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Focused one-cycle electromagnetic pulses
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We describe several families of exact unbounded solutions of Maxwell’s equations in vacuum. These
solutions depict onefor 1%—) cycle electromagnetic pulses whose fields are of either transverse magnetic or
transverse electric character and are confined to toroidal wave packets that converge to a focus and then
diverge in a manner that is expected from familiar rules of diffraction. These “focused doughnut” pulses
constitute a subset of the “modified power spectrum” pulse solutions discovered by Ziolkdsls. Rev. A
39, 2005(1989]. We derive the total energy, the energy spectrum, the ability to accelerate an electron, and
other properties of these focused doughnut pulse solui&i€63-651X96)07407-1

PACS numbes): 41.20.Bt, 41.20.Jb

I INTRODUCTION the transformatior’n::TE—>— I:|TM and QTE—> ETM. We obtain

) ) ) o thereby a third and a fourth solution whose magnetic vectors
Ziolkowski has discovered a class of exact, finite-energyre transverse, and which we call “TM” short- and long-
solutions of Maxwell's equation§n vacuun, which he has  pylse solutions.
named ‘“electromagnetic directed-energy pulse trains” or |n Sec. Il we derive the energy of MP&nd of all
EDEPT solutiong1]. These finite-energy solutions for the EDEPT) solutions of Maxwell’'s equations. We find a result
electric and magnetic field vectors in vacuum are derivedhat is qualitatively different from Ziolkowski'$1] and ex-

from a scalar complex potentidi(r,t) that involves the plain the difference.
Laplace transform of essentially any functibifk) that has In Sec. IV we derive the frequency spectrum of the pulse
the property thaf ¢ “dk|F(k)|2k™ is finite for m=1 and 2.  €Nergy for each of the quartet of focused-doughnut solutions.
Using a particulaiF (k) having a known Laplace transform, e find that each has the same simple bell-shaped energy
Ziolkowski found a particularly simple subset of the EDEPT SPeCtrum, Wh'Chi as a function of ar12gular frequensyis
solutions that was parametrized by four real positive numProportional tow™ at smalle and to w“exp(-Tw) at large
bers, which he named “modified power spectrum” pulse@: WhereT is the length of the pulse.
solutions or simply MPS pulsd4]. Ziolkowski explored in In Sec. V we calculate the ability of a TM focused dough-
detail the MPS pulse solutions in a certain region of paramDUt pulse to accelerate a copropagating electron. That is, we
eter space in which he found these solutions to depict effic@lculate the energy given by a TM focused doughnut
cient directed electromagnetic energy transfer in sgage Pulse of energy)ry to a copropagating relativistic electron.
Here we explore an entirely different region of the paramete¥Ve find W to be of the order of the geometric mean of the
space of MPS solutions where they depict a family of fo-Pulse energyUry and the Coulomb energyl o, of two
cused pulses that are essentially one cycle long. We cafilectrons separated by the pulse wavelength. A 1-J pulse of
these pulses “focused doughnut” pulses as their energy disl-+«m wavelength imparts nearly 1 GeV of energy to the
tribution in space resembles a doughnut that focuses to sonf@Propagating electron.
minimum diameterd,, and then diffracts beyond the focal [N our concluding sectiofSec. V) we note a few of the
region with the same relation betwedp, the wavelength, Many remaining unanswered guestions about focused dough-
and the far-field divergence angle as for normal opticalut pulses in particular and MPS pulses in general.
beams.

In Sec. Il we review Ziolkowski's general expression for Il. FOCUSED DOUGHNUT PULSE FIELDS

the complex Hertz potentizﬂf(ﬂt) whose real and imagi-
nary parts yield separate solutions for the electric and magﬁu

netic vectorsE andH of the focused doughnut pulses. The H
imaginary part yields a pulse that is one optical cycle Iongin
(in a sense we specifyand we call it the “short-pulse solu-
tion.” The real part yields a pulse that is; ptical cycles
long and we call it the “long-pulse solution.” Both solutions
have their electric vectors always transverse to the direction
of propagationz and so we call these “TE” solutions. In
vacuum, any solution generates another dual solution under
wherec is the velocity of light.
Next we construct a vector potentiélr,t) in the Cou-

*Present address: Alcatel Alsthom Recherche, 91460 Maroussitomb gauge(in which bothV - A and the scalar potential are

France. zerg by

To obtain the simple expressions for the focused dough-
t electric and magnetic fields(r,t) and H(r,t) we use
ertz’'s method. First we find an appropriate scalar generat-
g function f(r,t) that satisfies Helmholtz's wave equation
in vacuum

, 17
\% _EZEZ f(r,t)=0, (1)
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A(r,t)= uocurlzf(r,t), 2

wherez is a unit vector in the direction of pulse propagation.

We use Sl units throughout, in which the permeability of the

vacuumug = 47x10°° 3£ C 2m L. Therefore, the sca-
lar generating functiori has units Am.

Using cylindrical coordinatesp, 6, and z (such that
X=pCcos, y=psind, andz=2z) we have from(2) that both
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[e
Hou=—\ —Ere. Y
"

0

We will use the MPS solution of Refl] discovered by

Ziolkowski:
e_5/q3

=l rinsran®

®

the real and imaginary parts of the following transverse elec-

tric (TE) fields satisfy Maxwell's equations in vacuum sepa-
rately, because we assume tiidas independent o#®:

Ey=mod,oif, ()
H,=d,df, (4)
1
HZ=<¢9§— ?af)f, (5)
where

a,f=aflaz,
a,f=aflap, (6)

af=af/at.

We will symbolize the two reaflong- and short-pulgesolu-
tions thus obtained byH;e,Hrz) and Ere,H7e), respec-
tively, and abbreviat&z=Er+iEfg, etc., forHe.

It is evident that since we are solving Maxwell's equa-
tions in vacuum we obtain two additional real TM solutions

Hereqq, g, g3 are real positive adjustable parameters with
units of length. The real dimensionless parametemust
satisfya=1 in order for the electromagnetic pulse(8J to

(5) have finite energy. We will assunferiithout loss of gen-
erality) thatf, is a real constant. Other trivial parameters can
be introduced that only change the origin of coordinates. In
(8) we have used Ziolkowski’'s abbreviations

s=p?l(q,+iT) —io,

pP=x’+y?,
©)

T7=7Z—Ct,
o=z+ct.

For convenience, we have reduced the five redundant pa-
rametersa, «, b, 8, andz, used by Ziolkowski in his ex-
pression forf [Eq. (3.4) of Ref.[1]] to the four independent
parameters|; =24, g,= a8, s = B/b, anda. Ziolkowski
performed extensive numerical and graphical studies of MPS
pulses havingq;<€q;<qg, and a=1. Here we study the

that have transverse magnetic field and whose field pairs wau@litatively different solutions having,<dq,, «=1, and

write (Ery.Hry) and  Eoy.Hoy). We  write
Erm=Eqy+iEry, etc., forHry. The TM solutions come
directly from the TE solutions by

[ Mo
Erm= e_H TE»
0

Ea:_4|fo\/E_;)P(CI1+CI2_2|Ct)/[P2+(Q1+|T)(Qz_lff)]3a

H,=4ifop(q,— a1~ 2i2)/[p*+ (ay+in) (a2 —i10) 1%,

H,

We note several characteristics of these focused doughng,

solutions in the “well-collimated” or “weakly focused”
limit where the Rayleigh lengthy, is much larger than the
wavelengthq,. First, an outgoing weakly focuse@E or
TM) pulse described by the imaginary partdd)—(12) has
a field on axis, ap=0 andz>q,, that crosses zero once in

—4fo[p?—(ay+in(az—i0) [ p*+ (qr+in)(d—i0)]%

gs;—. This yields the two-parameter subset of the MPS
solutions, which we have called “focused doughnut” pulses.
We find thatq, is a measure of the wavelength of these
essentially one-cycle pulses amg is a measure of the
“Rayleigh range” or depth of the focal region.

Substituting(8) in (3)—(5) with 1/qz3= 0 and a=1, we
find

(10

(11)

(12

erefore we call the pair of solution€E{, Hg) and
(Eum» Hry) “1 2-cycle” or “long” pulses.
Second, we note that, &&0, when the maximum focus

occurs in the region around =0, the energy density
(moH2+ €9E?)/2 of a short focused doughnut solution de-

time as the pulse goes by. Therefore we call this pair otreases with large distance from the origin asr 0

solutions €7z, Hte) and Erqy. Hpy) “one-cycle” or
“short” pulses. The corresponding on-axis field of the real

parts of(12) crosses zero twice in time as the pulse goes byt~

(r?=2z%+p?.) However, the energy density of a long fo-
cused doughnut pulse decreases with large distaocdy as
8, In the next section we will find that each of the four
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solutions( having electric ﬁeldﬁ'/l'E' E:;'E' E‘,I'Mi andE;M as talerror becausk, is found to be equal to zero. Note that the

we have defined them along with their accompanying magStarting energy expression of R¢t] (B8) is ourl, multi-

netic field$ has the same energy. plied by 4. _ _
Following Ziolkowski, we now use the following decom-

. ENERGY OF EDEPT SOLUTIONS position to calculate the two integralg and| ,:

Following Ziolkowski[1], we will calculate the total en- .
ergy in the broader class of transverse electric EDEPT solu- Eezfof dkF(k)Ea,
tions for which the generating functidnto be used in(3)— 0
(5) is given by

fo [*+= ks Fm H
- - H =f dkF(k)H 18
f quJO dkF(k)e™ s, (13 p=To] (kH, (18)

Because we obtain a result somewhat different from Zi-
olkowski’'s, we retrace his derivation in enough detail to
show the reader when various differences arise and to en-
courage the reader to check our calculation. The situation
here is unusual in that neither Ziolkowski nor we had any
well-established result with which to compare our energyHere E,,, ﬁp, and H, are the complex solutions to Max-

eXpreSSion, either in some limit of parameter space or in it%ve”’s equa‘[ions constructed usimg: eka/(ql_}_iT) in (3)_
functional dependence on the four parameter&)n (5):

The proper form of~ (k) to use to obtain the MPS func-
tion (8) is given in Eq. (3.3 of Ref. [1]. Note that the
F(k) in our (13) equals that of Eq(2.6) of Ref. [1] but - o 4ikp 2ik?p3
multiplied by 4wif,. The electromagnetic pulse derived Eo= _<_(Q1+i7)2 (qi+in)3
from F(Kk)=6(k—kgy) was studied by Brittingham, who

+ -
szfofo dkF(K)H,.

€0

called this solution a focus wave modg]. Like a plane 2ik?p | e7ks
wave, the focus wave mode has finite energy density but B (qu+i7)) quriz’ (19
infinite total field energy.
We will call the energy of the real part of the complex
solutionsEy, H,, H, of (3)—(5) U, and we call the energy o 4ikp 2ik?p® 2ik%p | e7ks
of the imaginary part)_. Using the Poynting formula for o= T2 i3 T i
the energy in Sl units, we may combine expressions for these @Qutin= (Gu+in® (atin/a IT(ZO)
two energies as
1 + o0 + o0 2 2 2 —ks
u:=—f dzf pdpf 0] £ eo(E = EX)? T B S A 21
8)-= 0 0 2 \(gp+in) (aptin)?) gptir
+ po(H,=H% )2+ uo(H,=H3)?]. (14
] We substitute Eqg.18)—(21) into (16) to get
The fields do not have any dependencefoso that the
0 integration gives a factor2. We find that the energies of
the two solutions can be written as the sum of two integrals Y te (Kt K
=27 uof§ dk| dk'F(k)F(k")e ktkls
0 0
Ur==(l1+I17)+15, (15
+o0 +o0 4
W|th Xf_wdzfo dpkk,(q1+|7’)
T [t +oo 4p3 kk'p’ 2k’ p®
_r 2 2 2 _ _ Ll A3
Il 4)_.. dzjo P dp(EOE0+lu“0Hp+lu“0Hz) (16) X (q1+i7)2 (ql+i7_)4 k P + (q1+i7.)§
2kp® 2kk' p® 2k’ p3 2kp*
and T 5+2p+ L - — .
(Qrtir) (@i+in) (qut+in) (g +i7)
(22)

=" dz [ dp(eo|E 2+ ol H, 2+ o] H?
275 | OPP(Eoe Mol tolHZ%).

17
We use the relationf “dx@mle~a¢=mi/2am*1,
Ziolkowski omittedl; and ! in his formula for the energy Re(a)>0 with x=p and a=(k+k’)/(qy+i7) to perform
[1], but, as we shall show below, this leads to no fundamenthe p integration. After some algebraic manipulations, we get
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+ o + o
|1=mOf3J ko dk' F(K)F(k')k3k'?
0 0

1
(q;+i7)2(k+k")?

+ o
« f etiktk)oy

X

4 6
(r+in(k+k) (g +inZ(k+k’)2 ‘1)
(23)

Becausey; is real,k andk’ are to be integrated along the
real k axis. In this case, we may use the integral formulas

oo ix
Jim deZZ’Fe_a,

+o ix
f_ deZ me 2 (29
+oo iX T .
ﬁw(aﬂx)"’dx_ge '

With the substitutions x=(k+k’)z and a

=(k+k'")(q,—ict), one sees immediately that théntegral
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This result is similar to that of ZiolkowsKil] at the top of p.
2032 of Ref.[1], except for the factors in front of the inte-
gral. This is explained because we used slightly different
definitions for f, F(k), E,, H,, andH, and Ziolkowski
omitted a factoruy/4 throughout his calculations.

We next perform the integration and find

“+ o “+ o
|2=2W0f§f dkf dk' F(K)F* (k' )k?k'?
0 0

+oo (K~ 6
v | —K)o
Xf—mdze ([(k+k’)ql+i(k’—k)T]4

4
IRk gt (K —K)7]°

1
e @0

Following Ziolkowski, we perform the integration, using
the following expression, which he derived fdr real and
positive:

in Eq. (23) vanishes because the three terms in the parenthe-

ses give relative contributions 2,1, —1. This means that
the total energiet) , andU_ of Eq. (15) are both given by
I,. That is, the energies contained in both the real, (

H’) and the imaginaryE", H") part of the fieldsE andH

are given by the integrdl, , as are the energies of both dual

solutions constructed by the transformationg#nh Follow-
ing Ziolkowski, we call this universal energy functidhgy,
and summarize this result by

UEM:|2:U+:U,. (25)

The calculation of the second integtalis quite similar to
that ofl ;. By substituting Eqs(18)—(21) into (17), we find

+ oo + oo
|2=4mO|fo|2f dkf dk F(k)F* (k')
0 0
+ o
xf dze 'K~k
+ee ’ SOl 2/042, 2
Xf dpe Lk )ar ik ) o (ed + 2)
0

k2kr2p7 2k2k72p5 k2k72p3 4kk/p3

X + + +
(ai+7)* " (ar+ )% (a+ )% (ai+)°

2kk'2p® 2k2k’ p®
(@D a—in (D)3 FiT)
.\ 2kk'p 2kk’2p?
(qi+7)%  (qi+7)%(ay—i7)
2k%k’ p®
(@ Py +iT)

: (26)

oo e—ixy eh
fﬁwdyWZZWﬂX)WEm(A)- (28
Here
+op At
Em(A)EJ ——dt. (29
At

With x=k’—k andA=(k+k')q,, we obtain, following Zi-
olkowski, the integral expression
+oo 6E4(2kq,)
A2, £2 21,4 42kq 4 1
l,=47 ,uofofo dk|F(k)|°k*e 1( 2k
4E3(2kay)
(2kqy)?

Ez(Zk%)) (30)

2kq,

With the recurrence
—XE,(x)], this simplifies to

relation E,;1(X)=(1/n)[e™*

1= (2uof2q?) fo “AKF (0P kay+ (kay)?]. (3D

This is the form that is useful for calculating the energy of
any finite-energy EDEPT solution of Maxwell’'s equation in
vacuum.

We now use the general res(®) to calculate the energy
of the three-parameter MPS solution generated by using the
functionf(r,t) of (8) (in the casex=1) in the field relations
(3)=(5). The focused doughnut solutions are included in this
class, which has

e %2k=1a) if k>1/q,

FO=10 i k=1/g,.

(32

Substituting Eq(32) for F(k) into (31) gives, after integra-
tion
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U= (2 [(1+02/01)(1+20,/d5) + 2(d2/G5)°] F!=(F,—F*,)/2i. (39)
e 49703 '

(33) In terms of these, the energy spectriff) of the long TE
pulse is given by using
Ziolkowski's expressionB11) in Ref. [1] for this result is
quite different. The % q,/q; in our parentheses is replaced v,,(r)=2ce|F ()% (40)
by unity. The 4 in our denominator is omitted and our ) . o
Mo/(ﬁ is replaced by :déll Ziolkowski carries this error over wherew is positive, and similarly for the spectrung, of the
to his Egs.(3.18 and(3.18). short TE pulst_s. .
To check the result33), we integrated14) numerically In the far field of the outgoing focused doughnut pulse

for TE pulses with(i) g,=q,=1, gs— +, andct=0; (i)  Wherer>ay)

g,=0.01, g,=1, gq3— +o, ct=0, andct=10; and (iii) f 1

q,=0.01,g,=1, g3=10, andct=0. We obtained the same fo— 2 _— (41

number as fron(33) to within 0.5%. However, we believe r (ct-r+iQ)

that the derivation of the resul{81) and(33) is sufficiently where

complicated that the results cannot be said to be well estab-

lished until confirmed by others. Q=1[q,+0q,— (q,—qy)cOSk]. (42)
IV. ENERGY SPECTRA OF FOCUSED DOUGHNUT Here cog=2zZr and ¢ is the polar angle in the spherical

PULSES coordinatesi(, ¢, 6). The Fourier transforni37) becomes a

, . simple contour integral with a single pole and yields
If the focused doughnut solutions are to be compared with

other types of electromagnetic pulses in, for example, their —muofow)| @ [expliwr/c+wQlc)

ability to accelerate an electron, their energy spectra must b(?: B ( c [7—( r , <0
known. Here we derive the energy spectra of the quartet of (w)= P

focused doughnut solutions, deriving first the spectifrof 0, «=0.

the long TE pulse whose enerdy, [given by (33) with (43)

-1__ H ro .
gs =0l is related toV,, in the usual way: The only term from the derivativé/dp that contributes in

cdw the far field involves the derivation ofr/c in the exponent.
U,=| z—V.,. (34  Therefore the derivative may be replaced by the factor
027 (ioc™tsing) to give

sphere covered with spectrometers that measure the energy 2rc2
spectrumu, (r) of the light passing outward through a unit

area at each point of the sphere. Then The transform F/ of the short pulse is seen to be
(io/|w|)F. and so both the angular spectrum of the short
VL,:f d?rv!(r), (350  pulsev’ (r) and its averag¥’, over the large sphere are the
S same as for the long pulse. Since the dual TM solutions

clearly have the same energy spectra in the far field as the TE
solutions, each of the quartet of focused-doughnut solutions,
for given q; andq,, has the same energy spectriboth
angular and averageWe will write, in every case,

To calculate the spectrul/ we imagine a very large i 7 of | w|sing
F;;(—)exp(iwr/c—lmQ/C). (44)

whereS indicates the surface of a sphere in the far field of
the outward traveling pulse. We represent theomponent
E, of the long TE pulse in the far field bi; . Similarly we
write the # componentE’, of the short TE pulse in the far

field Ef and defineE; by vi=vl=v,, V.=VI=V,, U,=U_=Ugy.
. (45
E(=E}+iE/. (36)
Substituting(44) into (40) gives
The complex electric field; is, from (10), the limit at large
radius r=(p?+z%)¥2 of ued?f(r,t)/dpit . We define the wofdm?wsirty
(time) Fourier transform Vo= 525 XA 2wQlc). (46)
F ()= Fwdte“”tEf(r,t). (37) Reqqll that the energy spectra are defined3m)—(40) for
—w positive frequencyw only. Integrating (46) over all fre-

quency shows that the outgoing energy flux in the far field
The far-field Fourier transformg,, andF;, of E; andE{,  depends only on the polar angfeand is proportional to

respectively, are then
[Q(¢)] ®sinfyp. (47)

This function depicts a diffracting doughnut centered on the
and z axis. The diffraction angle is much less than unity when

F!=(F,+F* )2 (38
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The exotic “maximum focus” limit gq,=q, has a broad
torus-shaped field imploding from the sides for negative
times and exploding outward at positive times and always
with its center of gravity at the origin. In this case

n=exp(—y)(1+y+3¥i+svi+t5y1). (52

From this we find, for example, that the cutoff frequency is
given by y;—7.993 for =0.1 and y;—11.605 for
n=0.01. If we define the cutoff wavelength, to be
2mclw,, for 7=99%, then the TE short form of this maxi-
mum focus 1,=q;) pulse has its maximum electric field
strengthE,, att=0 (the moment of maximum focsvithin
a few percent of U/egh2)2 . This is as one expects if the
focused field is localized within a volume? .
The short TEz-directed focused doughnut pulse has its
FIG. 1. Schematic of “focused doughnut” pulde) at time  maximum field strengthE,, expressed in terms of
t=—r/c and(b) at time zero of maximum focusing. The origin of Am=27Clw, for 7=99%, very near
the space coordinates is placed at the center of the focal region. TT@.??qll(eoqz)\%)]m. This is as one would expect if the

pulse thickness); is also the nominal wavelength. The Rayleigh f5cused field is localized within a volume given by {ipailse
lengthq, of the focal region is also indicated. The divergence halflength X (pulse diameté?].

angle,, of the cone traced out by the focusing doughnut is nearly
Va1/q,, similarly as for monochromatic Gaussian beams.

V. ACCELERATION OF A RELATIVISTIC ELECTRON

d2>dy, in which case the anglgy, at which the energy flux In this section we calculate the enerljy given to an

is maximum is seen fror47) and (42) to be electron traveling at the velocitg on axis (p=0) with a
short TM pulse, as shown in Fig. 2. The electron is decou-

Ym—Vd1/2. (48 pled from the pulse at=z=0 (maximum focu$ by a con-

) ducting membrane that reflects the pulse and transmits the
Numerical plots show the focused doughnut pulse to have giectron. See Fig. 2. Without this decoupling the energy
nominal wavelength of;; and the depth of its focal region is gained by the electron up to the origin would be exactly
dz. (See Fig. 1 Therefore the far-field doughnut diffraction yetyrned to the field as its positiarapproached infinity. The
angle (48) is essentially the same as for a monochromaticshort TM pulse has a-directed electric field, and no mag-
focused Gaussian pulse of wavelenglh and Rayleigh netic field, at the positioz=ct of the electron. The short

lengthqp. _ _ . . pulse imparts more enerd¥y for a given field energy) and
T_he energy spectrund, itself is easily found from inte-  toff frequencyw, than does the long TM pulse, so we
grating (46) in (35): calculateW for the short pulse only. In terms of the field
: E2(0,0,z,t) experienced by the electron, the energy given to
costa sinha z .
V,=4mc Suofio’ 7~ g3 |exA —o(di+gp)lc], the electron is
(49) 0
W=ef dzE)[0,0.z,t(2)]. (53

wherea=(qg,—q;)w/c . This expression i1i34) reproduces
the result(33) for the total pulse energy.

. ; Substituting(6) in (12) andt=z/c, have, for the short
With the expressior49), it is simple to calculate the cut- ubstituting(6) in (12) an 4i¢, we have, for the shor

. TM pulse,
off frequencyw,, of the pulse spectrum, defined as tla@- puise
the Maciony of he toal anargy: 0 T = 54
7 ol dl (a3ra)”
f ) doV,, Substituting(54) in (53)
“r
W= —. (55)
J0 daVe 954z Y €

It is useful to express this result in terms @f the energy
U= uofdm?(q,+0,)/(493q3) of the electromagnetic pulse

n=exp(—y)(1+ .+ 1 7’§) +0(q,/9y), (51) and(ii) the Coulomb energy ¢, of two electrons separated
by g:(1+94/q,) (i.e., nearly one cutoff wavelength

Whenq,>q; (weak focusing this gives

where y;=2w,0;/c. From this we find, for example, that
the cutoff frequency is given by;—5.322 for =0.1 and U cou= )
by y;— 8.406 for =0.01 in the limit of weak focusing. 4meqs[1+(01/02)]

e2

(56)
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energyW imparted to the electron is reduced by more than
half oncev/c is less than 2?2 . Recall that the far-field
divergence angl@,, was nearlyy/q, /q, for the weak focus-

ing case. We have assumed that the polarity of the short TM
solution(set by the sign of ;) was such as to accelerate the
electron. Of course a solution of opposite polarity would
cause the electron to lose the same enékgthat we have
calculated.

VI. CONCLUSION

We have examined a quartet of simple analytic finite-

energy solutions of Maxwell's equation in vacuum. These
z constitute a small subset of the MPS solutions discovered by
Ziolkowski. These solutions depict focused electromagnetic
pulses that we call shorfone-cycl¢ and long (%-cycle)
pulses of TM and TE character. These solutions are func-
tions of a length parameteay; (essentially the wavelength
and another length parametpr (essentially the depth of the
focused regiop We have assumeghb=q,. We have found
the far-field divergence anglé,, of these pulses to have
essentially the same relationdg, when it is much less than
d,, as for common monochromatic Gaussian beams:
Ym~V0q1/d,. We have found the energy spectra of all four
solutions to be the samor given g, andq,) and to be a
simple analytic function of frequenay, q,, andq,. A rela-
tivistic electron that is copropagating with the short TM
pulse on its axis is shown to gain an eneklyyythat is pro-
portional to[(pulse energy(cutoff wavelength]*2. We de-
rqived the one-one-one rulg is nearly 1 GeV for a 1-J pulse

n

FIG. 2. Schematic of the electrie and magnetidi fields of a

short TM focused doughnut pulse copropagating with an electro . . .
(e) moving in an axial trajectory. Opeftlosed circles represent havmg a cutoff Wav_ele_ngth of &m. This energy is reduged
magnetic field lines out ofinto) the plane of the diagram. The if the electron velocity is less than However, the reduction

picture is drawn at time/c before the maximum focus, which 1S sllght.for highly focused TM pulses for wh|ch.the effective
occurs at the origin of coordinates. The characteristic length paraminteraction length of the pulse and electron is only a few
etersq, andq, are indicated. To achieve maximum acceleration ofwavelengths. At maximum focus, the energy density of the
an electron of velocityc, in the axial trajectory, a metal filmaj ~ short(TM and TE pulses decreases as'? at large distance
should be placed in the=0 plane to reflect the pulse and transmit r, while the energy density of the long pulses decreases as

the electron. r 8 at maximum focus.
A great many questions concerning these focused one-
Then (55) can be rewritten cycle electromagnetic pulse solutions of Maxwell's equa-
tions remain. Is there is a simple transformation by which the
W=87"12UUcqu (57) long pulse solution can be obtained from the short pulse?

) ) . What happens when the Hertz potentiakigirected instead
This form can be used as a scaling rule with the references 7 directed in deriving the fields? How are electrons accel-
value, which we call the “one-one-one” rule: a 1¢short  grated if they intersect a solution along a path different from
TM) pulse whose90%) cutoff wavelength is Jum canim-  the one we have considered here? How can these solutions
part nearly 1 GeV of energy to a relativistic electr@@  pe generated, at least approximately, in the laboratory?

other unit-charged particle _ These and many other such questions are under current in-
To be more precise, consider the weak focusing cas@estigation.

(g,>qq) for which we found in Sec. IV that 90% of the
energy was at wavelengths longer theg (A ,=47q./v,
with v;=5.32). Then, if we take\,,=1 um and the pulse
energyU to be 1 J,(57) givesW=0.66 GeV. The authors gratefully acknowledge the support of the Air

If the electron velocity is a constant slightly less than Force Office of Scientific Research under Grant No. F49620-
c, then the integral53) is easily redone to show that the 94-0139.
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