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Korteweg—de Vries solitons under additive stochastic perturbations
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The evolution of solitonic solutions of the Korteweg—de Vries equation subject to additive noise is inves-
tigated using numerical techniques. Various types of additive white Gaussian noise are considered. The aver-
aged solution amplitudes exhibit in all cases algebraic decay, verifying Wadati’'s universality conjecture. If the
noise is time dependent, or position and time dependent, algebraic decay is obtained for intermediate times too.
These intermediate-time results agree well with the outcome of an experiment on ion-acoustic soliton propa-
gation in a noisy plasma. The distribution of soliton first passage times in a noisy medium is also discussed.
[S1063-651%98)10509-3
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I. INTRODUCTION exact multisolitonic solutions for additive time-dependent
noise, and to investigate the influence of dissipati@h
The remarkable stability of the solitonic solutions exhib- They showed that dissipation leads to normal soliton diffu-
ited by certain nonlinear differential equations was discov-sion: the ensemble average is a Gaussian whose width in-
ered by Zabusky and Kruskal in their classical numericakreases asymptotically only &¥2. On the other hand, there
study[1]. They showed that Korteweg—de VrigsdV) soli-  is no “mass conservation” and the overall amplitude is ex-
tons preserve their identities through soliton-soliton interacponentially damped. Their results were rederived by Herman
tions. The only signature left by these interactions is a phasgg], who also considered multiplicative noise, in the cases
shift. Due to the increasing applicability of solitons to prac-corresponding to dissipation and velocity fluctuations. For
tical problems, attention has recently been turned to the stahe averaged solitons, Herman obtained Gaussians whose
bility of solitons subject to random perturbations. The extenwidths grew with the same time dependence Wadati had ob-
sive reviews by Bass and co-workd® and by Abdullaev tained for the purely time-dependent additive noise. Other
[3] describe many of the results obtained in this area. On theonsequences of perturbing the solitons with multiplicative
other hand, the possibility of observing Anderson localiza-noise, such as the generation of radiation, were analyzed in
tion effects on nonlinear excitations in disordered media haRef. [2]. More recently, lizuka discussed the diffusion of
also led to interesting research on the interplay between norsolitons under the effect of multiplicative noise with long-
linearity and disordef4]. range correlation§9], concluding that the soliton diffusion
The KdV equation is still a paradigm for soliton-bearing must be anomalous if the correlations decay algebraically
nonlinear differential equations. As such, it has been the subwith an exponent smaller than unity.
ject of many papers devoted to the analysis of the influence Wadati also conjectured that the algebraic decay
of various types of random perturbations on its solutions(~t~%) of the amplitude with time in the long-time regime
Abdullaev and co-workers have investigated the evolution okhould have a universal character. In this connection, the
randomly perturbed initial solitonic states, assuming that thigoroblem of constructing integrable stochastic systems was
evolution is controlled by the nonrandom KdV equat[@.  analyzed in a recent book by Konotop andzqaez[10].
Other authors have studied the evolution of an initially de-These authors found that, by changing to a proper reference
terministic wave form due to a stochastically perturbed KdVframe, an additive noise can be transformed into a multipli-
equation. By using the inverse scattering technique and aative noise plus a fluctuating background. In this way, it can
suitable moving reference frame, Wadati was able to obtaibe shown that Wadati’s universality conjecture is verified,
the exact one-soliton solution for additive time-dependentvith an exponentr that depends on the statistics and on the
white Gaussian noisg]. He showed that the average of the form of the random term used. However, although the prob-
single-soliton solution over many realizations should behavéem is integrable or nearly integrable, it is not always pos-
as a Gaussian whose width increaseg¢®#sat long times. sible to find the exponent explicitly, except by the use of
Thus the soliton performs a superdiffusive motion in addi-approximate perturbation methodkl]. In this paper we de-
tion to its constant-speed displacement. Concomitantly, héermine « numerically for nearly integrable KdV systems,
predicted that the Gaussian amplitude should decrease asj., with various types of low-intensity noise. Moreover, we
t~%2 Later, Wadati and Akutsu extended this work to obtainextend the analysis to the intermediate-time region, which, to
our knowledge, has never been studied.
Since experimentalists often probe intermediate times, it
*Present address: FaMAF, Universidad Nacional ded@Ga, is useful to have explicit predictions that are not restricted to
5000 Cadoba, Argentina. the asymptotic regime. Frequently, analytical results for
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these intermediate times are either unattainable or too com- u(x,t)=W(t) + 2«2 secht
plex to be easily applied. Numerical solutions or simulations
then provide the sole possible standards against which ex-
perimental results can be compared. In particular, we will
show that the hitherto unexplained results of the experiment
of Chang and co-workergl2] on the propagation of ion- where
acoustic solitons in a nonquiescent plasma agree very well .
\évétiget?r? trheeSliJrI]ttsér?nbéZ\:gctee(jtifr%rep;gs[tmn- and time-dependent W(t):f 2(t)dt. (5)
gime. 0
We have found no studies of the cases in which the KdV
equation is modified by additive noise that depends on posi- Wadati also computed the statistical avergggx,t)),
tion or on both time and position. This problem is more showing that, at short times<t* = (48«%¢) 3, it is still
realistic than that of the noise depending on time alone, but ipproximately given by the one-soliton soluti¢8). For t
is much harder to investigate using analytical techniques. Is>t*, the amplitude ofu(x,t)) decreases as 32 while its
this paper we perform a detailed numerical analysis of thevidth 6x increases as*? Wadati termed this phenomenon
effects of various types of additive noise on the evolution of‘soliton diffusion.”
the individual soliton solutions and of their averages. The long-time behavior can also be easily obtained by
Although first-passage problems for particles moving inusing a Langevin equation formalism. To see this, we note
disordered systems have received a lot of attention, there arghat in each experimental realization, although the soliton
as far as we know, no analyses of soliton first-passage timeshape is unperturbed, its maximug moves according to
in a noisy medium. In this paper we propose an ansatz for thghe equation
distribution of first passage times when the noise depends on
time alone, and we use this ansatz in combination with nu-
merical solutions to investigate the passage times for two
interacting solitons.
We start Sec. Il by revisiting Wadati’s results for the This means that a stochastic term is added to the uniform
dependent noise. We then present a simple derivation of thgisplacement of the soliton in such a way that
long-time result for the mean square displacement and exam-
ine the first-passage problem. Some interesting features of Xm(t)=—67n(1), (7
the unaveraged problem, which had previously received little
attention, are also discussed. In Sec. lll we report the resultith (7(t))=0 and(7(t) »(t"))=2e(t—t’).
of the numerical simulationésome preliminary results, for ~ To obtain an equation for the mean square displacement,

shorter runs, were reported in REE3]). Our conclusions are it is convenient to add temporarily a small dissipative term.
summarized in Sec. IV. Omitting the subscripM, we write

X

k(X—Xg) — 43t + GKJOtW(t’)dt'} , (4

xM(t):x0+4K2t—eftW(t’)dt'. (6)
0

Il. THE KdV EQUATION WITH ADDITIVE NOISE X(O+Ix(t)=—=6n(1), ®)

The equation we consider in this paper is the KdV equawhereF is the friction constant. This equation is easily inte-
tion subject to additive noise and dissipatidhg], grated, leading to
Ug— BU U Uy + yU= 7(X, 1), 1)

1
X(t)—x(0)=

- 204 Tty _
F4K(le )—6

whereu(x,t) is a real field,n(x,t) an external random force,
and the subscriptg andt stand for the partial derivatives t
with respect to position and time, respectively. The damping XJ dryp(r)(1-e 1), 9)
coefficient v is non-negative. We choosg(x,t) to be a 0
white Gaussian noise, whose statistical averages SatiSWhere 42

(7(x.))=0 and is the initial velocity. We can now compute the
mxt)=

mean square displacemerix)?=([x(t) —x(0)]?). At long

Py — oy Y times we obtain the usual diffusive behavioBxj?~t (as
(D70, 1)) =28 S(x=x") (=), @ found by Wadati and Akuts{i7]). However, by letting the
wheree characterizes the noise intensity. friction coefficientl’— 0 first, we find
The well-known soliton solutions of the deterministic 5 42 3
KdV equation (y=7=0) have the form (6x)°=16k"t"+ 24et”. (10
u(x,t)=2«? sech[ k(x—Xo) — 4x53t], (3) The first term on the right-hand side corresponds to the
uniform displacement with the unperturbed soliton speed,
wherexg gives the initial soliton location. while the second term gives the noise-induced superdiffusive
Let us start by considering the influence of noise in thebehavior, which eventually prevalils.
absence of dissipative effects, i.e., whersr 0. Even with We now examine the problem of the soliton first passage

this simplification, the problem cannot be solved analyticallytimes(FPT9 in the case of the integrable model with a time-
unless = 5(t) alone. In this case, Wadati found that the dependent noise. Since the soliton is an extended object, we
unaveraged one-soliton solution has the f¢6h must state precisely the meaning of the expression “soliton
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passage time.” We will say that a soliton passes through @aoise is chosen to be weak enoughzi 7(x,t) the effects
given point when the maximum elongation of the distur-of the noise are not so devastating; because of the time de-
bance reaches that point, i.e., the passage timdrough  pendence, the influence of the noise at a given location
point L is defined in each experiment through the equatiordifferent points on the wave tends to average out and the
Xm(tp)=L. This criterion is not only intuitively appealing soliton solution can survive much higher noise intensities, as
but it is also very easy to implement in the simulations.  we will show in the next section.

Suppose that it is known that the soliton passes through
the origin at timet=0. We would like to obtain information
about how long it takes the soliton to reach the pointL
for the first time. Although in the absence of noise the dura- In this section we present the discussion of simulations
tion of this interval can be exactly Calculated, once noise iﬁgerformed to investigate the effects of various types of addi-
introduced the soliton diffuses and all we can predict is th&jve noise on the evolution of solitonic solutions. In the nu-
distribution of its FPTs. The probability density for the FPT merical work we used the centered finite-difference discreti-
in the case of normal diffusion of a point particle is discussedzation scheme proposed by Zabusky and Krugkal The
by Feller[14]. If the particle starts at the poit>0 att  stability conditions for this scheme were analyzed in detail
=0, he obtains that the probability density for its FPT by Viiegenthart{15] and our particular implementation was

Ill. RESULTS AND DISCUSSION

through the origin is given by tested by showing that the exact solitonic solutions preserved
their form after very long runs. This simple scheme proved
Z - 2 to be both fast and accurate; we performed runs on a parallel
N D.ct)= (z+ct)</4Dt 11 ! ’ - = U
(zD.ct) (47Dt 2 ’ (1) supercomputefConnection Machine CM-5, Thinking Ma-

chine Corp) and on a sequential machif®UN, Ultra J). In
whereD is the diffusion coefficient and is the drift speed. the simulations we have lét>tr, wherer=0.000 12 is the
Equation(10) suggests that the probability density for the time discretization step artds the number of time steps. We
soliton FPT could be described by taking=L, have taken the length of the space discretization step to be
ct=—4«%, andDt=12st? in Eq. (11), provided that we \=0.1 and the initial single-soliton amplitude to Mt
restrict its application to long timest>t*, and to =0)=2«?=2.
n= n(t). Therefore, we propose In order to understand to what extent solitonic properties
are preserved when noise is introduced, we start by present-
- LR (L 4r2t)2/48013 ing (Fig. 1) an overview of the influence of noise on three
Ny(Le,reit)= (48met®) 12 € + (2 gjuations that characterize solitonic solutions: single-soliton
propagatior{left column), soliton separation of an exact two-
where R is a normalization constant. We have performedsoliton initial condition(central colump, and soliton genera-
long-time simulations that confirm the validity of this ansatztion out of a nonsolitonic initial conditiofright column). In
for the superdiffusive soliton case. We will present somethe figure we show the effects of three types of additive
FPT distributions for the two-soliton problem in the next stochastic perturbationsy(t), #(x,t), and »(x) on indi-
section. vidual runs; we have superimposed snapshots taken at two
Multisolitonic solutions subject to noise were studied by different times, theé=0 snapshot corresponding to the initial
Wadati and Akutsui7]. For any individual noise realization, condition. As a reference, we report the results for the deter-
the solitons preserve their shapes, while their locations are athinistic case ¢y=0) in the first row. We present the results
identically affected by the noise. A series of snapshots of théor »= 7(t) in the second row, those fay= 7(x,t) in the
solitons would show that the relative distances between thethird row, and those forp= 7(x) in the fourth row. The
maxima grow linearly with time, as if there were no noise. respective noise intensities are indicated in the vertical axes
This is important for signal propagation, since it means thatabels. All plots were made using a reference frame that
the solitons maintain their relative positions as they movemoves with the speed of the linear waves. From the first
through the noisy medium. Our numerical simulations showcolumn we see that the noise does not destroy the soliton,
that this is indeed the case for any given soliton pair. It museven though it modifies its propagation speed, as we can
be remarked, however, that the knowledge that the leadingonclude from the shift in the peak position with respect to
soliton crossed a given lattice pointtat 0 does not suffice that corresponding to the unperturbed case. As expected,
to ascertain precisely the passage time of the second solitomi(t) generates a vertical shift of the soliton, while in the
since the two-soliton system continues to perform a randonother cases stronger fluctuations are present and, for long
walk att>0, the exact first passage time of the trailing soli-times and strong noise, may even mask the soliton com-
ton cannot be predicted. pletely. The two-soliton initial condition still gives rise to
No theoretical solutions are available for the cage two solitonlike waves, although in the(x) case trailing
= 7(x). However, since the noise at a given location influ-shelves appear behind each solitonlike solution. Note that,
ences in exactly the same way all points on the passinépr the particular run represented here, the leading soliton is
wave, it is reasonable to expect a strong enhancement of itgell ahead of its “unperturbed” position, a consequence of
effects. Even small noise intensities will soon give rise tothe high efficacy of they(x) noise. Fory(t) we also verified
marked deformations in the soliton; it is therefore not sur-that the distance between solitons grows linearly in time,
prising that Herman mentions that “there are some diverexactly as in the absence of noise. The last column shows
gence problems with this type of noif&].” The numerical that the generation of multiple solitonlike solutions out of a
solutions, on the other hand, are informative, whenever thsteplike pulse is not affected by the noise. Although this
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FIG. 1. Overview of the effects of various types of additive noise on soliton propagation and generation. Abscissa labels give the location
of spatial nodes. Two snapshots of single runs taken at different times are shown in each case. (féferfinste row corresponds to the
unperturbed problem and the following rows exhibit the effects of the kinds of noise specified in the vertical labels. The first column depicts
single soliton propagation, the second column corresponds to the emergence of separate solitons out of a two-soliton initial condition, and
the third column shows multiple solitons being generated out of a rectangular shelf.

process can be described analytically #gt) [16] the simu-  cases the averages were taken over 200 runs. No noticeable

lation confirms its robustness against the other perturbatiodifferences emerge if we add more runs. Within the limits of

types. numerical precision the evolution of each sample was fol-
Figures 2-5 show the statistical effects of noise. In alllowed exactly and the averages were taken at the end. At
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FIG. 2. Amplitudes of the Gaussian distribution of solitons for £ 3 Amplitudes of the Gaussian distribution of solitons for
7(t) and the noise intensities indicated in the figure. Abscissa units, ¥ t) and the noise intensities indicated in the figure. The simula-

in Figs. 2—5 correspond to the number of time steps. In these figgo extends up to 36 000 time steps and the results are presented as
ures, the ordinate units are chosen so thét=0)=2. (a) is a in Fig. 2.

log-log plot extending up to 23 000 time stegd) and (¢c) are

normal plots for the intermediate and long time regions, respec- ., N . )
tively. In these regions the average solution is well described by £€ expected from Wadati's calculation; indeed, usingthis

Gaussian whose amplitude decays with two different power lawsSee below Eq(5)] and the selected time scale, the charac-

(which do not depend on noise intensitgdicated by the exponent  teristic time corresponds ttf 7~ '=3170 time steps foe
a. =0.38 and to 4940 time steps fer=0.1. In all cases, we

) o ) checked that the total “soliton mass,” i.e., the integral of
short times the averaged solution is not very different fromu(X t) over allx, is conserved.
the unperturbed single-soliton solution, EG). At longer In Fig. 3 we show the results obtained by using position-
times Gaussians provide very good fits for the averages,nq time-dependent noisg(x,t). The noise intensities and

We have performed a detailed study of the widths andpe piotting strategy are the same as in Fig. 2. No analytical
amplitudes of these Gaussians. Here we report only

the results for the amplitudes, for which the fits are
more precise. Let us begin by looking at the purely time- < 1
dependent noise n=7(t), whose correlator satisfies 1
(n(t)y(t"))=2&8(t—t"). In Fig. 2 we consider three dif-

ferent noise intensities, as indicated. Figufe) 2s a log-log

plot that suggests the presence of three different regimes. At
short times, a Gaussian does not provide a good fit, but for
t>8000 (somewhat earlier in the case ©£0.38 a Gauss- 0.1
ian starts fitting well and its amplitude seems to decrease, <1(3
following a power law. At the longest times studied, the ;]
amplitude of the Gaussian appears to decay, following a ;
stronger power law. In Figs.(B) and Zc) we have zoomed 0.9
the results for the intermediate and long times, respectively, . |
using linear scales. These plots indicate that in the interme- .
diate region the amplitude decays approximatelyt a3, 0.3+
while Wadati's prediction of a~%? decay is clearly repro-
duced at the longest times. These exponents do not seem to
depend on noise intensity, in agreement with Wadati’s uni- F|G. 4. Amplitudes of the Gaussian distribution of solitons for
versality hypothesis. We also observe that the amplitude dep(x) and the noise intensities indicated in the figure. The interme-
creases faster and that the onset of the asymptotic regimitate algebraic decay region has disappeared, but asymptotically we
occurs earlier for higher noise intensities. This is as it shouldjet a power law decrease with an exponent close 4¢3.

T 1 T T T T
10000 15000 20000 25000 30000 35000 ¢
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FIG. 5. Amplitudes of the Gaussian distribution of solitons with
damping forn(t) and the noise intensities indicated on the figure.
The curves were fit with the functiori # exp(— %eyt). The corre-
sponding values oB and y are also indicated on the figure.

predictions are available for this problem, but the figures
clearly indicate a time evolution that parallels that corre-
sponding to thep(t) case: a slower power law decéyow
close tot~2?) at intermediate times and a faster power law
decay(close tot~%4 at long times. The intermediate-time
result is particularly meaningful, since it is in excellent
agreement with the results obtained by Chang and co-
workers for the propagation of ion-acoustic solitons in plas-
mas[12]. This can be seen by a direct comparison of their
Fig. 6(b) and our Fig. 8): not only is the power law decay
the same, but also the absolute magnitudes are of the same
order. This suggests thai) the experiment probed the
intermediate-time region and not the asymptotic regian,
spatial fluctuations were relevant, afiid) damping was rela-
tively weak.

Next we studied the case of purely position-dependent
noise. For the reasons indicated above, this type of noise has
an accumulative effect that tends to degrade the soliton.
Therefore, we chose noise amplitudes much smaller than
those used before. As we see from Fig. 4, no clear power law
decay is observed at intermediate times, but for long times
the amplitude decreases approximatelytad®. For times
longer than those reported, the average solution becomes
meaningless, since the solitons are completely submerged in
the noise.

We also investigated the stochastic damped KdV equa-
tion. In Fig. 5 we report the results obtained using a time-
dependent noisep= n(t). The theoretical predictions of
Refs.[7] and [8] indicate that the amplitude should decay
asymptotically as ™ Pexp(— 3e), with 8= 1/2. Our numeri-
cal analysis shows that the amplitude indeed decays expo-
nentially but we get very good fits witA~4/3. It is possible
that the simulations do not reach into the truly asymptotic
regime, which is not observable. In fact, Herman’'s
asymptotic form for the solution is probably valid only when
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FIG. 6. Histograms for the passage times of two solitons

the soliton amplitude is already so small that the correspondhrough the node=675 after starting fronh=300(the lattice has a

ing numerical results are unreliable.

total of 1200 nodes The solitons start as an exact two-soliton

In the last part of this section we discuss some normalizego!ution, which begins to separate &t 0. Here 7=17(t) and e

histograms with soliton passage times through a fixed spatiéfo

point for the case of the two-soliton solution, with= 7(t)

A

and y=0. The initial condition is the same as in the secondslower solitons was very long, we have omitted a portion of
column of Fig. 1. The FPT distributions for both solitons arethe distribution tail in Figs. @) and Gc).

presented in Fig. 6. The histograms were built using 1080 Due to the soliton-soliton interaction, we cannot use Eq.
runs. Since in some of the realizations the delay of thg12) directly to describe the numerical results. However, we
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can slightly generalize this equation by adding the fittingsults establish the validity of Wadati’'s “universality” con-
parametersy (the width of the distribution of arrival timg¢s jecture about the asymptotic behavior of the averages for the
andP (the phase shift generated by the interaction in a noisy)KdV problem; we also obtain precise values for the exponent
medium). For each soliton we try characterizing the decay. These exponents depend on the na-
ture of the noise but not on its intensity. We note that we
e,(L,4K2t,p)2,48at3 recer_1t|y confirmed_ Wadati's co_njecture for _the case of the
' solutions of Boussinesq’s equation propagating under the in-
(13 fluence of additive time-dependent no{de3]; the exponent
. . obtained in Ref[18] agrees with the corresponding exponent
an equation that should hold after the solitons have beepa:1.5) for the KdV equation. We have thus confirmed
resolved. Of course, both andP will depend onl (in the  \y5qati's conjecture on a restricted scale; more work should
case of a single soliton, we would hawe=¢). For simplic-  pe qone to check its validity for the solutions of other
ity, and since the distribution tail was cut off, we obtainedgyjiton-hearing equations. When dissipation is included, we
the normallzatpn constamR directly from the_ fit. As it can  onfirm the prediction of an exponential decay modified by a
be seen from Figs.(8) and @b), Eq.(13) describes very well - oqyer Jaw factor, but we obtain a power that is stronger than
the FPT distributions for both the leading and the trailinghat predicted by the available theory. We believe that the
solitons, for whichk =2 andx =1, respectively. Note thatin yea50n for this is that in the theoretically predicted
this figure we have used the “real” time in the abscissa; theyqymniotic regime the attenuation has already caused a
distance from the origin to the recording pointlis=(675  girong reduction of the average, which becomes completely
—300)\=37.5. We found thatr=0.0799 andP=—1.424 | hobservable due to the noise.
were the best-fit parameters for the fast-soliton distribution, Numerical solutions have the advantage of leading to pre-
while «=0.1135 and®= —5.541 were the best ones for the gictions for all times. We have shown that whes: 7(t) or
slow soliton. It appears that the interplay of noise andn: n(x,t), there is an intermediate time range for which
soliton-soliton interaction tends to concentrate the a”ivablgebraic decay is to be expected, with a smaller exponent
times of the leading soliton and to separate the arrival timeg,a in the asymptotic regime. The agreement between our
of the trailing one. This is not surprising, considering that itiniermediate-time solution and the results of the experiment
takes the trailing soliton a longer time to reach the targey Changet al. suggests that these were not completely un-
point and the integrated effects of the noise should be congersiood because the experiment had not probed the truly
sequently more intense. asymptotic region, the only one for which easy-to-interpret
Trials performed withe =0 reveal thaP> 0 for the faster  gpaytical predictions were then available. Finally, we exam-
soliton andP<0 for the slower solitor{which is in agree- jheq some statistical properties of the soliton first passage
ment with theoretical rgsult[SL?]). The negative sign of the timesin a noisy medium, a subject that, as far as we know,
parameterP for both solitons whens>0 indicates that the pag never been investigated before. An ansatz generalizing
noise introduces an additional negative phase shift. Feller's formula for the first passage time distribution was

Although the distance between the solitons is completelyygposed and verified numerically. A more detailed analysis
deterministic for each run, we cannot predict the time delaysf this problem is in progress.

(i.e., the separation between transit tilm&$e reason is that
both solitons continue their coupled random walks in the
time intervening between their respective passages through ACKNOWLEDGMENTS
the fixed point. A normalized histogram for the time delay is
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