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Three-dimensional Heisenberg model with Dzyaloshinskii-Moriya interaction: A Monte Carlo study
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The three-dimensional classical Heisenberg model on a simple cubic lattice with Dzyaloshinskii-Moriya (DM)
interactions between nearest-neighbors in all directions has been studied using Monte Carlo simulations. The
Metropolis algorithm, combined with single histogram reweighting techniques and finite-size scaling analyses,
has been used to obtain the thermodynamic behavior of the system in the thermodynamic limit. Simulations
were performed with the same set of interaction parameters for both shifted boundary conditions (SBC) and
fluctuating boundary conditions (FBC). Because of an incommensurability caused by the DM interaction,
the SBC incorporated a fixed shift angle at the boundary which varies as a function of the DM interaction
and lattice size. This SBC method decreases the simulation time significantly, but the distribution of states
is somewhat different than that obtained with FBC. The ground state for nonzero DM interaction is a spiral
configuration where the spins are restricted to lie in planes perpendicular to the DM vector. We found that this
spiral configuration undergoes a conventional second-order phase transition into a disordered, paramagnetic state
with the transition temperature being a function of the magnitude of the DM interaction. The limiting case with
only DM interaction in the model has also been considered. The critical exponent ν, the critical exponent ratios
α/ν, β/ν, γ /ν, as well as the critical temperature Tc and fourth-order cumulant of the order parameter U ∗

4 at
Tc have been estimated for different magnitudes of DM interaction. The critical exponents and cumulants at the
transition are different from those for the three-dimensional Heisenberg model, but the ratios α/ν, β/ν, γ /ν,
U ∗

4 /ν are the same, implying that weak universality is valid for all values of DM interaction. Structure factor
calculations for particular cases have been performed considering SBC and FBC in the simulations with different
lattice sizes at the critical temperatures.
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I. INTRODUCTION

The phenomenon giving rise to a spontaneous magne-
tization in the absence of an external magnetic field in
ferromagnetic (FM) materials below the critical temperature
was first elucidated by Heisenberg [1], who introduced a sym-
metric “exchange interaction” or, as he named it, “exchange
term.” In this way, not only ferromagnetic but antiferromag-
netic (AFM) materials could be successfully analyzed based
on models which incorporate an exchange interaction. A good
example is the Heisenberg model itself. It was later noticed
that a type of “weak” ferromagnetism occurs in certain antifer-
romagnetic materials that could not be explained only on the
basis of the Heisenberg exchange interaction [2,3]. The agent
responsible for this effect was clarified by Dzyaloshinskii [4]
and Moriya [5] and is now called the Dzyaloshinskii-Moriya
(DM) interaction.

It is interesting to note that, besides the antiferromagnetic
materials exhibiting weak ferromagnetism, the DM interac-
tion can also appear due to symmetry breaking at a surface of
some magnetic materials [6], crystals with a chiral magnetic
structure [7–10], and in magnetic thin films in multilayers
[11–14]. In these cases, different magnetic phases than the
usual FM phase can emerge, such as helical, conical, solitons,

spiral phases, and even phases with more exotic spin textures
like skyrmions [14,15]. Because of the importance of DM
interactions to the formation of such novel and compelling
spin textures, many experimental studies of systems with DM
coupling have focused on these magnetic structural properties
[16]. In addition, multiferroics (see, e.g., Ref. [17]), for which
DM interaction plays a significant role, also exhibit other
interesting behavior, e.g., ferroelectricity, which has captured
the interest of experimentalists. The specific heat has been
measured [18] for the ferromagnet Mn5Ge3, which orders
at room temperature, but the resolution was insufficient to
extract critical exponents of the respective second-order phase
transition.

The thermodynamic properties, the magnetic structures,
and the magnetic excitations present in these systems con-
taining DM interaction have been studied by theoretical
approaches as well as by Monte Carlo (MC) simulations (see,
e.g., Refs. [19–24] and [25–30], respectively). However, in
some of these investigations the important question of the
weak universality class of the models has not been completely
addressed when one regards the effect of the DM interaction.

In previous works [31,32], the two-dimensional XY model
with DM interactions has been studied using MC simulations
and finite-size scaling. The phase diagram in the temperature
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versus DM interaction plane, as well as the respective critical
exponents were obtained, and it was noticed that the modula-
tion of the spin vectors with position depended upon the value
of the DM interaction. As a result, incommensurability may
appear when arbitrary values of the DM interaction are con-
sidered in the simulations. In this case, fluctuating boundary
conditions (FBC) have been implemented in order to properly
accommodate incommensurabilities.

Here we have adopted the same procedure used for the
two-dimensional XY model to analyze the Heisenberg model
with DM interaction in three dimensions. As stated by Moriya
[5], DM interactions occur in crystals of low symmetry, like
noncentrosymmetric crystals [6]. Despite some special de-
tails that occur in real materials, e.g., intrinsic interaction
anisotropies and crystal asymmetries, we have considered a
simpler model consisting of the traditional isotropic exchange
Heisenberg Hamiltonian with DM interaction defined in a
simple cubic lattice. This model has some similarity with the
pyrochlore lattice with DM interactions [33] (in spite of the
difference of lattice symmetry, which is hexagonal in the later
one [34]). Besides that, several chiral helimagnets, among
which MnSi and CrNb3S6, have been studied on the basis of
simpler models like the one considered here [25–30], having
subtle differences with respect to the way that DM vector
interactions are defined between the spins in the lattice and/or
by the addition of extra interaction terms in the model.

The plan of the paper is as follows: In the next section, the
model and effective Hamiltonian are presented. Section III is
devoted to the methodology, including the Monte Carlo simu-
lation details, boundary conditions, thermodynamic quantities
of interest, and finite-size scaling analyses. The results are
presented in Sec. IV and concluding remarks are made in the
final section.

II. MODEL

The Hamiltonian we have considered can be written as

H = −J
∑
〈i, j〉

Si · S j −
∑
〈i, j〉

D · (Si × S j ), (1)

where the first sum represents the isotropic Heisenberg term
with exchange interaction J , and the second sum represents
the Dzyaloshinskii-Moriya term, with D being the DM vector
interaction. Si are three-dimensional classical spin vectors
sitting at each site i of a simple cubic lattice with ‖Si‖ = 1.
The bracket 〈i, j〉 specifies that each spin interacts with its
nearest neighbors along the three directions of the lattice for
both for the FM and DM interactions.

Choosing the DM vector along the positive z direction
and applying the transformation proposed by Alcaraz and
Wreszinski [35], we get the effective Hamiltonian

H(d ) = − J
∑
〈i, j〉

{
√

1 + d2 cos[ϕi − ϕ j − φ(d )]

× sin θi sin θ j + cos θi cos θ j}, (2)

where d = D/J , D is the magnitude of the DM interaction
vector, ϕi and θi are the angles of the spin vector Si in spherical
coordinates, and φ(d ) = tan−1 d . It is worthwhile to stress,
for future reference, that the Hamiltonian (2) is equivalent to

FIG. 1. A simple illustration showing the ground-state relative
orientation of two nearest spin vectors according to the type of
interaction between them. Top illustrations for the ferromagnetic
case (FM) case, with and without Dzyaloshinskii-Moriya (DM) inter-
actions. Bottom illustrations for the antiferromagnetic (AFM) case,
with and without DM interaction. The azimuthal angular difference
φ(d ) of the pair of spins is indicated in each case.

an anisotropic Heisenberg model with renormalized exchange
interaction in the x-y plane.

It is easy to see that, in the FM (J > 0) ground state all
the spin vectors arrange themselves in a spiral configuration
where the spins are restricted to lie in planes perpendicular
to the DM vector. Moreover, two adjacent spin vectors have
an angular difference equal to φ(d ). As depicted in the top
sketches in Fig. 1, and one lattice spacing displacement im-
plies that a φ(d ) rotation of the next spin vector, causes a
modulation of the x- and y- spin components along the princi-
pal lattice directions, which causes a modulation on the x- and
y-spin components along the x-, y-, and z-lattice directions.
In this sense, φ(d ) is the pitch angle and, according to its
value, the modulation length may be either commensurate or
incommensurate with a finite lattice. It is this possible incom-
mensurability that requires more subtle boundary conditions
when simulating the model with DM interaction on finite
lattices.

In the AFM case, i.e., J < 0, the ground-state configura-
tion of the model would also be restricted to lie in planes
perpendicular to the DM vector, but the spin vectors now
would arrange themselves in an antiparallel way, with any
spin and its nearest neighbor in the lattice having an azimuthal
angular difference equal to π − φ(d ), as it is depicted in the
bottom sketches in Fig. 1. This means that one lattice spacing
displacement implies in a π − φ(d ) rotation of the next spin
vector, giving rise to a modulation on the spin vectors as
discussed in the above paragraph. Some attention should be
paid to the signal of φ(d ) in Eq. (2), which changes into
−φ(d ) in the cosine argument due to the ratio d = D/J .

This work will be focused only on the FM case, though
the AFM case could be studied in a very similar approach
and eventually lead to similar conclusions about the critical
behavior of the antiferromagnetic model with DM interaction.
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III. METHODOLOGY

A. Monte Carlo simulations

The simulations consist of running several MC steps per
spin (MCS) and storing the corresponding values of energy,
order parameter, etc. One MCS is defined by a sequen-
tial sweep of all the spins of the lattice using the standard
Metropolis algorithm [36]. For each spin vector Si having
angles (θi, ϕi ), new angles (θ ′

i , ϕ
′
i ) are randomly chosen and

accepted if the total energy becomes smaller than the total
energy for the previous angles or if the Boltzmann probability
of the energy difference is greater than a random number
uniformly distributed between 0 and 1. If this last condition
does not occur, then the spin angles remain unchanged.

Lattices with L × L × L = L3 sites have been used in the
MC simulations with the sizes raging from L = 8 to 56
(L = 64 in some cases). A typical simulation consisted of
105–106 discarded MCS (depending on L) for thermalization
and measurements taken every 10 MCS within the total of
106 MCS after equilibration. For some finer analysis, single-
histogram reweighting techniques were used with data from
300 to 800 simulations (again, depending on L), running on
different processor cores and starting with different random
number generator seeds. A maximum of 1.6 × 109 configu-
rations have been generated for the lattice size L = 56, with
histograms constructed with data coming from 8 × 107 con-
figurations. The random number generator we have used was
“ran2” in Ref. [37].

B. Boundary conditions

To check if the modulation length due to the DM inter-
action, measured by the parameter d , is commensurate or
incommensurate with the lattice size L, we considered a shift
angle 
(d, L) in the interval [0, 2π ), given by


(d, L) = mod[Lφ(d ), 2π ], (3)

where φ(d ) is the pitch angle and “mod” is the modulo op-
eration. In the case of the ground-state spin configuration at
T = 0, if 
(d, L) = 0, then the configurations are commen-
surate with the lattice. Otherwise, when 
(d, L) differs from
zero, an incommensurability takes place. However, having
this shift angle at hand, it is possible to compensate the az-
imuthal angular differences ϕi − ϕ j , for the spins i and j along
the boundary of the lattice, by choosing ϕi + 
 − ϕ j . If one
wishes to study the AFM version of the model, then it would
only be necessary to make the change φ(d ) → π − φ(d )
in Eq. (3).

Based on these considerations, we have defined two dif-
ferent boundary conditions for the simulations. One uses 


calculated from Eq. (3), which remains fixed during the entire
simulation. The other one uses a variable value of 
 which
is calculated by an extra Metropolis step specially designed
for the spins on the boundary of the lattice. For convenience,
we will refer to the use of a constant 
 as shifted boundary
condition (SBC) and FBC [38] when 
 is determined through
an extra Metropolis sweep. For the simulations with FBC, we
defined 
x, 
y, and 
z to be the shift angles for each direction
in the lattice and they were calculated independently of each
other. In this way, after one MCS with Metropolis algorithm,

FIG. 2. Magnetization per spin M as a function of the lattice
size L for a small value d = 0.05. The solid line corresponds to
the theoretical result at T = 0, given by Eq. (4) in a simple cubic
lattice. The circles are MC simulation results at a low temperature
T = 0.025. The MC errors are smaller than the symbol sizes.

there is one additional step to sweep all the spins along the
boundary to compute the three shift angles.

We stress here that, whenever 
(d, L) = 0, SBC becomes
identical to the usual periodic boundary condition (PBC). For
instance, the configurations are commensurate with the lattice
sizes for (i) d = 0 for any value of L because φ = 0, (ii) d = 1
for L being a multiple of 8 since φ = π/4, and (iii) d = ∞
for L multiple of 4 since φ = π/2. In all cases above SPC
and PBC produce the same result. However, for d = 0.5, for
example, a spin modulation length equal to 2π/ tan−1 0.5 =
13.55 . . . lattice spacing results in an unavoidable incommen-
surability case for any finite lattice size.

C. Thermodynamic quantities and finite-size
scaling relations

In this model, the usual magnetization per spin M, defined
as the magnitude of the vectorial sum of all spins Si divided
by the number of sites, M = ‖∑L3

i=1 Si‖/L3, goes to zero in
the thermodynamic limit as soon as d 	= 0. Nevertheless, for
finite lattices this quantity differs from zero. At T = 0, where
all spins are in the x-y plane, it is possible to compute M as a
function of L and φ. The result is

M(L, φ) =
∣∣∣∣ sin(Lφ/2)

L sin(φ/2)

∣∣∣∣3

. (4)

It is clear that M(L, φ) → 0 as L → ∞ for any finite φ. As
φ → 0 one has M(L, φ) → 1, as expected, because, in this
case, we have d = 0 and the DM interaction is suppressed.

The full line in Fig. 2 gives the behavior of M from Eq. (4),
as a function of the lattice size L, for a small pitch angle cor-
responding to d = 0.05. The circles correspond to MC results
for the same value of d and for a very low temperature T =
0.025. Here, and in the remainder of this paper, we consider
the exchange interaction J = 1 and the Boltzmann constant
kB = 1 (in other words, it simply means that we are measuring

064113-3



SILVA, BERGERON, PLASCAK, AND LANDAU PHYSICAL REVIEW E 109, 064113 (2024)

the temperature T in convenient units of kB/J). The agreement
seen in this figure shows that T = 0.025 is low enough to
capture the essence of the ground-state configuration.

Even when the temperature increases from such a low
value, the spin vectors are still forced to closely stay in
planes perpendicular to the DM vector. This can be seen
from the behavior of the z-component magnetization Mz =
(
∑L3

i=1 Sz
i )/L3 as the temperature increases. Figure 3 shows

the results from MC simulations at d = 0.05 and d = 0.5
and different lattice sizes. Mz fluctuates around zero with the
magnitude of its fluctuation decreasing as d increases in the
whole temperature range. Furthermore, Mz seems to tend to

zero as the lattice size tends to infinity. It is also interesting
to notice that the DM interaction forces the spins to stay
in perpendicular planes even for smaller lattices, since the
fluctuations decrease two orders of magnitude when d = 0.5
even for the smaller lattice L = 8.

Based on the foregoing considerations, it is evident that the
magnetization per spin M cannot be used as an order param-
eter as soon as one has a DM interaction in the model (despite
the fact that, as the temperature increases, the magnetization
per spin decreases from its value at T = 0 for each value L
and approaches zero).

We have defined a different order parameter m as

m = 1

L3

√√√√√
⎧⎨⎩

L3∑
i=1

cos[ϕi + (xi + yi + zi )φ] sin θi

⎫⎬⎭
2

+
⎧⎨⎩

L3∑
i=1

sin[ϕi + (xi + yi + zi )φ] sin θi

⎫⎬⎭
2

+
⎛⎝ L3∑

i=1

cos θi

⎞⎠2

. (5)

Note that m depends not only on the spin spherical angles but
also on their positions in the lattice and the pitch angle φ.
Ultimately, the terms (xi + yi + zi )φ in Eq. (5) have the effect
of undoing the modulations on the spin vectors caused by the

FIG. 3. MC results of the z-component magnetization per spin
Mz, as a function of the temperature T , for different lattice sizes, at
d = 0.05 (top panel) and d = 0.5 (bottom panel).

presence of the DM interaction, with xi, yi, zi ∈ [0, L − 1]. As
a result, for any finite lattice m = 1 in the ground state and
decreases to zero as the temperature increases, playing the
perfect role of an order parameter.

A very useful quantity to compute the critical temperature
is the fourth-order (Binder) cumulant of the above order pa-
rameter [39], defined in its reduced form as

U4 = 1 − 〈m4〉
3〈m2〉2

, (6)

where the angle brackets denote the thermal average. For
sufficiently large systems, this cumulant as a function of tem-
perature should cross at the same point Tc for different values
of L. Tc is thus the critical temperature and the cumulant U ∗

4 at
Tc has a universal value. In addition, the slopes of U4 at Tc are
proportional to L−1/ν , where ν is the correlation length critical
exponent. These properties of U4 allow an almost unbiased
estimate of Tc, U ∗

4 and ν [40,41].
When the finite lattices are not large enough, residual cor-

rections to finite-size scaling (FSS) [39] make the crossing
points of the cumulant U4 suffer a systematic shift as L varies.
As we shall see below, this also happens in the present model.
However, if Tcross(L, Ls) is the crossing temperature of the
cumulants for lattice sizes L and Ls, where Ls is fixed and
taken as a reference lattice size, then the systematic deviations
of this quantity can be modeled as [40,41]

Tcross(L, Ls) = Tc(∞, Ls) + BT

log10(L/Ls)
, (7)

where Tc(∞, Ls) gives us an estimate of the critical tempera-
ture of the infinite system and BT is a nonuniversal constant.

Similarly to Eq. (7), the cumulant values at Tcross(L, Ls),
namely U ∗

4 (L, Ls), can be modeled as

U ∗
4 (L, Ls) = U ∗

4 (∞, Ls) + BU

log10(L/Ls)
, (8)

where U ∗
4 (∞, Ls) provides an estimate of the cumulant for the

infinite lattice and BU is another nonuniversal constant.
Since both Tc(∞, Ls) and U ∗

4 (∞, Ls) could still depend
on the reference lattice Ls, one eventually obtains the critical
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temperature Tc and the fourth-order cumulant U ∗
4 in the limit

Ls → ∞, namely Tc = Tc(∞,∞) and U ∗
4 = U ∗

4 (∞,∞). In
the present case, it was possible to get reasonable resolution
for the cumulant crossings with Ls = 8, 12, 16, and 20. We
have also taken L > Ls for all values of Ls.

Having the critical temperature in hand, the critical ex-
ponents of the correlation length ν, order parameter β,
susceptibility of the order parameter γ , and specific heat α

can be computed from the finite-size scaling relations,

dU4(βT ; L)

dβT

∣∣∣∣
βT =βTc

≈ U0L−1/ν, (9)

m(T = Tc; L) ≈ m0L−β/ν, (10)

χpeak(L) ≈ χ0Lγ /ν, (11)

Cpeak(L) ≈ C∞ + C0Lα/ν, (12)

where U0, m0, χ0, C∞, and C0 are constants. Equation (9)
corresponds to the derivative of the fourth-order cumulant
with respect to the variable βT = 1/kBT and is taken at the
critical temperature. Equation (10) is the order parameter at
Tc. Equation (11) is the peak value of the order parameter
susceptibility χ defined by

χ = L3[〈m2〉 − 〈m〉2]

kBT
, (13)

and Eq. (12) is the peak value of the specific heat C given by

C = 〈H2〉 − 〈H〉2

L3kBT 2
. (14)

More detail about the nature of the phase transition is given
by the structure factor [41], which provides information about
the spin-spin correlations and the magnetic long-range order-
ing. This quantity is defined by the spatial Fourier transform
of the time-independent pair-correlation function �(r jk ) =
〈S j · Sk〉 − 〈S j〉 · 〈Sk〉 of the spin configurations in thermal
equilibrium, with r jk = r j − rk being the relative vector po-
sition of the spins at j and k sites, respectively (the lattice
parameter has been normalized to unity). Accordingly, the
static structure factor S (q) can be written as

S (q) = 1

L3

∑
j,k

�
(
r jk

)
eiq·r jk , (15)

where q is the wave vector and the double summation runs
over all the spins in the lattice. This structure factor is also
very useful to investigate the magnetic structures emerging
from complex arrangements of the spins, as well as distin-
guishing different magnetic phases [42,43].

D. More on simulations

The simulations have been done following two different
approaches for different values of d and shifted and fluctuat-
ing boundary conditions.

In the first approach, data generated by sets of extensive
MC simulations as described above (with an estimated CPU
time of the order 7 × 105 core-hours), together with the single
histogram reweighting, have been used to accurately estimate
the critical temperature Tc and the value of the fourth-order

cumulant U ∗
4 . For this purpose, we have used Eqs. (5)–(8)

with L � 56. The critical exponent ν and the ratio β/ν have
been estimated through the FSS relations given by Eqs. (9)
and (10).

In the second approach, with less computational effort (an
estimated 105 core-hours), the susceptibility of the order pa-
rameter and specific heat curves as a function of T have been
directly obtained from single MC simulations, and the ratios
γ /ν and α/ν have been estimated from the FSS relations
given by Eqs. (11) and (12). In this case we have also included
a larger lattice L = 64. Additional estimates of Tc, using the
FSS of the temperatures where the susceptibility of the order
parameter and specific heat take place, have been obtained as
well. The computation of the structure factor S (q) has been
done following this second approach for lattice sizes L � 24
(CPU time of only about 2000 core-hours in this case).

IV. RESULTS

In this section, we will focus on the results for three par-
ticular regimes of d . The first one is when d = 0 which is the
well-known Heisenberg model that has no spin modulation
but only FM order at low temperatures. In this case, compar-
ison of the present results with previous simulations can also
be made. As an intermediate regime, we consider d = 0.5,
having a spin modulation length that results in an unavoidable
incommensurability for any finite lattice size. In some cases,
d = 1 will also be considered, where commensurate lattices
are obtained when L is a multiple of 8.

The third regime is when d tends to infinity and the DM
interaction dominates, i.e., a three-dimensional “DM model”
containing only DM interactions. This regime will be referred
to as d = ∞, where the second term involving cosines in
Eq. (2) can be neglected. This case results in the shortest
possible spin modulation length φ = π/2 being equal to four
lattice spacings. The incommensurability can thus be circum-
vented by choosing lattice sizes L = 4n, with n = 1, 2, . . . .

In the d = ∞ limit, where the cosines term can be ne-
glected, the simulations provide a transition where

[βTc J
√

1 + d2]−1 = T DM
c (16)

plays the role of the critical temperature of the DM model.
In addition, from Eq. (16) one has (recalling that we are
considering kB = 1 and J = 1)

Tc = T DM
c d. (17)

The above equation also gives the slope of the transition
temperature line Tc(d ), as a function of d , in the d = ∞ limit.
This feature will become clearer below, when discussing the
global phase diagram.

In all the above three different regimes, we consider both
SBC and FBC and compare their respective results.

A. Energy and order parameter distribution functions

In all the below data, the histograms have been analyzed
within the desired temperature interval, e.g., around the cu-
mulant crossings. We, thus, checked if the energy and order
parameter distributions maintain their shapes and are free
from any noise at their tails as compared to the original
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FIG. 4. Probability distributions of the energy per site P(E/L3)
(left panels) and order parameter P(m) (right panels) for values of d
in the three chosen regimes and both SBC and FBC. The lattice size
is L = 48 and the temperature is close to the critical temperature for
each DM interaction. The middle panels for d = 0.5 also show the
probability distribution with periodic boundary conditions (PBC).
The legends on the left panels also apply to the right panels.

distributions at the temperature where the Monte Carlo sim-
ulations have been performed. As the crossing temperatures
were not so far away from each other and from the tempera-
ture where the histograms were taken, and due to the sufficient
amount of data from the MC simulations, no problems were
observed in the distributions for any lattice sizes.

As an example, Fig. 4 show the energy per site and order
parameter probability distribution function for the lattice size
L = 48 in the three regimes of the DM interaction using both
SBC and FBC. For each value of d , the probability distribu-
tions have been obtained using histograms at a temperature
that is close to the critical temperature and different from
the temperature where the histograms were measured. The
smooth behavior of the curves shows that the temperature
range is still within the region of validity. It is also clear that
the shape of the distributions are indeed dependent on the type
of the chosen boundary conditions.

Both d = 0 and d = ∞ are commensurate with the lattice
size L = 48, and the use of either SBC or usual periodic
boundary conditions (PBC) give the same result. The situation
is different for d = 0.5, because there is an incommensura-
bilty with the lattice. The middle panels of Fig. 4 also show the
corresponding probability distributions using PBC. However,
the results with PBC for incommensurate lattices, shown in
Ref. [32], do not produce coherent values with the expected
FSS behavior. This can be clearly seen for d = 0.5, where
P(E/L3) for PBC is clearly narrower with its χ2 smaller than
the other boundary conditions, and P(m) has much smaller
width and wings, resulting in much different susceptibilities
and fourth-order cumulants.

B. Critical temperature Tc and fourth-order cumulant U∗
4

Figure 5 shows the order parameter fourth-order cumu-
lants, defined in Eq. (6), as a function of the temperature T
for d = 0, d = 0.5, and d = ∞. The temperature T DM, in the
d = ∞ limit, is given by T DM = [βT J

√
1 + d2]−1. For each

graph, there are two sets of curves constructed by using the
histogram method and taking the data from MC simulations
with SBC and FBC.

It is clear from Fig. 5 that, independent of the chosen
boundary conditions, there are systematic deviations of the
cumulant crossings for all considered values of d as the lattice
size changes. Nevertheless, it was possible to compute the
crossing temperatures Tcross(L, Ls) for Ls = 8, 12, 16, and
20, with L > Ls. The values of Tcross(L, Ls) and their error bars
have been estimated by approximating the cumulants as linear
functions of T in the regions where the crossings occur, with
temperature steps 
T = 0.0001 (this procedure has already
been used in a previous work [32] for the two-dimensional
XY model). The above process has also been used in obtaining
T DM

cross(L, Ls).
The results for the crossing temperatures Tcross(L, Ls) and

T DM
cross(L, Ls), as a function of [log10(L/Ls)]−1, are depicted in

Fig. 6 for the three values of d and using SBC and FBC.
The straight lines are fits to Eq. (7) that provide a partial esti-
mate of the critical temperature Tc(∞, Ls). We have different
scaling behaviors for different reference lattices Ls. Although
for d = 0 the FSS functions are comparable for SBC and
FBC, for d 	= 0 different boundary conditions lead to different
scaling behavior.

Despite the difference in the scaling functions shown in
Fig. 6, in all cases the extrapolated temperatures smoothly
converge to a single value as the reference lattice gets larger.
This convergence can be seen in Fig. 7, which depicts the
Tc(∞, Ls) and T DM

c (∞, Ls) as a function of 1/Ls obtained for
the values of d of Fig. 6, together with the results obtained
for d = 1 with only SBC. One can clearly see that as Ls gets
larger, the critical temperature tends to a constant, furnishing
then Tc = Tc(∞,∞), for any value of d . In the process of
obtaining Tc, the smaller reference lattice Ls = 8 has been
neglected in all cases, and an average has been made only
considering the remain lattice results having values that agree
within the error bars. With this process, some results come
only from the largest reference lattice Ls = 20. The numerical
results of the final critical temperature, for each value of the
DM interaction of Fig. 7, are also depicted in Table I. As
expected, the estimated values of Tc are the same, regardless
of the type of boundary condition.

Evaluating the cumulants U ∗
4 (L, Ls), and the corresponding

errors at the crossing temperatures Tcross(L, Ls) or T DM
cross(L, Ls)

is now straightforward using the already-computed his-
tograms. In order to have the smallest possible errors, we
have chosen the reference lattice Ls to compute the fourth-
order cumulants. Figure 8 shows U ∗

4 (L, Ls), as a function
of [log10(L/Ls)]−1, at the crossing temperatures Tcross(L, Ls).
The lines are linear fits using Eq. (8), from which one gets the
extrapolated cumulant U ∗

4 (∞, Ls). As for the crossing tem-
peratures, different FSS behaviors occur for each reference
lattice Ls and for all values of d . However, in this case, the
extrapolated values of cumulants not only seem to depend
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FIG. 5. Fourth-order cumulant of the order parameter U4 as a function of temperature T for d = 0 (left panel), d = 0.5 (middle panel),
and d = ∞ (right: where T DM = [βT J

√
1 + d2]−1 in the d = ∞ limit). The lattice sizes range from L = 8 to L = 56, as specified in the text.

In each panel, the top curves are for SBC and the bottom curves are for FBC (note the different axis scale for each boundary conditions). The
lattice size pattern in the left panel also applies to the other two panels.

on the boundary conditions but also whether d is zero or
nonzero.

In order to better see the effects of the boundary condi-
tions and the DM interaction on the cumulant value at the
transition, Fig. 9 shows U ∗

4 (∞, Ls), as a function of 1/Ls,
for different values of d and also d = 1 with SBC. It has
been performed extra linear fits to estimate U ∗

4 , as it can be
seen by the full straight lines in Fig. 9. In this procedure, the
points with Ls = 8 have not been taken in the fits for all of the
d values and boundary condition, except for d = 0.5 FBC,
which U ∗

4 was obtained from the vertical axis intercept of the
straight line defined by the points with Ls = 16 and Ls = 20.
For this case, the error associated with the U ∗

4 estimate was
obtained by propagating the error from the two points used
to define the straight line. For d = 0, the results are almost

independent of Ls for both boundary conditions, and the fits
yield U ∗

4 = 0.6208(1) for SBC and U ∗
4 = 0.5679(2) for FBC.

This is clear evidence that, as in other models, the cumulant
does depend on the boundary conditions [32,44].

For d > 0, the finite-size effects become stronger, mainly
for FBC. Interestingly, with SBC, for different values of d the
cumulants U ∗

4 (∞, Ls) clearly converge to the same result as
Ls gets larger. On the other hand, despite stronger finite-size
behavior for FBC, the results also seem to converge to the
same result but with a different value as compared to the
SBC. The corresponding final estimates of the cumulants at
the transition temperature for d > 0 with SBC and FBC are
listed in Table I. It is clear from Table I that, for any d > 0,
the cumulants at Tc have the same value (within the error
bars) with SBC. With FBC they are outside of the error bars

TABLE I. Final estimates of the critical temperature Tc, the value of the cumulant U ∗
4 at Tc, the critical exponent ν and the ratios β/ν,

γ /ν, and α/ν, for several values of d and both SBC and FBC. T
Cpeak

c and T
χpeak

c are also critical temperature estimates obtained from finite-size
scaling analyses. Universal values are averages obtained from the top seven row data and also include the ratio U ∗

4 /νSBC for SBC. Some results
from the literature for the Heisenberg and XY models are also displayed for comparison.

d Tc U ∗
4 ν β/ν γ /ν α/ν T

Cpeak
c T

χpeak
c

0 (SBC) 1.44293(5) 0.6208(1) 0.713(2) 0.5152(1) 1.963(6) −0.33(7) 1.4419(6) 1.4424(4)
0 (FBC) 1.44296(2) 0.5679(2) 0.710(1) 0.5158(4) 1.969(5) −0.25(9) 1.4420(4) 1.4428(4)
0.5 (SBC) 1.66281(1) 0.58434(9) 0.670(2) 0.5172(3) 1.997(8) −0.18(5) 1.6621(4) 1.6629(3)
0.5 (FBC) 1.66272(3) 0.3488(2) 0.6726(7) 0.510(4) 1.984(22) −0.23(9) 1.6629(2) 1.6630(2)
1 (SBC) 2.14692(5) 0.5854(1) 0.677(2) 0.5175(1)
∞ (SBC) 1.55183(1) 0.5856(4) 0.674(2) 0.5186(4) 1.968(15) −0.24(9) 1.5512(5) 1.5517(4)
∞ (FBC) 1.55181(2) 0.35836(4) 0.673(3) 0.515(1) 1.951(12) −0.29(11) 1.5513(3) 1.5521(3)

Our universal values
d U ∗

4 (SBC) U ∗
4 (FBC) ν β/ν γ /ν α/ν U ∗

4 /νSBC Ref.

0 0.6208(1) 0.5679(2) 0.712(2) 0.5155(4) 1.966(4) −0.29(6) 0.869(4)
	= 0 0.5851(7) 0.3536(69) 0.673(3) 0.516(3) 1.975(20) −0.24(5) 0.872(2)

Heisenberg model
0 0.6202(1) 0.7112(5) 0.5187(6) 1.963(2) −0.188(2) 0.8727(6) [47]

0.6217(8)a 0.712(4) 0.515(5) 1.972(7) −0.192(16) 0.873(5) [48]

XY model
0.5859(8) 0.669(6) 0.5179(24) 1.965(5) 0.876(8) [49]
0.5856(1) 0.6717(1) 0.5190(2) 1.9619(4) −0.0225(5) 0.8718(2) [50]

aFrom Ref. [40].
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FIG. 6. Crossing temperatures Tcross(L, Ls ) and T DM
cross(L, Ls ), as a

function of [log10(L/Ls )]−1, for d = 0 (top panel), d = 0.5 (middle
panel), and d = ∞ (bottom panel). Different symbols correspond to
different reference sizes Ls. Full symbols and full lines correspond
to SBC, while open symbols and dashed lines to FBC. Both types of
lines are linear fits according to Eq. (7). The legend in the top panel
also applies to the other panels. Where not shown, the error bars are
smaller than the symbol sizes.

but still quite comparable. However, U ∗
4 for SBC and FBC

are definitely different from each other. An average furnishes
U ∗

4 = 0.5851(7) for SBC and U ∗
4 = 0.3536(69) for FBC.

These results suggest that as soon as the DM interaction is
present, the model changes its universality class. To check this
point more carefully, the computation of critical exponents is
valuable.

C. Critical exponent ν and β/ν ratio

The critical exponent ν and the ratio β/ν can be ob-
tained from the simulations by using the already-computed
histograms and relations (9) and (10). The top left and bot-
tom left panels in Fig. 10 show, respectively, the derivative
dU4(βT ; L)/dβT and the order parameter m at Tc, both as
a function of the lattice size L (the axes are in base-10-
logarithmic scale and this base has been kept in other log-log
plots that are shown ahead in the text). From the scaling
relations, one expects the slopes to furnish ν in the former case
and β/ν in the latter case. However, although not completely
apparent in Fig. 10, in some cases, residual finite-size effects
are still present. To better estimate the critical exponents, sev-
eral linear fits have been made by progressively discarding the
smaller lattices. With Ls now the smallest lattice size consid-
ered in the linear fit, we were able to get a good estimate of the
critical exponents from Ls = 8 to Ls = 32. The corresponding
results, as a function of 1/Ls, are depicted in the right panels of
Fig. 10, where it is easier to see that, in general, the finite-size
effects are stronger for d > 0 and for FBC. These effects are
more pronounced for d = 0.5 with FBC. The full lines in the

FIG. 7. Extrapolated values of the crossing temperatures
Tcross(∞, Ls ) and T DM

cross(∞, Ls ) from the fits of Fig. 6, as a function of
1/Ls, for different DM interaction d . SBC correspond to full symbols
and FBC to open symbols. The case d = 1 with only SBC has also
been added in this figure. The temperature axis has different scales
for different values of d . The error bars are smaller than the symbol
sizes.

right panels of Fig. 10 are additional linear fits to get the final
estimate of the exponent.

As an example, for d = 0 (see the top right panel in
Fig. 10), the extrapolated value of the correlation length crit-
ical exponent is ν = 0.713(2) with SBC and ν = 0.710(1)

FIG. 8. Value of the cumulants U ∗
4 (L, Ls ), at the crossing temper-

atures Tcross(L, Ls ) or T DM
cross(L, Ls ), as a function of [log10(L/Ls )]−1,

computed from the simulations on the reference lattice of size Ls.
The description of DM interaction, symbols, and lines given in Fig. 6
also applies to this figure [with the linear fits coming from Eq. (8)
instead]. The error bars are smaller than the symbol sizes.
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FIG. 9. Extrapolated values of the cumulants U ∗
4 (∞, Ls ) from

the fits of Fig. 8, as a function of 1/Ls, for different DM interaction
d (here represented by different symbols) and SBC (full symbols)
and FBC (open symbols). The case d = 1 with only SBC has also
been added in this figure. The cumulant axis has different scales for
different values of d as well as for different boundary conditions. The
full lines are linear fits, except for d = 0.5 FBC, which the straight
line is defined by the two points that it passes through them. The
dashed lines are just guides to the eye and the error bars are smaller
than the symbol sizes.

FIG. 10. Derivative of the order parameter fourth-order cumulant
dU4(βT ; L)/dβT (top left panel) and order parameter m (bottom left
panel), both as function of the lattice size L and evaluated at T =
Tc. In the left panels the axes scales are base-10-logarithmic and the
dashed lines are just a guide to the eye. The linear fits, as described in
the text, are shown for the critical exponent ν in the top right panel,
and the ratio β/ν in the bottom right panel, as function of 1/Ls (Ls

here means the smallest considered lattice size), where full lines are
additional linear fits. Horizontal dashed-lines in the two right panels
indicate the mean values with the shaded area giving an idea of the
error bars. The legends of Fig. 9 also apply in this case.

with FBC. As expected, ν should be independent of
the boundary conditions. The present estimate gives ν =
0.712(2). It is interesting to see that for d > 0, all the ex-
trapolations tend to the same result, independent of the values
of d and the type of boundary conditions. The corresponding
average, represented by the horizontal dashed line in the top
right panel in Fig. 10, gives ν = 0.673(3). This means, indeed,
that the DM interaction does change the universality class
of the model, as was suggested by the computation of the
fourth-order cumulant in the previous subsection.

It is remarkable the extrapolations obtained for the ratio
β/ν depicted in the bottom right panel of Fig. 10. Although
for d = 0.5 and FBC we probably still need larger lattices
with more MCS (which will take much more computational
effort), for all the cases the extrapolations converge to the
same region. This provides an estimate β/ν = 0.5155(4) for
d = 0 and β/ν = 0.516(3) for d 	= 0, suggesting that besides
having different exponents, the system satisfies the so-called
weak universality class, where the exponents are different but
their ratios are the same [45,46]. The final estimates of these
critical exponents are listed in Table I.

In order to further seek whether the weak universality class
really holds for this model, we have also computed the ratio
γ /ν and α/ν by using less CPU time.

D. γ/ν and α/ν ratios

The order parameter susceptibility χ and the specific heat
C have been obtained with less computational effort, as out-
lined by the second approach in Sec. III D, at the cost of
having less precise data. Only one simulation comprising a
total of 106 MCS after relaxation, generating 105 data points,
was performed at temperature intervals 
T = 0.001 or 
T =
0.0005 close to the region of maximum values of the sus-
ceptibility and specific heat. In this way, for each lattice size
L, not only χpeak and Cpeak have been obtained but also the
corresponding temperatures where these peaks occur. It was
also possible to simulate the L = 64 lattice for d = 0, 0.5,
and d = ∞ with SBC and FBC.

The FSS behavior of χ and C are expressed by Eqs. (11)
and (12). The peak temperature Tpeak, where Tpeak can be
either Tχpeak or TCpeak has, for large-enough systems, a finite-size
scaling relation given by [40,41]

Tpeak ≈ Tc + bL−1/ν, (18)

where b is a nonuniversal constant.
Figure 11 shows the peak temperature, Tpeak, as a function

of L−1/ν , obtained from the susceptibility and specific heat for
different values of d and boundary conditions. The ν expo-
nents have been taken from the final universal ones in Table I.
For d = 0, ν = 0.712 and for all values d 	= 0, ν = 0.673. In
each data set, two linear fits have been made, one with all
lattices and another one neglecting the smallest lattice L = 8.
When the linear fits are quite different, which are apparent
only for some cases in Fig. 11, the estimates come from
fits neglecting the smallest lattice size. The corresponding
results are displayed in Table I. It can be seen that the critical
temperature from the susceptibility and specific heat are, for
all values of d and to within the error bars, in agreement
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FIG. 11. Peak temperatures Tpeak and T DM
peak of the susceptibility

(circles) and specific heat (crosses) as a function of L−1/ν for different
values of d and respective boundary conditions. The exponents ν =
0.712(2) for d = 0 and ν = 0.673(3) for d 	= 0 are those obtained
in this work and displayed in Table I. For each data set there are two
lines coming from linear fits, one considering all lattices and another
neglecting the smallest lattice size. The error bars are smaller than
the symbol sizes.

with each other and also in agreement with the values of Tc

obtained from the cumulant crossings.
Figure 12 shows the logarithm of the order parameter sus-

ceptibility peak χpeak as a function of the logarithm of the
lattice size L for different values of d . The slope of each data
set furnishes, according to Eq. (11), the ratio γ /ν. In this case,

FIG. 12. Logarithm of the order parameter susceptibility peak
χpeak as a function of the logarithm of the lattice size L for different
values of d with the boundary conditions specified in the legend.
There are two lines corresponding to linear fits, one with all data and
another neglecting the smallest lattice size. The error bars are smaller
than the symbol sizes when they are not visible.

FIG. 13. Specific heat peak Cpeak, as a function of the lattice size
L, for different values of d with the boundary conditions specified
in the legend. Full lines are nonlinear fits according to Eq. (12) and
considering all data for each value of d . The error bars are smaller
than the symbol sizes when they are not visible.

due to the shorter MC runs, it is not possible to do the same
analysis as for β/ν. Nevertheless, for all values of d the slopes
from the fits neglecting the smaller lattice size L = 8 are close
together, and the mean value is listed in Table I.

The specific heat peaks, as a function of L, for the same
values of d are shown in Fig. 13. It is clear that α is negative,
since C goes to a constant as L → ∞. The full lines in Fig. 13
are fits using Eq. (12) and considering all data points. The
corresponding values for d different from zero have been av-
eraged and are displayed in Table I. For comparison, the ratios
α/ν for d = 0 with SBC and FBC have also been averaged
and given in this same table.

E. Structure factor

The structure factor, S (q), has been measured for the same
values of d as before using single simulations as described
in the previous subsection. Lattice sizes L = 8, 12, 16, 20,
and 24 have been used with SBC and FBC. The temperatures
were Tc for each value of d . The pair-correlation functions
�(r jk ) have been estimated at the final of the simulation,
with their corresponding uncertainties. In this way, S (q) can
be calculated, as a function of any arbitrary wave vector q,
through Eq. (15). Here q is measured in radians per lattice
spacing, with the lattice spacing being defined as unity. The
uncertainty in the structure factor has been estimated from the
error propagation coming from �(r jk ).

As an example, the static structure factor S (q) is shown in
Fig. 14 for wave vectors in the qx-qy plane for a lattice with
size L = 20 at T = Tc for various values of d . The same pat-
tern is obtained when the wave vector lies either in the qx-qz or
qy-qz planes. The intensity of the peaks, as well as their width,
is indicated by the gradient scale on the right of each graph.
Note that the peaks in S (q) occur at qx = qy = ±φ, where φ is
the pitch angle. As one can see from the gradient intensities in
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FIG. 14. Structure factor S(q) for the wave vector in the qx-qy

plane with qz = 0 and T = Tc for different values of d . The lattice
size is L = 20 and SBC has been used in the MC simulations. The
intensity of S(q) is given by the gradient scale on the right side of
each figure.

Fig. 14, the height of the peaks gradually decrease, with their
widths becoming wider, as d increases from d = 0, ending up
with the most spreading values, close to unity, for d = ∞.

In order to extract more quantitative results from these
calculations, we have checked if there is any finite-size scaling
of the maximum value of S (φ, φ, 0) on the system size L.
The graph on the top panel in Fig. 15 shows, for the same d
values considered in Fig. 14, a plot of the peak of S (φ, φ, 0),
as a function of L = 8, 12, 16, 20, and 24, where both axes are
logarithmic. In this case, we have also included some results
from simulations with FBC performed at T = Tc. As it is
expected, the model without DM interaction (d = 0 and φ =
0) exhibits the usual long-range magnetic ordering along the
planes in the lattice, as it can be clearly seen in the behavior
of S (0, 0, 0) that increases as L increases and tends to infinity
in the thermodynamic limit. However, for d 	= 0, the peaks
S (φ, φ, 0) do not show any regular increase as L increases.
Instead, the points tend to saturate or fluctuate around a hori-
zontal line. This means that looking at x-y, x-z, and y-z planes
in the lattice, one does not observe any long-range magnetic
ordering.

On the other hand, it is interesting to analyze S (q) when
q = ±(φ, φ, φ), a wave vector being parallel to the diago-
nal direction of the lattice or, in terms of crystallographic
definitions, the [111] direction in a simple cubic lattice. The
corresponding peaks of S (q) at T = Tc, as a function of L, in
logarithmic scales, are shown in the bottom panel of Fig. 15.
The two curves for d = 0 have not changed their behavior
in relation to those in the upper panel. However, for all of the
remaining curves with d 	= 0, S (φ, φ, φ) follow now the same
trend as for d = 0, namely increasing with L and diverging
to infinity in the thermodynamic limit. In other words, the
magnetic long-range ordering for d 	= 0 is observed when the
wave vector q is oriented along the diagonal directions with
specific values that depend on d through the pitch angle φ.
This result agrees with a theoretical finding for this model
[21], which shows that the magnetization changes in a spiral

FIG. 15. Peak values of the static structure factor S(q), for wave
vectors q = ±(φ, φ, 0) (upper panel) and q = ±(φ, φ, φ) (bottom
panel), as a function of the lattice size L. The results are at T = Tc

for each d indicated in the legends (valid also for the top panel).
Both axes are base-10-logarithmic. Dashed lines are only guides for
the eye while solid lines are linear fits to the data. The error bars are
smaller than the symbol sizes.

way with rotations around the z axis with a wave vector
q = ±(φ, φ, φ).

It is also remarkable that all curves in the bottom graph
of Fig. 15 follow a power law and are almost parallel to
each other. In fact, by the static structure factor definition
in Eq. (15), one can verify that S (φ, φ, φ) ≈ S0Lγ /ν when
T = Tc. Although the lattice sizes in this case are not as large
as those used in the susceptibility and specific heat peaks
analysis, we have additionally performed linear fits to all data
in the bottom panel of Fig. 15. The estimate from the average
is γ /ν = 1.9(1), in good agreement with the previous values
from the order parameter susceptibility of the last section (de-
spite the larger error due to the less statistics in this case).

The oscillations present in S (φ, φ, 0) as a function of L,
depicted in the top panel of Fig. 15, deserve more attention.
So in order to obtain extra insight about the S (q) behavior as
a function of q, φ and L, we defined the quantity M̃(q) =
‖∑L3

j=1 S je−iq·r j ‖/L3, analogously to an order parameter, al-
though assuming complex values (the two double-vertical
bars on the right hand side in the above equation represent
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the vector modulus). Then, the structure factor is given by
S (q) = L3|M̃(q)|2, where the vertical bars refer to the mod-
ulus of the complex M̃(q).

Considering the ground-state spin configuration, the struc-
ture factor for a lattice size L can be written in analytical
form,

S (q) = 1

2L3

3∏
j=1

({
sin[(φ + qj )L/2]

sin[(φ + q j )/2]

}2

+
{

sin[(φ − q j )L/2]

sin[(φ − q j )/2]

}2
)

, (19)

where the index j = 1, 2, 3 labels the x, y, and z wave-
vector components, respectively. In the case q = ±(φ, φ, 0),
Eq. (19) simplifies into

S (φ, φ, 0) = 1

2L3

{[
sin (Lφ)

sin φ

]4

+ L4

}[
sin (Lφ/2)

sin(φ/2)

]2

.

(20)

Figure 16 is a plot of the above structure factor for d = 0.5, 1,

and ∞ as a function of L, both quantities on logarithmic scale.
It is patent the similarity of the data at T = 0 with those
obtained at T = Tc depicted in the top panel of Fig. 15. Nev-
ertheless, here it becomes easier to understand the oscillations
as L changes, because the structure factor is zero whenever
sin(Lφ/2) = 0. One can still infer that one has a FSS behavior
for lattices that are commensurate with the pitch angle and
a different FSS for incommensurate lattices. This is clearly
seen for d = 1 and d = ∞, the latter one being valid for all
data because all lattice sizes are commensurate with the pitch
angle. However, for d = 0.5, none of the L values turn out
to be commensurate and the data do not follow any special
scaling.

FIG. 16. Peak values of the static structure factor S(q), for wave
vector q = ±(φ, φ, 0) as a function of lattice size L according to
Eq. (20). The results are at T = 0 for each d shown in the legend.
Both axes are base-10-logarithmic. Dashed lines are only guides to
the eyes.

Finally, for the wave vector q = ±(φ, φ, φ), Eq. (19) re-
sults in

S (φ, φ, φ) = 1

2L3

{[
sin (Lφ)

sin φ

]6

+ L6

}
, (21)

which does not have any zeros for L > 0 and increases
as L3.

F. Phase diagram

Still shorter simulations were done just to locate the tran-
sition temperature for further values of d . These transitions
have been estimated using cumulant crossings between lat-
tices L = 32 and L = 24 only, with SBC (FBC gives similar
estimates). Although such estimates are, in fact, underesti-
mated in comparison to that for the infinite system, the error in
the values of Tc are relatively small when viewed in the whole
temperature range under consideration. With this additional
data it is possible to have a good picture of the global phase
diagram in the T -d plane as depicted in Fig. 17.

The main figure shows the reduced temperature Tc(d )/T DM
c

as a function of d . With this definition, the asymptotic behav-
ior of Tc(d )/T DM

c , in the d = ∞ limit (given by the dashed

FIG. 17. Phase diagram in the temperature versus DM interac-
tion plane. The circles are the present results and the full lines are fits
to a hyperbolic function as described in the text. The dashed lines are
the slopes of the transition lines in the limit d = ∞. The main graph
shows the normalized transition temperature Tc(d )/T DM

c , where the
asymptote slope is 45◦. The top inset gives Tc(d ), where the asymp-
tote slope is ψ∞. The bottom inset shows the ratio Tc(d )/T̃c(d ). The
error bars are smaller than the symbol sizes.
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line), has a declivity of 45◦. The top inset shows Tc(d ) as
a function of d for comparison. In this case, the asymptotic
behavior of the transition line is such that tan ψ∞ = T DM

c .
It is well known that the XY model with DM interaction

has an exact hyperbolic expression for the critical tempera-
ture, as a function of DM interaction, that depends only on the
critical temperature for d = 0 [32,35]. To test whether such
behavior also applies to the Heisenberg model, we have per-
formed a fit of the ratio Tc(d )/T DM

c to a branch of a hyperbola
defined as

T̃c(d ) = T DM
c

√
r2 + d2, (22)

r = Tc(0)

T DM
c

, (23)

where Tc(0) is the critical temperature of the Heisenberg
model and r is the only adjustable parameter. The full line
in the upper inset in Fig. 17 is given by setting Tc(0) =
1.44293(5) and T DM

c = 1.55183(1) (see Table I), resulting in
r = 0.92982(3). The fit in the main graph, shown as a full
line, gives r = 0.92982(7). Naturally, the data do not follow
a hyperbolic function, as can be seen in the bottom inset. It
shows that the ratio Tc(d )/T̃c(d ) has a systematic deviation,
with the largest deviation around d ≈ 0.625 and asymptoti-
cally decreasing to unity as d tends to infinity. However, the
fitted line can give good estimates of the critical temperature
for any different values of the DM interaction d .

V. CONCLUDING REMARKS

The main results of the present Monte Carlo study of
the Heisenberg model with DM interaction are conveyed
in Table I. The first comparison is for the model with

d=0, where there are ample results in the literature for the
isotropic Heisenberg model from different techniques, in-
cluding experimental measurements of the critical exponents.
The transition temperature, in this case Tc = 1.44295(3), is
in excellent agreement with previous MC simulations, e.g.,
Tc = 1.442987(1) [48] and Tc = 1.44293(6) [51].

Unlike the critical temperature and critical exponents, the
fourth-order cumulant of the order parameter depends on
the boundary conditions. From an analysis of the universal
quantities given in Table I, it is also apparent that the critical
exponents along the transition line for d > 0 are different
from the isotropic Heisenberg model. However, as the ratio
of the critical exponents and the cumulants are the same, to
within the error bars, it is evident that weak universality holds
for the Heisenberg model with DM interaction. Moreover,
from a comparison of the exponents for d > 0 and those in the
literature for the XY model, it is evident that the Heisenberg
model with DM interaction is in the same weak universality
class as the XY model [19–21].

Additional numerical comparison to other MC simulations
as well as different approximation methods can be found in
Refs. [52,53].
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