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We describe several families of exact unbounded solutions of Maxwell’s equations in vacuum. These
solutions depict one-~or 112-! cycle electromagnetic pulses whose fields are of either transverse magnetic or
transverse electric character and are confined to toroidal wave packets that converge to a focus and then
diverge in a manner that is expected from familiar rules of diffraction. These ‘‘focused doughnut’’ pulses
constitute a subset of the ‘‘modified power spectrum’’ pulse solutions discovered by Ziolkowski@Phys. Rev. A
39, 2005 ~1989!#. We derive the total energy, the energy spectrum, the ability to accelerate an electron, and
other properties of these focused doughnut pulse solutions.@S1063-651X~96!07407-7#

PACS number~s!: 41.20.Bt, 41.20.Jb

I. INTRODUCTION

Ziolkowski has discovered a class of exact, finite-energy
solutions of Maxwell’s equations~in vacuum!, which he has
named ‘‘electromagnetic directed-energy pulse trains’’ or
EDEPT solutions@1#. These finite-energy solutions for the
electric and magnetic field vectors in vacuum are derived

from a scalar complex potentialf (rW,t) that involves the
Laplace transform of essentially any functionF(k) that has
the property that*0

1`dkuF(k)u2km is finite form51 and 2.
Using a particularF(k) having a known Laplace transform,
Ziolkowski found a particularly simple subset of the EDEPT
solutions that was parametrized by four real positive num-
bers, which he named ‘‘modified power spectrum’’ pulse
solutions or simply MPS pulses@1#. Ziolkowski explored in
detail the MPS pulse solutions in a certain region of param-
eter space in which he found these solutions to depict effi-
cient directed electromagnetic energy transfer in space@1#.
Here we explore an entirely different region of the parameter
space of MPS solutions where they depict a family of fo-
cused pulses that are essentially one cycle long. We call
these pulses ‘‘focused doughnut’’ pulses as their energy dis-
tribution in space resembles a doughnut that focuses to some
minimum diameterdm and then diffracts beyond the focal
region with the same relation betweendm , the wavelength,
and the far-field divergence angle as for normal optical
beams.

In Sec. II we review Ziolkowski’s general expression for
the complex Hertz potentialẑf (rW,t) whose real and imagi-
nary parts yield separate solutions for the electric and mag-
netic vectorsEW andHW of the focused doughnut pulses. The
imaginary part yields a pulse that is one optical cycle long
~in a sense we specify! and we call it the ‘‘short-pulse solu-
tion.’’ The real part yields a pulse that is 112 optical cycles
long and we call it the ‘‘long-pulse solution.’’ Both solutions
have their electric vectors always transverse to the direction
of propagationz and so we call these ‘‘TE’’ solutions. In
vacuum, any solution generates another dual solution under

the transformationE¢ TE→2H¢ TM andH¢ TE→E¢ TM . We obtain
thereby a third and a fourth solution whose magnetic vectors
are transverse, and which we call ‘‘TM’’ short- and long-
pulse solutions.

In Sec. III we derive the energy of MPS~and of all
EDEPT! solutions of Maxwell’s equations. We find a result
that is qualitatively different from Ziolkowski’s@1# and ex-
plain the difference.

In Sec. IV we derive the frequency spectrum of the pulse
energy for each of the quartet of focused-doughnut solutions.
We find that each has the same simple bell-shaped energy
spectrum, which, as a function of angular frequencyv, is
proportional tov4 at smallv and tov2exp(2Tv) at large
v, whereT is the length of the pulse.

In Sec. V we calculate the ability of a TM focused dough-
nut pulse to accelerate a copropagating electron. That is, we
calculate the energyW given by a TM focused doughnut
pulse of energyUTM to a copropagating relativistic electron.
We findW to be of the order of the geometric mean of the
pulse energyUTM and the Coulomb energyU Coul of two
electrons separated by the pulse wavelength. A 1-J pulse of
1-mm wavelength imparts nearly 1 GeV of energy to the
copropagating electron.

In our concluding section~Sec. VI! we note a few of the
many remaining unanswered questions about focused dough-
nut pulses in particular and MPS pulses in general.

II. FOCUSED DOUGHNUT PULSE FIELDS

To obtain the simple expressions for the focused dough-
nut electric and magnetic fieldsE(r ,t) andH(r ,t) we use
Hertz’s method. First we find an appropriate scalar generat-
ing function f (r ,t) that satisfies Helmholtz’s wave equation
in vacuum

S ¹22
1

c2
]2

]t2D f ~r ,t !50, ~1!

wherec is the velocity of light.
Next we construct a vector potentialA(r ,t) in the Cou-

lomb gauge~in which both¹•A and the scalar potential are
zero! by
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A~r ,t !5m0 curlẑf ~r ,t !, ~2!

whereẑ is a unit vector in the direction of pulse propagation.
We use SI units throughout, in which the permeability of the
vacuumm0 5 4p31029 J s2 C22 m21. Therefore, the sca-
lar generating functionf has units Am.

Using cylindrical coordinatesr, u, and z ~such that
x5rcosu, y5rsinu, andz5z) we have from~2! that both
the real and imaginary parts of the following transverse elec-
tric ~TE! fields satisfy Maxwell’s equations in vacuum sepa-
rately, because we assume thatf is independent ofu:

Eu5m0]r] t f , ~3!

Hr5]r]zf , ~4!

Hz5S ]z
22

1

c2
] t
2D f , ~5!

where

]zf[] f /]z,

]r f[] f /]r, ~6!

] t f[] f /]t.

We will symbolize the two real~long- and short-pulse! solu-
tions thus obtained by (ETE

8 ,HTE
8 ) and (ETE

9 ,HTE
9 ), respec-

tively, and abbreviateETE5ETE8 1 iETE9 , etc., forHTE .
It is evident that since we are solving Maxwell’s equa-

tions in vacuum we obtain two additional real TM solutions
that have transverse magnetic field and whose field pairs we
write (ETM

8 ,HTM
8 ) and (ETM

9 ,HTM
9 ). We write

ETM5ETM
8 1 iETM

9 , etc., forHTM . The TM solutions come
directly from the TE solutions by

ETM5Am0

e0
HTE,

HTM52Ae0
m0
ETE. ~7!

We will use the MPS solution of Ref.@1# discovered by
Ziolkowski:

f5 f 0
e2s/q3

~q11 i t!~s1q2!
a . ~8!

Hereq1 , q2 , q3 are real positive adjustable parameters with
units of length. The real dimensionless parametera must
satisfya>1 in order for the electromagnetic pulse of~3! to
~5! have finite energy. We will assume~without loss of gen-
erality! that f 0 is a real constant. Other trivial parameters can
be introduced that only change the origin of coordinates. In
~8! we have used Ziolkowski’s abbreviations

s[r2/~q11 i t!2 is,

r2[x21y2,
~9!

t[z2ct,

s[z1ct.

For convenience, we have reduced the five redundant pa-
rametersa, a, b, b, andz0 used by Ziolkowski in his ex-
pression forf @Eq. ~3.4! of Ref. @1## to the four independent
parametersq1[z0 , q2[ ab, q3 [ b/b, anda. Ziolkowski
performed extensive numerical and graphical studies of MPS
pulses havingq1!q3!q2 and a51. Here we study the
qualitatively different solutions havingq1<q2 , a51, and
q3→`. This yields the two-parameter subset of the MPS
solutions, which we have called ‘‘focused doughnut’’ pulses.
We find thatq1 is a measure of the wavelength of these
essentially one-cycle pulses andq2 is a measure of the
‘‘Rayleigh range’’ or depth of the focal region.

Substituting~8! in ~3!–~5! with 1/q35 0 anda51, we
find

Eu524i f 0Am0

e0
r~q11q222ict !/@r21~q11 i t!~q22 is!#3, ~10!

Hr54i f 0r~q22q122iz!/@r21~q11 i t!~q22 is!#3, ~11!

Hz524 f 0@r22~q11 i t!~q22 is!#/@r21~q11 i t!~q22 is!#3. ~12!

We note several characteristics of these focused doughnut
solutions in the ‘‘well-collimated’’ or ‘‘weakly focused’’
limit where the Rayleigh lengthq2 is much larger than the
wavelengthq1 . First, an outgoing weakly focused~TE or
TM! pulse described by the imaginary parts of~10!–~12! has
a field on axis, atr50 andz@q1 , that crosses zero once in
time as the pulse goes by. Therefore we call this pair of
solutions (ETE

9 , HTE
9 ) and (ETM

9 , HTM
9 ) ‘‘one-cycle’’ or

‘‘short’’ pulses. The corresponding on-axis field of the real
parts of~12! crosses zero twice in time as the pulse goes by.

Therefore we call the pair of solutions (ETE
8 , HTE

8 ) and

(ETM
8 , HTM

8 ) ‘‘1 1
2-cycle’’ or ‘‘long’’ pulses.

Second, we note that, att50, when the maximum focus
occurs in the region aroundrW50, the energy density
(m0H

21e0E
2)/2 of a short focused doughnut solution de-

creases with large distancer from the origin as r210.
(r 2[z21r2.) However, the energy density of a long fo-
cused doughnut pulse decreases with large distancer only as
r28. In the next section we will find that each of the four
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solutions~ having electric fieldsETE
8 , ETE

9 , ETM
8 , andETM

9 as
we have defined them along with their accompanying mag-
netic fields! has the same energy.

III. ENERGY OF EDEPT SOLUTIONS

Following Ziolkowski @1#, we will calculate the total en-
ergy in the broader class of transverse electric EDEPT solu-
tions for which the generating functionf to be used in~3!–
~5! is given by

f5
f 0

q11 i tE0
1`

dkF~k!e2ks. ~13!

Because we obtain a result somewhat different from Zi-
olkowski’s, we retrace his derivation in enough detail to
show the reader when various differences arise and to en-
courage the reader to check our calculation. The situation
here is unusual in that neither Ziolkowski nor we had any
well-established result with which to compare our energy
expression, either in some limit of parameter space or in its
functional dependence on the four parameters in~8!.

The proper form ofF(k) to use to obtain the MPS func-
tion ~8! is given in Eq. ~3.3! of Ref. @1#. Note that the
F(k) in our ~13! equals that of Eq.~2.6! of Ref. @1# but
multiplied by 4p i f 0 . The electromagnetic pulse derived
from F(k)5d(k2k0) was studied by Brittingham, who
called this solution a focus wave mode@2#. Like a plane
wave, the focus wave mode has finite energy density but
infinite total field energy.

We will call the energy of the real part of the complex
solutionsEu , Hr , Hz of ~3!–~5! U1 and we call the energy
of the imaginary partU2 . Using the Poynting formula for
the energy in SI units, we may combine expressions for these
two energies as

U65
1

8E2`

1`

dzE
0

1`

r drE
0

2p

du@6e0~Eu6Eu* !2

6m0~Hr6Hr* !26m0~Hz6Hz* !2#. ~14!

The fields do not have any dependence onu so that the
u integration gives a factor 2p. We find that the energies of
the two solutions can be written as the sum of two integrals

U656~ I 11I 1* !1I 2 , ~15!

with

I 15
p

4E2`

1`

dzE
0

1`

r dr~e0Eu
21m0Hr

21m0Hz
2! ~16!

and

I 25
p

2E2`

1`

dzE
0

1`

r dr~e0uEuu21m0uHru21m0uHzu2!.

~17!

Ziolkowski omittedI 1 and I 1* in his formula for the energy
@1#, but, as we shall show below, this leads to no fundamen-

tal error becauseI 1 is found to be equal to zero. Note that the
starting energy expression of Ref.@1# ~B8! is our I 2 multi-
plied by 4.

Following Ziolkowski, we now use the following decom-
position to calculate the two integralsI 1 and I 2:

Eu5 f 0E
0

1`

dkF~k!Ẽu ,

Hr5 f 0E
0

1`

dkF~k!H̃r , ~18!

Hz5 f 0E
0

1`

dkF~k!H̃z.

Here Ẽu , H̃r , and H̃z are the complex solutions to Max-
well’s equations constructed usingf5e2ks/(q11 i t) in ~3!–
~5!:

Ẽu5Am0

e0
S 2

4ikr

~q11 i t!2
1

2ik2r3

~q11 i t!3

2
2ik2r

~q11 i t! D e2ks

q11 i t
, ~19!

H̃r5S 4ikr

~q11 i t!2
2

2ik2r3

~q11 i t!3
2

2ik2r

~q11 i t! D e2ks

q11 i t
,

~20!

H̃z5S 4k

~q11 i t!
2

4k2r2

~q11 i t!2D e2ks

q11 i t
. ~21!

We substitute Eqs.~18!–~21! into ~16! to get

I 152pm0f 0
2E

0

1`

dkE
0

1`

dk8F~k!F~k8!e2~k1k8!s

3E
2`

1`

dzE
0

1`

drkk8~q11 i t!24

3S 2
4r3

~q11 i t!2
2

kk8r7

~q11 i t!4
2kk8r31

2k8r5

~q11 i t!3

1
2kr5

~q11 i t!3
12r1

2kk8r5

~q11 i t!2
2

2k8r3

~q11 i t!
2

2kr3

~q11 i t! D
~22!

We use the relation*0
1`dxx2m11e2ax25m!/2am11,

Re(a).0 with x5r and a5(k1k8)/(q11 i t) to perform
ther integration. After some algebraic manipulations, we get
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I 15pm0f 0
2E

0

1`

dkE
0

1`

dk8F~k!F~k8!k2k82

3E
2`

1`

e1 i ~k1k8!sdz
1

~q11 i t!2~k1k8!2

3S 4

~q11 i t!~k1k8!
2

6

~q11 i t!2~k1k8!2
21D .

~23!

Becauseq3 is real,k and k8 are to be integrated along the
real k axis. In this case, we may use the integral formulas

E
2`

1` eix

~a1 ix !2
dx52pe2a,

E
2`

1` eix

~a1 ix !3
dx5pe2a, ~24!

E
2`

1` eix

~a1 ix !4
dx5

p

3
e2a.

With the substitutions x5(k1k8)z and a
5(k1k8)(q12 ict), one sees immediately that thez integral
in Eq. ~23! vanishes because the three terms in the parenthe-
ses give relative contributions 2,21, 21. This means that
the total energiesU1 andU2 of Eq. ~15! are both given by
I 2 . That is, the energies contained in both the real (E8,
H8) and the imaginary (E9, H9) part of the fieldsE andH
are given by the integralI 2 , as are the energies of both dual
solutions constructed by the transformations in~7!. Follow-
ing Ziolkowski, we call this universal energy functionU EM
and summarize this result by

UEM5I 25U15U2. ~25!

.
The calculation of the second integralI 2 is quite similar to

that of I 1 . By substituting Eqs.~18!–~21! into ~17!, we find

I 254pm0u f 0u2E
0

1`

dkE
0

1`

dk8F~k!F* ~k8!

3E
2`

1`

dze2 i ~k82k!s

3E
0

1`

dre2@~k1k8!q11 i ~k82k!t#r2/~q1
2
1t2!

3S k2k82r7

~q1
21t2!4

1
2k2k82r5

~q1
21t2!3

1
k2k82r3

~q1
21t2!2

1
4kk8r3

~q1
21t2!3

2
2kk82r5

~q1
21t2!3~q12 i t!

2
2k2k8r5

~q1
21t2!3~q11 i t!

1
2kk8r

~q1
21t2!2

2
2kk82r3

~q1
21t2!2~q12 i t!

2
2k2k8r3

~q1
21t2!2~q11 i t! D . ~26!

This result is similar to that of Ziolkowski@1# at the top of p.
2032 of Ref.@1#, except for the factors in front of the inte-
gral. This is explained because we used slightly different
definitions for f , F(k), Ẽu , H̃r , and H̃z and Ziolkowski
omitted a factorm0/4 throughout his calculations.

We next perform ther integration and find

I 252pm0f 0
2E

0

1`

dkE
0

1`

dk8F~k!F* ~k8!k2k82

3E
2`

1`

dze2 i ~k82k!sS 6

@~k1k8!q11 i ~k82k!t#4

1
4

@~k1k8!q11 i ~k82k!t#3

1
1

@~k1k8!q11 i ~k82k!t#2D . ~27!

Following Ziolkowski, we perform thez integration, using
the following expression, which he derived forL real and
positive:

E
2`

1`

dy
e2 ixy

~L1 ixy!m
52pd~x!

eL

Lm21Em~L!. ~28!

Here

Em~L![E
L

1`e2Lt

tm
dt. ~29!

With x5k82k andL5(k1k8)q1 , we obtain, following Zi-
olkowski, the integral expression

I 254p2m0f 0
2E

0

1`

dkuF~k!u2k4e2kq1S 6E4~2kq1!

~2kq1!
3

1
4E3~2kq1!

~2kq1!
2 1

E2~2kq1!

2kq1
D . ~30!

With the recurrence relation En11(x)5(1/n)@e2x

2xEn(x)], this simplifies to

I 25~p2m0f 0
2/q1

4!E
0

1`

dkuF~k!u2@kq11~kq1!
2#. ~31!

This is the form that is useful for calculating the energy of
any finite-energy EDEPT solution of Maxwell’s equation in
vacuum.

We now use the general result~31! to calculate the energy
of the three-parameter MPS solution generated by using the
function f (r ,t) of ~8! ~in the casea51) in the field relations
~3!–~5!. The focused doughnut solutions are included in this
class, which has

F~k!5H e2q2~k21/q3! if k.1/q3

0 if k<1/q3.
~32!

Substituting Eq.~32! for F(k) into ~31! gives, after integra-
tion
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UEM5p2m0f 0
2 @~11q2 /q1!~112q2 /q3!12~q2 /q3!

2#

4q1
2q2

3 .

~33!

Ziolkowski’s expression~B11! in Ref. @1# for this result is
quite different. The 11q2 /q1 in our parentheses is replaced
by unity. The 4 in our denominator is omitted and our
m0 /q1

2 is replaced by 1/q1
4 . Ziolkowski carries this error over

to his Eqs.~3.18! and ~3.188!.
To check the result~33!, we integrated~14! numerically

for TE pulses with~i! q15q251, q3→1`, andct50; ~ii !
q150.01, q251, q3→1`, ct50, and ct510; and ~iii !
q150.01, q251, q3510, andct50. We obtained the same
number as from~33! to within 0.5%. However, we believe
that the derivation of the results~31! and~33! is sufficiently
complicated that the results cannot be said to be well estab-
lished until confirmed by others.

IV. ENERGY SPECTRA OF FOCUSED DOUGHNUT
PULSES

If the focused doughnut solutions are to be compared with
other types of electromagnetic pulses in, for example, their
ability to accelerate an electron, their energy spectra must be
known. Here we derive the energy spectra of the quartet of
focused doughnut solutions, deriving first the spectrumVv8 of
the long TE pulse whose energyU1 @given by ~33! with
q3

2150# is related toVv8 in the usual way:

U15E
0

`dv

2p
Vv8 . ~34!

To calculate the spectrumVv8 we imagine a very large
sphere covered with spectrometers that measure the energy
spectrumvv8 (r ) of the light passing outward through a unit
area at each point of the sphere. Then

Vv8 5E
S
d2rvv8 ~r !, ~35!

whereS indicates the surface of a sphere in the far field of
the outward traveling pulse. We represent theu component
Eu8 of the long TE pulse in the far field byEf8 . Similarly we
write the u componentEu9 of the short TE pulse in the far
field Ef9 and defineEf by

Ef[Ef81 iE f9 . ~36!

The complex electric fieldEf is, from ~10!, the limit at large
radius r[(r21z2)1/2 of m0]

2f (r ,t)/]r]t . We define the
~time! Fourier transform

Fv~r ![E
2`

1`

dteivtEf~r,t !. ~37!

The far-field Fourier transformsFv8 andFv9 of Ef8 andEf9 ,
respectively, are then

Fv8 5~Fv1F2v* !/2 ~38!

and

Fv9 5~Fv2F2v* !/2i . ~39!

In terms of these, the energy spectrumVv8 of the long TE
pulse is given by using

vv8 ~r !52ce0uFv8 ~r !u2, ~40!

wherev is positive, and similarly for the spectrumvv9 of the
short TE pulse.

In the far field of the outgoing focused doughnut pulse
~wherer@q2)

f→2
f 0
r

1

~ct2r1 iQ !
, ~41!

where

Q5 1
2 @q21q12~q22q1!cosc#. ~42!

Here cosc[z/r and c is the polar angle in the spherical
coordinates (r , c, u). The Fourier transform~37! becomes a
simple contour integral with a single pole and yields

F~v!5H S 2pm0f 0v

c D ]

]r S exp~ ivr /c1vQ/c!

r D , v,0

0, v>0.
~43!

The only term from the derivative]/]r that contributes in
the far field involves the derivation ofivr /c in the exponent.
Therefore the derivative may be replaced by the factor
( ivc21sinc) to give

Fv8 5S ipm0f 0vuvusinc
2rc2 Dexp~ ivr /c2uvuQ/c!. ~44!

The transform Fv9 of the short pulse is seen to be
( iv/uvu)Fv8 and so both the angular spectrum of the short
pulsevv9 (r ) and its averageVv9 over the large sphere are the
same as for the long pulse. Since the dual TM solutions
clearly have the same energy spectra in the far field as the TE
solutions, each of the quartet of focused-doughnut solutions,
for given q1 and q2 , has the same energy spectrum~both
angular and average!. We will write, in every case,

vv8 5vv9 5vv , Vv8 5Vv9 5Vv , U15U25UEM .
~45!

Substituting~44! into ~40! gives

vv5
m0f 0

2p2v4sin2c

2r 2c5
exp~22vQ/c!. ~46!

Recall that the energy spectra are defined in~37!–~40! for
positive frequencyv only. Integrating ~46! over all fre-
quency shows that the outgoing energy flux in the far field
depends only on the polar anglec and is proportional to

@Q~c!#25sin2c. ~47!

This function depicts a diffracting doughnut centered on the
z axis. The diffraction angle is much less than unity when
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q2@q1 , in which case the anglecm at which the energy flux
is maximum is seen from~47! and ~42! to be

cm→Aq1 /q2. ~48!

Numerical plots show the focused doughnut pulse to have a
nominal wavelength ofq1 and the depth of its focal region is
q2 . ~See Fig. 1!. Therefore the far-field doughnut diffraction
angle ~48! is essentially the same as for a monochromatic
focused Gaussian pulse of wavelengthq1 and Rayleigh
lengthq2 .

The energy spectrumVv itself is easily found from inte-
grating ~46! in ~35!:

Vv54p3c25m0f 0
2v4Fcoshaa2

2
sinha

a3 Gexp@2v~q11q2!/c#,

~49!

wherea[(q22q1)v/c . This expression in~34! reproduces
the result~33! for the total pulse energy.

With the expression~49!, it is simple to calculate the cut-
off frequencyvh of the pulse spectrum, defined as the~an-
gular! frequency above which the energy spectrum contains
the fractionh of the total energy:

h5

E
vh

`

dvVv

E
0

`

dvVv

. ~50!

Whenq2@q1 ~weak focusing! this gives

h5exp~2g1!~11g11
1
2g1

2!1O~q1 /q2!, ~51!

whereg152vhq1 /c. From this we find, for example, that
the cutoff frequency is given byg1→5.322 forh50.1 and
by g1→8.406 forh50.01 in the limit of weak focusing.

The exotic ‘‘maximum focus’’ limit q15q2 has a broad
torus-shaped field imploding from the sides for negative
times and exploding outward at positive times and always
with its center of gravity at the origin. In this case

h5exp ~2g1!~11g11
1
2g1

21 1
6g1

31 1
24g1

4!. ~52!

From this we find, for example, that the cutoff frequency is
given by g1→7.993 for h50.1 and g1→11.605 for
h50.01. If we define the cutoff wavelengthlm to be
2pc/vh for h599%, then the TE short form of this maxi-
mum focus (q25q1) pulse has its maximum electric field
strengthEm at t50 ~the moment of maximum focus! within
a few percent of (U/e0lm

3 )1/2 . This is as one expects if the
focused field is localized within a volumelm

3 .
The short TEz-directed focused doughnut pulse has its

maximum field strengthEm , expressed in terms of
lm52pc/vh for h599%, very near
@0.77q1 /(e0q2lm

3 )#1/2. This is as one would expect if the
focused field is localized within a volume given by the@pulse
length3 ~pulse diameter!2#.

V. ACCELERATION OF A RELATIVISTIC ELECTRON

In this section we calculate the energyW given to an
electron traveling at the velocityc on axis (r50) with a
short TM pulse, as shown in Fig. 2. The electron is decou-
pled from the pulse att5z50 ~maximum focus! by a con-
ducting membrane that reflects the pulse and transmits the
electron. See Fig. 2. Without this decoupling the energy
gained by the electron up to the origin would be exactly
returned to the field as its positionz approached infinity. The
short TM pulse has az-directed electric field, and no mag-
netic field, at the positionz5ct of the electron. The short
pulse imparts more energyW for a given field energyU and
cutoff frequencyvh than does the long TM pulse, so we
calculateW for the short pulse only. In terms of the field
Ez9(0,0,z,t) experienced by the electron, the energy given to
the electron is

W5eE
2`

0

dzEz9@0,0,z,t~z!#. ~53!

Substituting~6! in ~12! and t5z/c, we have, for the short
TM pulse,

Ez95
216m0f 0cq2

q1
2

z

~q2
214z2!2

. ~54!

Substituting~54! in ~53!

W5
2e f0
q1
2q2
Am0

e0
. ~55!

It is useful to express this result in terms of~i! the energy
U5m0f 0

2p2(q11q2)/(4q1
3q2

3) of the electromagnetic pulse
and~ii ! the Coulomb energyUCoul of two electrons separated
by q1(11q1 /q2) ~i.e., nearly one cutoff wavelength!:

UCoul[
e2

4pe0q1@11~q1 /q2!#
. ~56!

FIG. 1. Schematic of ‘‘focused doughnut’’ pulse~a! at time
t52r /c and ~b! at time zero of maximum focusing. The origin of
the space coordinates is placed at the center of the focal region. The
pulse thicknessq1 is also the nominal wavelength. The Rayleigh
lengthq2 of the focal region is also indicated. The divergence half
anglecm of the cone traced out by the focusing doughnut is nearly
Aq1 /q2, similarly as for monochromatic Gaussian beams.
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Then ~55! can be rewritten

W58p21/2AUUCoul. ~57!

This form can be used as a scaling rule with the reference
value, which we call the ‘‘one-one-one’’ rule: a 1-J~short
TM! pulse whose~90%! cutoff wavelength is 1-mm can im-
part nearly 1 GeV of energy to a relativistic electron~or
other unit-charged particle!.

To be more precise, consider the weak focusing case
(q2@q1) for which we found in Sec. IV that 90% of the
energy was at wavelengths longer thanlm (lm54pq1 /g1
with g155.32). Then, if we takelm51 mm and the pulse
energyU to be 1 J,~57! givesW50.66 GeV.

If the electron velocity is a constantv slightly less than
c, then the integral~53! is easily redone to show that the

energyW imparted to the electron is reduced by more than
half once v/c is less than 2cm

2 . Recall that the far-field
divergence anglecm was nearlyAq1 /q2 for the weak focus-
ing case. We have assumed that the polarity of the short TM
solution~set by the sign off 0) was such as to accelerate the
electron. Of course a solution of opposite polarity would
cause the electron to lose the same energyW that we have
calculated.

VI. CONCLUSION

We have examined a quartet of simple analytic finite-
energy solutions of Maxwell’s equation in vacuum. These
constitute a small subset of the MPS solutions discovered by
Ziolkowski. These solutions depict focused electromagnetic
pulses that we call short~one-cycle! and long (112-cycle!
pulses of TM and TE character. These solutions are func-
tions of a length parameterq1 ~essentially the wavelength!
and another length parameterq2 ~essentially the depth of the
focused region!. We have assumedq2>q1 . We have found
the far-field divergence anglecm of these pulses to have
essentially the same relation toq1 , when it is much less than
q2 , as for common monochromatic Gaussian beams:
cm;Aq1 /q2. We have found the energy spectra of all four
solutions to be the same~for given q1 andq2) and to be a
simple analytic function of frequencyv, q1 , andq2 . A rela-
tivistic electron that is copropagating with the short TM
pulse on its axis is shown to gain an energyW that is pro-
portional to@~pulse energy!/~cutoff wavelength!# 1/2. We de-
rived the one-one-one rule:W is nearly 1 GeV for a 1-J pulse
having a cutoff wavelength of 1mm. This energy is reduced
if the electron velocity is less thanc. However, the reduction
is slight for highly focused TM pulses for which the effective
interaction length of the pulse and electron is only a few
wavelengths. At maximum focus, the energy density of the
short~TM and TE! pulses decreases asr210 at large distance
r , while the energy density of the long pulses decreases as
r28 at maximum focus.

A great many questions concerning these focused one-
cycle electromagnetic pulse solutions of Maxwell’s equa-
tions remain. Is there is a simple transformation by which the
long pulse solution can be obtained from the short pulse?
What happens when the Hertz potential isx directed instead
of z directed in deriving the fields? How are electrons accel-
erated if they intersect a solution along a path different from
the one we have considered here? How can these solutions
be generated, at least approximately, in the laboratory?
These and many other such questions are under current in-
vestigation.
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FIG. 2. Schematic of the electricEW and magneticHW fields of a
short TM focused doughnut pulse copropagating with an electron
(e) moving in an axial trajectory. Open~closed! circles represent
magnetic field lines out of~into! the plane of the diagram. The
picture is drawn at timer /c before the maximum focus, which
occurs at the origin of coordinates. The characteristic length param-
etersq1 andq2 are indicated. To achieve maximum acceleration of
an electron of velocityc, in the axial trajectory, a metal film (a)
should be placed in thez50 plane to reflect the pulse and transmit
the electron.
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