinates can be perdiscuss an example in which the presence of an entropic
formed by introducing a configurational entropy accountingParrier manifests: diffusion in a channel of varying cross
for the degeneracii.e., the number of equivalent configura- section. The corresponding kinetic equation has been re-
tions) of the state defined by the remaining coordinates. Thiderred to as the Fick-Jacobs equation. Section IV is devoted
procedure has been used, for instance, in the context d@ a derivation of that equation from mesoscopic nonequilib-
glassed1]. rium thermodynamics, and to the formulation of a scaling
The study of the dynamic properties of the system at théaw for the diffusion coefficient which is compared to previ-
mesoscopic level requires a knowledge of the probabilityous results. In Sec. V we extend the results of Sec. IV to the
distribution function of the relevant degrees of freedomcase in which an external field acts on the diffusing particle.
which evolves according to a kinetic equation of the Fokker-Finally, in Sec. VI we present our main conclusions.
Planck type. This equation is usually derived from kinetic
theory in the diffusion limit{2—4], from a master equation Il. KINETIC EQUATIONS IN THE PRESENCE
[5], and from projection operator techniqués7]. OF POTENTIAL BARRIERS
Our purpose in this paper is to propose a simple theoret- o o ]
ical framework to analyze the mesoscopic dynamics of sys- OUr purpose in this section is to present a general deriva-
tems in the presence of energetic and entropic barriers. THEN of the kinetic equations describing the evolution in time
procedure we follow is based on the application of mesos®f the probability density when the statics of the system is
copic nonequilibrium thermodynami¢8—18], and was pre- charz_actenzed by a th(_ermodynamlc potential Ian_dscape._ We
viously used to analyze transport and activated processes fignsider that the equilibrium state of the system is described
systems governed by a dynamics of the Fokker-Planck typd2y the probability distribution function
The kinetic equation follows after obtaining the probability
current, occurring in the corresponding continuity equation = ~exp( _AW(X)) 1)
in the configuration space, from the entropy production ac- ea kT ’
counting from dissipation in that space related to the under-
lying diffusion process of the probability density. That equa-where JA(x) is the minimum reversible work required to
change the state of the syst¢B], which is related to the
maximum useful work which can be extracted from it, some-
*Email address: davidr@precario.ffn.ub.es times referred to as available enef@@] or availability[21];
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k is Boltzmann’s constantT is the temperature of the me- JS P P
dium, andx an arbitrary set of coordinates which may rep- i —kj Ing— —-dx. (6)
resent the velocity of a particle, the orientation of a spin, the q

size of a macromolecule or whatever coordinate or Ord_ebuite generally, we may assume that the probability density
parameter whose values defines the state of the system inggtisfies the continuity equation
phase space. Variations of the minimum work for a thermo-

dynamic system are expressed as IP 9

T @)
AW=AU—-TAS+pAV—uAN+YyAY+---, (2 at IX=

where U is the internal energyS is the entropy,V is the ~ WhereJ(x,t) is a current defined im space which has to be

volume, andN is the number of particles of the system, determined. Now substituting the time derivative of Eq.

whereasT, p, andu are the temperature, pressure and chemiinto Ed. (6), one obtains the entropy production

cal potential of the environment. The terydY represent

other kinds of work(electric, magnetic, surface work, etc. o= _kf J(x t)ilnidx @)

performed on the systeny, being the intensive parameter == 70X Pgq —

andY its conjugate extensive variablg2]. For the case of

constant temperature, volume, and number of particles, th&0 arrive at Eq(8) we have also performed a partial integra-

minimum work Corresponds to the Helmholtz free end-ng tion, and assumed that the current vanishes at the boundaries

In general, that quantity reduces to the thermodynamics pof the system irx space.

tentials by imposing corresponding constraints on . In the nonequilibrium thermodynamics scheme, the en-

[22] . tropy production Eq. (8)] consists of contributions of prod-
Having specified the statics of the system, we will deriveucts between the curred(x,t) and its conjugated thermo-

the kinetic equation describing the evolution of the probabil-dynamic force —k(d/dx)In(P/Pg), for each value of the

ity density. To this end, we will use the framework of meso-coordinatex. Assuming locality inx space, for which only

scopic nonequilibrium thermodynamics. This theory appliescurrents and forces at the same valuexadre coupled, one

the scheme of nonequilibrium thermodynamics to describ@btains the linear law

the dynamics of mesoscopic degrees of freedom. The treat-

ment of a diffusion process in the framework of nonequilib-

rium thermodynamics is extended to the case in which the

relevant quantity is a probability density, defined in phase

space, instead of a mass density. The starting point is thein which the phenomenological coefficieinfx) may in gen-

J P
£=—kL(§)5InP—, (9)
2 eq

the formulation of the Gibbs equation eral depend orx.
1 The resulting kinetic equation then follows by substituting
5S= — Tf 1(X) P (x,t)dx, 3) Eg. (9) into the continuity equatioK7),

P 0 J P
which resembles the corresponding law proposed in nonequi- i 5( P—In—) ) (10
librium thermodynamics in terms of the mass density of par- -

ticles. Here u(x) is a generalized chemical potential, \yhere we have defined the diffusion coefficient
whereasP(x,t) is the probability density.

This expression is compatible with the Gibbs entropy kL(X)
D(X)= —5= 11
P(x,t) - P
S(t)z—kf P(x,t)Ing—— dx+ S, 4
Peq(X) This equation, which in view of Eq1) can also be written
whereS, is the entropy when the system and the heat batff>
are at equilibrium. Effectively, taking variations in E@t), PR P D 9AW
and using the expression of the chemical potential per par- = |D—+ — P, (12)
ticle [9], gt ax\~ ax KT odx

P(x,t) is the Fokker-Planck equation accounting for the evolution of
M(K):kTmp;(X)‘FMeq. (5)  the probability density inx space.
ed= Under the conditions for whichkV=F=U-TS, this
where . is the chemical potential at equilibrium, one ar- €quation transforms into the Fokker-Planck equation for a
rives at expressiofB). system in the presence of energy and entropy barriers. One
From the Gibbs equation we can obtain the entropy prothen obtains

duction related to the underlying diffusion process xn
space. Calculating the time derivative of the entropy from op o P D IAU = DJIAS 13

= — _—t N —
Eq. (4), one has gt X D&; KT ox P=%x o P
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where the drift term consists of contributions due to an exvolume is —D,A((dC/A)/Jx), whereas the rate of exit is
ternal potential and to variations of the entropy. When thegiven by
barrier is purely energetic, only the first contribution re-

mains, and the previous equation reduces to the well-known b dCIA 9 JdCIA q

Fokker-Planck equation TR AT T X o aXt
w_2 DEJF RM_UP) (14) The difference between both rates provides the rate of
gt ax\ " ox kT dx change of the substance in the elementary volume, which can

also be expressed ag(/dt)dx. Neglecting quadratic terms

If the nature of the barrier is purely entropic, B43) then i 4y one easily arrives at the equation governing the diffu-
corresponds to the Fick-Jacobs equation sion in the channel

P 4 JP D JAS
Ezﬁ(D&_FWP)’ s 5 TS| op, L (e L 9A
= = = ot Oax| " ax| A Ooxlax A(x) dx ’

first derived in the context of diffusion of Brownian particles (16)
in a channel of nonconstant cross sectigA]. L . .

The general form of Eq(12), in which the equilibrium which is referred to as the Fick-Jacobs equation.
distribution function does not need to be specified and is
given in general by Eq1), makes that result applicable to a B. Zwanzig's derivation

great diversity of situations. For example, for @ Brownian 7y an7ig in Ref.[24] reported a more general and rigor-
particle, for which the minimum work is simply its kinetic o5 gerivation of the Fick-Jacobs equation. For the sake of
energy, the equat_lon corresponds to the usual Fok_ker—PIan%p"City’ let us review the two-dimensionéD) case. The
equation. Wherx is an order parameter or a reaction co0r- method consists of performing a reduction in the number of
dinate, Eq(12) provides the kinetic equation in the presence.qqdinates from the 2D Smoluchowski equation to a 1D
of barriers. The method used in this section then offers Yescription.

common formalism able to analyze the dynamics of a system o starting point is the two-dimensional Smoluchowski

in the presence of energy and entropy barriers. In this PapeLquation for diffusion through a general potentifix,y),
we will mainly focus our analysis to the case in which the

d (C” d (&C 1 dA(x)

potential is strictly entropic. ac(x,y,t) d d
N _Da— e BUKY)  gBUXY)
p Doy xE c(x,y,t) (17)
Ill. DIFFUSION THROUGH A CHANNEL OF VARYING
CROSS SECTION: FICK-JACOBS EQUATION
+D iefﬁu(xxy)ieﬁu(xry)c(x y t) (18)
The influence that the presence of an entropic barrier ex- Ogy ay e

erts on the dynamics of a system can be illustrated by deriv-
ing the kinetic equation governing Brownian diffusion where 8=1/kT, andc(x,y,t) is the concentration. To per-
through a channel of varying cross-section. This equatioiorm the reduction to one-dimension, this equation is inte-
was first proposed by Jacof3] and subsequently rederived grated over the variablg leading to
by Zwanzig[24] on the basis of more fundamental argu-
ments. JC(Xx,t 1% d
%:Doa_xf e_BU(XvY)&eﬁu(xxy)c(X,y,t)dy,
A. Jacobs’ derivation (29

Jacobs in his boobBiffusion Processef23], provided an
heuristic derivation of the equation governing diffusion in a
symmetric tube whose cross sectid(ix) varies along the
axis, defined by the center line of the tube. The argument C(x,t)=f c(x,y,t)dy. (20)
runs as follows.

Consider an elementary volume of thicknebs perpen-
dicular to the axis of the tube. The total amount of particles The key point of the derivation is the assumption of
in this slice, atx and timet is C(x,t)dx, which is the integral equilibration in the transverse direction. Under this assump-
of the concentration over the volungx)dx. The rates of tion, one can define an averagediependent free energy
entrance and exit of the diffusing substance into this volumd(X) through the expression
are given by the Fick’s lawl= —Dy((dC/A)/dx) whereD,
is the diffusion coefficient, an@/A is the local volume con- e_ﬁp(x):f e AU gy
centration. In this case, both rates are different not only be- '
cause the concentration gradie@/ dx changes with the dis-
tance, but also due to the variation of the cross-section of tht'om which one can define a normalized conditional prob-
channel. Explicitly, the rate of entrance into this elementaryability distribution

where the reduced concentration is defined as

(21)
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e~ BU(XY) v being the transverse coordinate scaled by the function
p(X;y)= A (220 w(x) [i.e., v=y/w(x) in two-dimensions, and=r/w(z) for
e a 3D tube of radiug with cylindrical symmetry, andV(v)
=U(x,y). For a purely confining potential, the results ob-
tained by Zwanzig ares=1/3 for the 2D case, angt=1/2
for a 3D tube with cylindrical symmetry. From expansion
~ . (26) he infers expressiof25), based merely on the fact that
cO6y.)=Cxp(xy)- @3 this reconstruction of the series improves the agreement with

Taking these considerations into account, one finally obtainf€ exact results.

Then, under the local equilibrium approximation, the con-
centrationc(x,y,t) factorizes as follows:

dC(x,t) _d ~BF(%) d BF(X) IV. FICK-JACOBS EQUATION FROM MESOSCOPIC
o &Doe &e Cx.), (24) NONEQUILIBRIUM THERMODYNAMICS

which constitutes the generalization of the Fick-Jacobs equac, For the case of an enclosure of varying cross section, the

. . X X ncept of entropic barrier is remarkably simple. At equilib-
tion (16) to th? case of a two dimensional poten}lbax,y). rium, the density of diffusing material, is constant. If we
In the previous analysis, we have not taken into accoun

the fact that the normal flux must vanish at the boundaries ontract the 3D description retaining the coordinafehe

The role played by this zero normal flux conditions can bereleItIng 1D equilibrium distribution is
replaced by the confining potentidl(x,y). In fact, if
U(x,y) is a boxlike potential, i.e., zero inside the tube and peq(x)=f podydz=poA(X). (28
infinite outside, it is clear thae A" ™ =2w(x), beingw(x)

the half width of the tube. In this case, the barrier is purely|n this case, the diffusing particle constitute an isolated sys-
entropic, and one recovers the usual Fick-Jacobs equatioem. Therefore, its corresponding thermodynamic potential
The extension to the three-dimensional case is quite straighgptained from Eq.(2) is simply AW=—TAS, where the
forward by taking into account that in this case the integraentropic barrier is, in accordance with Eq),

tion in the transverse coordinates involves varialylendz,

and the width of the 2D tube must be replaced by the trans- AS(x)=kInA(x). (29
verse sectionrw(x)?2.

Zwanzig's analysis clearly manifests that the accuracy of The previous equation clearly manifests that the entropic
the Fick-Jacobs equation is conditioned on the existence dfarrier originates from the variation of the space available
local equilibrium in the transverse direction. The author anafor the diffusing particles. Note that E29) corresponds to
|yzed the effect of the deviations from the local equi”brium the usual microcanonical definition of the entropy in terms of
related to the variations of the densifg(x,y,t)=c(x,y,t) the number of states which in this case is simply proportional
—C(x,t)p(x;y). He derived an equation for the evolution of O the area of the tube. o
these deviations, which suggested that the accuracy of the Once identified the equilibrium distributiofor the en-
Fick-Jacobs equations is restricted to situations verifyingropic barriet, the kinetic equation describing diffusion in
lw’(x)|<1, that is, when the section of the tube variesthe presence of the entropic barrier fo_IIows from our ge_neral
smoothly. In addition, he showed that the range of validity ofScheme developed in Sec. Il. According to Etf), the ki-
the one-dimensional Fick-Jacobs description could be exd€tic equation is
tended by introducing a position-dependent effective diffu PO P D(x) IAX)

sion coefficient - - - R
at  Ix D(x ax  A(X) ox ' (30

_—, (25  which has the same structure as the Fick-Jacobs equation,
1+ W' (x)? but with a spatially dependent diffusion coefficient.

. o o At this point, it is worth analyzing the role played by this
whereDy is the molecular diffusion coefficient, and the pa- coefficient. In Ref[24] it was shown that the validity of the
rametery depends on the dimensionality. The explicit ex- 1p description could be extended if we use an effective spa-
pression for this coefficient is obtained through an expansiofia|ly dependent diffusion coefficient. However, the agree-

Dz(x)=Dg

in powers ofw’(x) [24]. The result is ment one can achieve with expressit26) proposed by
_ Lo Zwanzig is not always satisfactory. In particular, for the 3D
D(X)=Do[1—yw'(x)"+---], (26)  example discussed in Reff24], results for the current of

particles obtained by using the expression of the diffusion
coefficient[Eq. (25)] present severe discrepancies with the
corresponding expression coming from the exact result of the
f p2e BViMdy 3D Smoluchowski equation, when the section of the tube
(27) changes abruptly.
The appearance of an entropic barrier originates from the
reduction of the space to a single coordinate. But this reduc-

where

fy:

f efﬁV(V)dV
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tion may also have implications on the form of the diffusion y
coefficient. The molecular diffusion coefficient in the real
spaceD,, gives information about the dispersion of the dis-
placement. In two-dimensions, we can estimate

o el i
(An? Tl ax
o Ty T t ’

NN\
D N Nl

Ax?

(31

which manifests that the diffusion coefficient involves the
displacement in both coordinates. Once we have contracte&
they coordinate, the resulting effective diffusion coefficient

only depends on the dispersion in the remainingoordi- — counting for the effects of passing through many constric-
nate, that is qualitativelp e~ (Ax)“/t. Therefore, from EQ.  tions in the channel. This effective coefficient can be evalu-
(31) we can infer the behavioDqt~Do/[1+ (Ay/AX)?].  ated ag25]

The previous equation provides a hint about the fact that the

reduction of coordinates may involve not only the appear- 1

ance of an entropic barrier, but also a scaling of the diffusion D_* = <W> (W(x)), (39
coefficient. Following this heuristic reasoning, we will pro-

pose a scaling law

FIG. 1. Shape of the two-dimensional periodic channel defined
rametrically by Eq(33), for V=0.5 anda=0.5.

where() denotes average over one period of the potential.
For this particular geometry, an exact expressionOidr
1 was derived in Ref[25]
Ds(x)=Do————7— (32)
(1+y'(x)9) 1
: (35)

D* A2 tanhVv
Dy B Y
exact

for the diffusion coefficient appearing in E¢30), where 0

y'(x)=dy/dx, andy(x) =w(x) defines the shape of the en- ang was compared to the results obtained with the Fick-
closure. The objective is then to test if the use of this expresjops equation using a constant diffusion coefficRp}
sion is able to extend the range of validity of the 1D Fick-ang with the position-dependent diffusion coefficient(x).
Jacob-type description. In Fig. 2 we represent the results for* obtained using

The values of the scaling exponents can be estimatefq itferent approaches mentioned above, plus the ones cor-
from the calculations performed in R¢24]. We can expand responding to our expressiddy(x). One can easily realize

our expression for the diffusion coefficieDt(x) in terms of = hat the results obtained with the expressionDa{x) we
w’(x)“, and compare the result with the one obtained bypropose improve the ones when usidg(x) and constitute

Zwanzig[Eq. 26. From this comparison, one obtains that aan excellent approximation of the exact result.
reasonable choice of the scaling exponentssl/3 for the

2D case andv=1/2 for the case of a 3D tube.

In the remaining of this section, we will test this result for
the two cases discussed in RE24] which admit an exact The improvement of the results one can achieve with
solution. We will see that the agreement with the exact results(X) is more remarkable for the 3D example discussed in
when we use our effective diffusion coefficient given by Eq.
(32), is significantly improved.

B. Steady-state flux through a 3D hyperboloidal cone

v=0.5
0.95 ---- Exact|{
A. Effective diffusion coefficient in a 2D periodic —_ Dy
symmetric channel 0.9 e |1
The first case under scrutiny is the diffusion in a 2D pe- D Ds (%)
riodic channel defined by D, 0-85; 1
x=u+acoshv sinu, y=v+asinhv cosu, (33 0.8;
) . ) . ) 0.75 ¢ 0-57 055 5.5 057 055
where diffusion occurs in the region comprised between 0
<u<2w and —V<wv<V. The parametex =a coshV must 0 0.2 0.4 0.6 0.8
be smaller than 1, to avoid double valuation of the walls. a
Figure 1 illustrates the shape of the tube fur=0.5 FIG. 2. Effective diffusion coefficier* for the 2D channel for
anda=0.5. V=0.5 as a function of the parametgrusing different expressions

At very long times, diffusion in periodic channels can befor the diffusion coefficient. The inset is a zoom to illustrate the
described through an effective diffusion coefficiét, ac-  accuracy of the different approaches.
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1
RN N \\ ---- Exact
0.8 \\\ \ —— D,
J 0.6 \\\ N\ --=- Dz (z)
A A\ — D5 (2)
430000 0.4 et T T T T \
~ ~
L \\\\
0.2 (/ N
'/
0
0 0.2 0.4 0.6 0.8 1
o

FIG. 4. Comparison of steady state fluxes through an arbitrary

FIG. 3. 3D hyperboloidal cone foa=1, 0<¢(<5 and 7q hyperboloidal cone, against the value .

=0.5.

An illustrative example of that situation is the problem of
ffusion in a 2D channel of nonconstant cross-section in the
presence of gravity. The situation is depicted schematically
in Fig. 5.

If gravity is involved, the 2D equilibrium distribution is
given by the usual Boltzmann factor

Ref.[24]. In this case, the shape of the tube corresponds torg
3D hyperboloidal cone as the one depicted in Fig. 3. It ca :
be conveniently described by using oblate spheroidal coordi
nates €, 7,¢), related to the cylindrical coordinates, £, ¢)

by

r’=a*(&+1)(1- ), z=aéy (36)

. . Peq(xly)we—mgy/kT. (40)
In this coordinate systeng=0 corresponds to the small hole

and ¢=o to the far end of the tubey=1 is thez axis, »
=0 is the §,y) plane, whereas= 7, corresponds to the
surface of the tube. Diffusion then takes place in the region

0<é<om, pe<n<l, 0<e<2m (37 12] Peq(x'y)dXdy:f Peq(X)dx, (41)

The steady-state 3D diffusion equation can be solved by . . . .
using the boundary conditior@=0 for £¢=0, C=C, for ¢ and using expressiof0), one can identify the reduced 1D

=oo, and the condition that the normal flux vanishes at theeqUIIIbrIum distribution as

walls 7= 7,. In this situation, the exact steady-state flux

Considering the normalization condition

. 0 y2(x) -—m
through the exit hol&=0 is[24] Peq(X)Nf 2( | dyex;{ kTgy)
yq(X
Jexac=4Da(1—70)C,. (39 '
: _ . KT  [—mgy(x) —2mgwx)
Alternatively, one can use the Fick-Jacobs equation de- =m—ex T 1—ex T’
rived in Sec. Il to calculate that flux, yielding 9

-1 (42

J=C, (39

f dz—1 : :
o D(2)A(2) wherey, (x) andy,(x) define the boundaries of the channel
and 2v(x) =y,(X) —y1(X) is its width. The dynamic equa-
The results are depicted in Fig. 4, corresponding to the “eXtion then follows after introducingPeq(x) in Eq. (10),
act,” unmodified Fick-Jacobs equation, in whiE{z)=Dy  yjelding
is a constant, and to the choicBs(z) andDg(z). From the
examples we have discussed, it becomes clear that our pro- y
posal of a scaling law for the spatially dependent diffusion e
coefficient leads to a better agreement with the exact results.
V. DIFFUSION IN A CHANNEL OF VARYING CROSS | g
SECTION UNDER THE INFLUENCE OF A FIELD + X

In Sec. I, we have discussed the effect of entropic barri-
ers in the dynamics. The presence of these barriers is some-
times accompanied by energy barriers. The theory we have
developed admits a generalization to the case in which both
entropic and energetic barriers coexist. This will be the pur- FIG. 5. Schematic representation of the 2D tube in the presence
pose of this section. of gravity.

Y1 (%)
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JP d P D(xX)m m X VI. CONCLUSIONS
P[P DG MO0
at  ox X kT kT

In this paper we have presented a theory to describe the
(43 kinetics of a system whose equilibrium state is characterized
by a given landscape of an unspecified thermodynamic po-
tential. The theory is based on mesoscopic nonequilibrium
I'fhermodynamics, which uses the scheme of nonequilibrium
thermodynamic$9] at the mesoscopic level of description in
which the pertinent fields are probability densities.

In particular, we have established a kinetic equation for a

system in the presence of entropy barriers. The barriers may

for the case of a symmetric channel for whigh(x)=
—Vy1(x). From the previous expressions one can distinguis
different limiting cases.

(D In the limit e=mgw(x)/kT<1, we can expand the
reduced equilibrium distributiofEq. (42) ] in terms ofe,

peq(X)NE[1+o(6)] 1—1+ 2m§—¥“’°+0(62) be inherent to the intimate structure .of.the. system or may

mg emerge as a consequence of the elimination procedure of

~2W(X) (44) some coordinates when one tries to simplify its dynamic de-
scription.

recovering the case of purely entropic barrier discussed in An illustrative example treated in the literature is the dif-
Sec. IV. Equatior(43) reduces then to the Fick-Jacobs equa-fusion of a particle in a region of irregular geometry. The
tion (30). governing equation for the probability density is known as
(2) For the cases>1, gravity dominates, coth—1, and  the Fick-Jacobs equation, and was derived heuristically by
we recover the dynamics for diffusion along a 1D purelyJacob[23] and directly from the proper coordinate reduction
energetic barrier: procedure by Zwanzi§24]. In our derivation, the entropic

barrier directly comes out from the Boltzmann entropy,
P 9 dP  D(x)mg | which follows from the proper accounting of the number of
T &( D(x)—=+ Tyl(X)P)' (45 accessible states of the system. In the kinetic equation we
have obtained: the dependency of the diffusion coefficient on
(3) If the boundaries are flat, that ig,(x)=—y,(x) the coordinate follows from the general dependency of the
=cte, the equilibrium distributiorP(x) is then constant, Onsager transport coefficients on the state variable, accord-

and the dynamics can be properly described by the 109 to the rules of nonequilibrium thermodynamics. This de-

Smoluchowski equation: pendency becomes crucial in the reduced description accu-
rately resembling the exact solution. We have proposed a

IJP 9 IP scaling law for the diffusion coefficient, reaching a very
E:5<D(X) 5)- (46) good agreement with the exact solution even in the case

when the original Fick-Jacobs equation does not provide a

The evolution of this confined system in the presence ofood gpproximat?on. In thi; way, we have placed the validity
gravity dictated by Eq(43) presents some peculiarities. On of a Fick-Jacob-like description in a more genera! context.
the one hand, since the energy barrier depends on the coor- The theory we have proposed can also be applied to cases
dinate we have eliminated, there exists a coupling betweeff Which an energy barrier is also present. We have obtained
entropy and energy barriers and not a mere superposition dfie corresponding Fokker-Planck equation describing its dy-
the drifts related to each of them, which is reflected by thehamics. Interesting characteristics of this equation are the
presence of the term cdthgw(x)/kT] in the drift of Eq.(43).  coupling of the entropy and energy barriers and the apparent
On the other hand, it is important to highlight that E43)  violation of the fluctuation dissipation theorem, resulting
does not satisfy the detailed balance condition: the mobilitfrom the elimination of variables.
b=[D(x)/kT]cotH mgwXx)/kT] and the diffusionD(x) are The theory we have presented is applicable to a wide
not related through the usual Einstein relatidx) =kTh.  variety of systems of different nature. Apart from the diffu-
That is, the signature that the fluctuation-dissipation theorension problem in the presence of an entropic barrier we have
which holds at equilibrium, may lose its validity when we discussed in this paper, we can quote protein foldiag,
perform a reduction of the variables describing the state oflassy system$27], transport of iong28] and macromol-
the system. ecules[29—-37 through membranes or channels, motion of

Concerning the effective diffusion coefficient, a scalingpolymers subjected to rigid constrair3], protein binding
law like the one proposed through E&2), which is valid in  kinetics[34,35], drug releas¢36], nucleation[37], or poly-
absence of external forces, will in general not be correctner crystallization38], to mention just a few examples in
when an external field is present. The value of the scalingvhich the presence of entropic barriers becomes relevant.
exponenta varies in the presence of external potentials, There still remains open questions whose answers go be-
since the scaling exponents changes due to interactions. Tlyend the scope of this paper. The main pitfalls arise from the
range of validity of the Fick-Jacobs description, and thecoordinate reduction procedure. The question is how to pro-
modifications in the scaling of the effective diffusion coeffi- ceed with the coarsening in more complex situations. For
cient under the presence of external fields, requires a morastance, it will be desirable to analyze the effect of asym-
elaborated treatment. metries either intrinsic to the nature of the landscape or due
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to the presence of external forces which impose a preferredomplete theoretical framework providing a dynamic de-
direction, which occurs in many situations of practical inter-scription of systems exhibiting entropic barriers.

est. Another interesting point will be to analyze the behavior
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