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Analyzing the effect of cell rearrangement on Delta-Notch pattern formation
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The Delta-Notch system plays a vital role in many areas of biology and typically forms a salt and pepper
pattern in which cells strongly expressing Delta and cells strongly expressing Notch are alternately aligned via
lateral inhibition. In this study, we consider cell rearrangement events, such as cell mixing and proliferation, that
alter the spatial structure itself and affect the pattern dynamics. We model cell rearrangement events by a Poisson
process and analyze the model while preserving the discrete properties of the spatial structure. We investigate
the effects of the intermittent perturbations arising from these cell rearrangement events on the discrete spatial
structure itself in the context of pattern formation and by using an analytical approach, coupled with numerical
simulation. We find that the homogeneous expression pattern is stabilized if the frequency of cell rearrangement
events is sufficiently large. We analytically obtain the balanced frequencies of the cell rearrangement events
where the decrease of the pattern amplitude, as a result of cell rearrangement, is balanced by the increase in
amplitude due to the Delta-Notch interaction dynamics. Our framework, while applied here to the specific case
of the Delta-Notch system, is applicable more widely to other pattern formation mechanisms.
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I. INTRODUCTION

Discrete cell models can provide different pattern dynam-
ics to those arising from continuous cell density models.
Because living tissue is made up of cells, which act as the
smallest discrete units in space, pattern formation on discrete
spatial structures is observed in the context of biological pat-
tern formation on a cellular scale. We study the effects of
typical perturbations on the discrete spatial structure itself—
flipping and duplication of the lattice—on pattern dynamics
using analytical methods.

As an example of a mechanism that generates periodic
pattern on a cellular scale, we will consider the Delta-Notch
system. The Delta-Notch system is a well-studied cell-cell
communication system and plays a critical role in many
developmental processes [1–15]. Delta and Notch are, respec-
tively, cell surface ligands and receptors. Delta expression
in the neighborhood of a cell increases Notch expression
in that cell which, in turn, decreases its Delta expression—
a process known as “lateral inhibition.” As a result, cells
strongly expressing Delta and cells strongly expressing Notch
are aligned alternately (the so-called “salt and pepper”
pattern) [5].

Collier et al. [2] constructed the first mathematical model
for the Delta-Notch system, which consisted of a spatially
discrete ordinary differential equation system which was then
analyzed, and necessary and sufficient conditions for a salt
and pepper pattern were derived. To account for stochas-
ticity in the cell-cell interactions and gene expression in
signal transduction [16–18], a number of subsequent theoret-
ical studies have incorporated stochasticity and revealed that,

while low-intensity noise contributes to fine-grained pattern
formation, high-intensity noise disrupts the salt and pepper
pattern [16,19,20].

However, little research has been conducted to investi-
gate the effect of positional perturbations arising from cell
mixing and proliferation, despite these phenomena being
generally observed [21–25]. Therefore, cell rearrangement
by cell mixing and proliferation should significantly affect
Delta-Notch pattern formation since the cells of interacting
neighbors are changing. Germano et al. [26] have used a
computational model to show that excessive cell turnover
homogenizes Delta expression, while Stepanova et al. [27]
developed a computational model to investigate how vascular
structures are rearranged in response to the VEGF-Delta-
Notch system. However, to analytically understand the effect
of cell rearrangement on pattern formation, a simpler model is
required.

In this study, we provide a framework to analytically eval-
uate the effect of stochastic and spatial perturbations arising
from cell mixing and proliferation. We construct a simple
stochastic differential equation model that incorporates Delta-
Notch interaction and cell rearrangement events (cell mixing
and proliferation) in one spatial dimension. Our numerical
simulations show that the effect of cell rearrangement is to
stabilize the homogeneous steady state and we provide a
framework to analytically evaluate the stability of the pat-
tern dynamics. Our analytical framework is consistent with
numerical calculations and provides insight into how model
parameters and frequencies of flipping or proliferation bal-
ance in the context of pattern formation.
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FIG. 1. (a) Schematic of the Delta-Notch interaction in the Collier model. Notch expression inhibits Delta expression, Delta expression
promotes Notch expression in adjacent cells, and Delta and Notch themselves naturally decay. (b) Schematic of the flip event in the cell mixing
model and the matrix Aj in (4). The flip event occurs according to the Poisson process with intensity p in each pair of cells. (c) Schematic of
the duplication event in the cell proliferation model and the matrix B j in (6). The duplication event occurs according to the Poisson process
with intensity q in each cell.

II. METHODS AND MODELS

A. Numerical simulations

The numerical simulations were performed using MATH-
EMATICA (Wolfram) and JULIA (MIT) and we used periodic
boundary conditions and an explicit Euler scheme.

For simulation of the Collier model (1), we used the
following conditions, unless otherwise stated in the figure cap-
tions. Initial cell number n = 100, time step �t = 0.001,
duration t = 1000 (iteration 1 000 000), and parameter set
(v, β, h, r) = (1, 100, 4, 40). Initial conditions are Dx(0) =
D0 + κ and Nx(0) = N0 + κ for cell x. Here D0 and N0 are
the spatially homogeneous steady state values (Appendix A)
and κ is an independent random variable from the uniform
distribution in [−0.0001, 0.0001].

To incorporate cell flipping and proliferation in the Delta-
Notch model (1), we assumed that these events occur
following a Poisson process with rates p and q, respectively.

B. Classical Delta-Notch model

To model the effect of cell mixing or proliferation on Delta-
Notch pattern formation, we started with a version of the
Collier model [2]. In this model, the Delta and Notch activities
of a cell x (Dx and Nx, respectively) in a one-dimensional cell
line were modeled [Fig. 1(a)] as below:

dDx

dt
= v

(
1

1 + βNx
h

− Dx

)
,

dNx

dt
= r (Dx−1 + Dx+1)

1 + r (Dx−1 + Dx+1)
− Nx. (1)

Here, the parameter v denotes the reaction speed of Delta
dynamics relative to that of Notch. The parameters h and β de-
note the Hill coefficient and the intensity of Delta suppression
by Notch, respectively. As the Delta activity in neighboring
cells (Dx−1 + Dx+1) increases, the activation of the Notch
activity also increases, reaching a saturation level. The param-
eter r is a measure of the intensity of Notch activation by the
Delta presented in neighboring cells. The number of cells is n
and the position of the cell is x (x ∈ N, 1 � x � n).

We used a one-dimensional model because it is tractable
analytically and the distinct salt and pepper pattern of Delta-
Notch expression has been reported in endothelial cells which
are aligned one dimensionally [8,13,14]. We assume that the
number of cells is sufficiently large so that we can use periodic
boundary conditions. This is because the effect of boundary

conditions is confined near the boundary and the global pat-
tern we focused on is minimally affected by the precise form
of the boundary conditions if the system size is large. We con-
firmed, using numerical simulation, that the main results of
this study are robust to different imposed boundary conditions
(results not shown).

In the Collier model we use (1), whether or not a salt
and pepper pattern emerges depends on the model parameters
(v, β, h, r). The necessary and sufficient conditions for salt
and pepper pattern formation are obtained by performing a
standard linear stability analysis (Appendix A), requiring that
the maximum eigenvalue be greater than zero:

λmax = −(a + d ) +
√

(a + d )2 − 4(ad − 2bα)

2
> 0, (2)

where a = v, b = [βhv(N0)h−1]/[1 + β(N0)h]2, d = 1, α =
r/[(1 + 2rD0)2], and (D0, N0) is the spatially homogeneous
steady state of the Collier model (1). For example, the pa-
rameter β, which indicates the intensity of Delta suppression
by Notch, broadens the region where λ(θ ) is positive and
increases λmax (Appendix A and Fig. S1 [28]). Based on this
analysis, we proceeded to investigate how pattern formation is
altered by cell mixing and proliferation.

C. Cell mixing model

To introduce the effect of cell mixing on the Collier model
(1), we modeled cell mixing as a series of flips between
neighboring cells. We made several assumptions as follows
[Fig. 1(b)].

(M1) The positions of the neighboring cells are randomly
exchanged by cell flips in a single step.

(M2) Flips occur according to a Poisson process with in-
tensity p in each pair of cells.

Let the vertical vectors D and N, respectively, denote Delta
and Notch expression in each cell as below:

D = (D1, D2, . . . , Dx, . . . , Dn)T,

N = (N1, N2, . . . , Nx, . . . , Nn)T, (3)

and a flip between cells x = j and x = j + 1 is described by
multiplication with the n × n matrix Aj , which is generated by
swapping the jth and ( j + 1)th rows of the identity matrix as
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below:

{
Aj
}

k,m =

⎧⎪⎪⎨
⎪⎪⎩

1 if (k = m and k �= j, j + 1)
or (k = j and m = j + 1)
or (k = j + 1 and m = j),

0 otherwise,

(4)

where j + 1 is regarded as 1 if j = n (periodic boundary
condition). The effect of cell flipping was introduced by
stochastically multiplying the matrix Aj by D and N. Hence
our cell mixing model is defined by the system of stochastic
differential equations as below:

dD = f (D, N)dt +
n∑

j=1

(Aj − I ) D dLp, j
t ,

dN = g(D, N)dt +
n∑

j=1

(Aj − I ) N dLp, j
t , (5)

where the functions f and g are the reaction terms of the
Collier model (1), the matrix I denotes the identity matrix,
and Lp, j

t is the Poisson process with intensity p, which corre-
sponds to the flip between cells j and j + 1.

D. Cell proliferation model

To introduce the effect of cell proliferation on the Collier
model (1), we modeled cell proliferation as the duplica-
tion of a cell. We also made several assumptions as follows
[Fig. 1(c)].

(P1) The duplication process occurs in a single step.
(P2) The new cell is placed to the right of the original cell

and inherits the same levels of Delta and Notch of the original
cell.

(P3) The duplication process occurs according to the Pois-
son process with intensity q for each cell.

Assumptions (P2) and (P3) implicitly assume, respectively,
that Delta and Notch activities are determined by their con-
centrations [29], and cell proliferation follows a memoryless
stochastic process [30]. We denote Delta and Notch ex-
pression by the vertical vectors Dn = (D1, D2, . . . , Dn)T and
Nn = (N1, N2, . . . , Nn)T, respectively. Note that the number
of cells (the dimension of the vectors Dn and Nn) n increases
with time. Under these assumptions, duplication of cell j is
accounted for by defining the (n + 1) × n matrix B j , which is
generated by duplicating the jth row of the identity matrix as
below:

{
B j
}

k,m
=
⎧⎨
⎩

1 if (k = m and k � j)
or (k = m + 1 and k � j),

0 otherwise,
(6)

and stochastically multiplying this matrix by Dn and Nn, re-
spectively:

if dLq, j
t = 0,

{
Dn(t + dt ) = Dn(t ) + f (Dn, Nn)dt,
Nn(t + dt ) = Nn(t ) + g(Dn, Nn)dt,

if dLq, j
t = 1,

{
Dn+1(t + dt ) = B j[Dn(t ) + f (Dn, Nn)dt],
Nn+1(t + dt ) = B j[Nn(t ) + g(Dn, Nn)dt].

(7)

Note that n will increase with time according to the Poisson
process, so the size of B j will also increase with time.

III. RESULTS

A. Numerical simulations with cell rearrangement

We set the parameters (v, β, h, r) such that linear anal-
ysis predicts the salt and pepper pattern when there is no
cell rearrangement (without cell mixing or proliferation) and
we simulated the model [Fig. 2(a)]. We then included cell
rearrangement and found that the heterogeneity of the Delta-
Notch pattern was decreased by cell rearrangement and the
homogeneous steady state became stable again for a suffi-
ciently high level of cell rearrangement [Figs. 2(b) and 2(c)].
More precisely, when the flip frequency p = 0.001, the salt
and pepper pattern was largely maintained. However, for in-
creasing values of p, the amplitude of the pattern became
smaller. When p was sufficiently large, the amplitude was
almost zero for the whole region and the system relaxed to the
spatially homogeneous steady state [Fig. 2(b)]. In addition, as
p increases, the expression pattern shows an envelope struc-
ture, in which the amplitude of the periodic pattern follows
a longer pattern that oscillates. Similar results were obtained
with the cell proliferation model [Fig. 2(c)]. With increasing
proliferation frequency q, the amplitude of the pattern became
smaller and, finally, the system settled back to a homogeneous
steady state. These results are robust to 100 different runs of
numerical simulations for each parameter set. Corresponding
results are also obtained with different values of β and r
(Fig. S2 and Fig. S3 [28]), suggesting that the stabilization
of the homogeneous steady state by cell rearrangement events
is a robust phenomenon.

To quantify the heterogeneity of the expression pattern, we
introduce the heterogeneity function, H (t ), as the variance of
the Delta expression:

H (t ) = 1

n

n∑
x=1

[Dx(t ) − 〈D(t )〉]2 = 1

n

n∑
x=1

[Dx(t )2 − 〈D(t )〉2],

(8)

where

〈D(t )〉 = 1

n

n∑
x=1

Dx(t ). (9)

If the salt and pepper pattern is completely formed, then H (t )
is close to the squared value of the amplitude of the pattern. If
Delta expression is spatially homogeneous at the steady state,
then H (t ) = 0.

In both models, at the onset of the simulation, H (t ) de-
creases and then either increases or still decreases depending
on the value of p in the cell mixing model or the value of q
in the cell proliferation model (Figs. S4 and S5 [28]). This is
because, at the onset, the initial random state is smoothened
by the Delta-Notch dynamics. As we are interested in pattern
growth after a sufficient time has elapsed, we define H0 as the
minimum heterogeneity in the time evolution of the no cell
rearrangement model (Fig. S4 and Table S1 [28]):

H0 = min[H (t )]. (10)

Then we define the normalized heterogeneity H∗(t ) as
H∗(t ) = H (t )/H0, which is plotted in Fig. 3. Figure 3 shows
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FIG. 2. Numerical simulations of the standard Delta-Notch model (1), the cell mixing model (5), and the cell proliferation model (7).
(a) Standard model (no cell rearrangement). The red line represents Notch expression and the black line represents Delta expression. Delta
and Notch are alternately expressed and the classical salt and pepper pattern emerges. (b) Cell mixing model (5). Numerical simulations are
performed for different flipping frequencies p = 0.001, 0.003, 0.006. (c) Cell proliferation model (7). Numerical simulations are performed
for different proliferation frequencies q = 0.001, 0.003, 0.006. The expression patterns of the first 100 cells are shown. Initial cell number
n = 100, time step �t = 0.01, duration t = 1000, and (v, β, h, r) = (1, 100, 4, 40). Initial condition, Dx (0) = D0 + κx and Nx (0) = N0 + κx ,
where D0 and N0 are the spatially homogeneous steady state values (Appendix A) and κx is a random variable from the uniform distribution in
[−0.02, 0.02].

that H∗(t ) switches between increasing and decreasing de-
pending on the values of p and q. In the cell mixing model, it
appears that H∗(t ) increases for p � 0.005 and decreases for
p > 0.005 [Fig. 3(a) and Fig. S5(A) [28]]. In the cell prolif-
eration model, H∗(t ) increases for q � 0.0045 and decreases
for q > 0.0045 [Fig. 3(b) and Fig. S5(B) [28]]. These results
suggest that there exist balanced frequencies p∗ and q∗ for
which the attenuation of the pattern by cell rearrangement and
its formation by the Delta-Notch dynamics are balanced.

We numerically estimated the balanced frequencies and the
growth rate of the heterogeneity. For the balanced frequencies
p∗ and q∗, we estimated the intersection points of the plot of
ln H∗(t ) as a function of p and q and the plot of ln H∗(t ) =
0. We performed linear regression for the data points whose
value of log10 H∗ ∈ [−8, 4] in Fig. 3 and estimated p∗ and q∗
as the intersection points of the fitted lines and the function
ln H∗(t ) = 0 [Figs. 4(c) and 4(f), black dots]. For the growth
rate of the heterogeneity, we estimated the slope of the line
that was fitted to the plot of ln H∗(t ) against t . Similarly, we
performed linear regression for the data points in the range
log10 H∗ ∈ [−8, 4] in Fig. S7 [28] and estimated y and j as
the slopes of the fitted lines [Figs. 4(a) and 4(d), black dots].

B. Analysis of the cell rearrangement models

To quantify the effects of cell rearrangement (mixing and
proliferation), we analyzed the stability of the pattern dynam-
ics and the balanced frequencies p∗ and q∗. The “tug of war”

of the cell rearrangement and the Delta-Notch dynamics was
represented as the growth or attenuation of the heterogeneity
H (t ). Therefore, we focused on the effect of cell rearrange-
ment on H (t ).

The heterogeneity H (t ) can also be calculated from the
power spectrum of the Delta expression pattern. The power
spectrum Pk of the Delta expression pattern is the squared
absolute value of the Fourier coefficient δk of Delta expression
(Appendix A), so Pk can be calculated as

Pk (t ) = |δk (t )|2 =
∣∣∣∣∣1n

n∑
x=1

Dx(t )e
−i2πkx

n

∣∣∣∣∣
2

. (11)

Note that k takes integer values from 0 to n − 1 and n
increases with time in the cell proliferation model. From
Parseval’s theorem,

n∑
x=1

Dx(t )2 =
n−1∑
k=0

Pk (t ), (12)

and, from (11),

〈Dx(t )〉2 =
(

1

n

n∑
x=1

Dx(t )

)2

= P0(t ). (13)
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(a)

(b)

FIG. 3. Log plots of the normalized heterogeneity of the pattern
H∗(t ) against the frequencies of the cell rearrangement events for t =
500 and 1000. The black dashed line represents the plot of H∗(t ) = 1
and the circles and triangles represent H∗(1000) and H∗(500), re-
spectively. (a) In the cell mixing model, H∗(1000) > H∗(500) >

1 with p � 0.005 (red horizontal stripe region) and H∗(1000) <

H∗(500) < 1 with p > 0.005 (blue vertical stripe region). (b) In the
cell proliferation model, similar inequalities hold and the threshold
value is q = 0.0045. We calculated the heterogeneity at 21 different
frequencies of p and q, which are taken in the range 0 to 0.01 at equal
intervals of 0.0005 in each model. The heterogeneity H∗(t ) shown in
this figure was calculated by taking the average of H (t ) over 400
different simulation runs, and then normalized by H0, for each p and
q. Other conditions are as in Fig. 2. Initial conditions are randomly
determined from the same distribution as in Fig. 2 for each of the
runs.

By substituting (12) and (13) into (8), H (t ) was calculated as
below:

H (t ) = 1

n

n−1∑
k=1

Pk (t ). (14)

Therefore, H (t ) is proportional to the sum of squares of the
amplitudes of all wavenumber components in the pattern.

The balanced frequencies p∗ and q∗ are independent of
the definition of the heterogeneity H (t ). If we adopted the
variance of the Notch expression instead of the Delta ex-
pression, then the dispersion relation and the effect of the
cell rearrangement events Aj and B j are the same as for the
Delta expression and we obtained the same p∗ and q∗ as
before. In addition, we can obtain the same p∗ and q∗ values
if we defined the heterogeneity by the average of the squared
values. For example, if we adopt [
(Dx − Dx+1)2]/n as the
heterogeneity, then we obtain the same p∗ and q∗ since this

value is also calculated from the linear summation of the
power spectrum (Fig. S6 [28]). We now proceed to analyze
the stability of the power spectrum Pk (t ) in the cell mixing
and proliferation models.

1. Cell mixing model

First, we will transform the cell mixing model (5) into the
corresponding system of stochastic differential equations that
represent the time evolution of the Fourier coefficients δk .
To find the balanced frequency p∗ and the onset of pattern
formation, we assume that H (t ) is small since we set the
initial condition to be a small perturbation about the homo-
geneous steady state, so the reaction terms f (·) and g(·) can
be regarded as linear operators since Dx ∼ D0 and Nx ∼ N0.
Therefore, the effect of the Delta-Notch dynamics on the
Fourier coefficients δk of Dx is described by the diagonal
matrix � from the linear stability analysis (Appendix A) as
below:

� = diag(λ0, λ1, . . . , λn−1), (15)

where

λk = −(a + d ) +
√

(a + d )2 − 4[ad + 2bα cos (2πk/n)]

2
.

(16)

The effect on the Fourier coefficients δk of a cell flip is
given by the n × n matrix C j :

C j = FAjF−1, (17)

where F is the discrete Fourier transform matrix. The compo-
nents of the matrices F and F−1 are given as below:

{F }l,m = 1√
n

e−i2π (l−1)(m−1)/n, (18)

{F−1}l,m = 1√
n

ei2π (l−1)(m−1)/n. (19)

Therefore, the time evolution of the Fourier coefficients δ can
be described by

dδ = �δ dt +
n∑

j=1

(C j − I )δ dLp, j
t , (20)

where δ = [δ0(t ), δ1(t ), . . . , δk (t ), . . . , δn−1(t )]T.
Furthermore, we obtain the expected time evolution of the

power spectrum by calculating the average of the effect of the
cell flip on the power spectrum for j (Appendix B) as below:

dP = 2 Re[�]P dt + W P dLpn
t . (21)

Here P = [P0(t ), P1(t ), . . . , Pk (t ), . . . , Pn−1(t )]T, Lpn
t is the

Poisson process with intensity pn, and the components of the
matrix W are given as below:

{W }l,m =
⎧⎨
⎩

− 8
n sin2 π (l−1)

n + ( 4
n sin2 π (l−1)

n

)2
(l = m),(

4
n sin π (l−1)

n sin π (m−1)
n

)2
(otherwise).

(22)

Both the average and variance of the Poisson process Lpn
t

are pnt , so those of Lpn
t /n are pt and pt/n, respectively. There-

fore, when n is sufficiently large, dLpn
t /n can be approximated
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(c)

(f)

(a)

(d)

(b)

(e)

FIG. 4. Comparison between the analytical and numerical results. (a) The red line and the black dots represent the maximum eigenvalue y
of the matrix Yp in (23) and the growth rate d ln H (t )/dt estimated from Fig. S5(A) [28], respectively. (b) Components P∗

k of the corresponding
eigenvector P∗ normalized with the maximum eigenvalue of the matrix Yp with n = 1000. (c) Balanced frequencies p∗ plotted against the
parameter β in the Collier model (1). The blue solid line represents the values of p such that the maximum eigenvalue of Yp in (23) is zero,
the red dashed line represents p∗ derived from (29), and the black dots represent the values of p∗ that were estimated from Fig. 3(a). (d) The
red line and the black dots represent the maximum eigenvalue of the matrix Jq in (39) and the growth rate d ln H (t )/dt estimated from
Fig. S5(B) [28], respectively. (e) Components P∗

k of the corresponding eigenvector P∗
n normalized with the maximum eigenvalue of the matrix

Jq with n = 1000. (f) Balanced frequencies q∗ plotted against the parameter β. The blue line represents the value of q such that the maximum
eigenvalue of Jq in (39) is zero and the black dots represent the values of q∗ that were estimated from Fig. 3(b), respectively. The numerically
estimated growth rate d ln H (t )/dt [black dots in (a) and (d)] was calculated from the slope of the lines that were fitted to the plot of ln H (t )
against t (Fig. S5 [28]). The numerically estimated balanced frequencies [black dots in (c) and (f)] were estimated as the intersection points of
the plot of ln H∗(t ) as a function of p and q and the plot of ln H∗(t ) = 0 in Fig. 3, respectively.

by pdt and Eq. (21) is approximated by

d

dt
P 	 YpP, (23)

where

Yp = 2 Re[�] + pnW. (24)

Therefore, by using the maximum eigenvalue and the cor-
responding eigenvector of the matrix Yp, we can derive the
expected pattern dynamics.

If y is the maximum eigenvalue of Yp and P∗ =
(P∗

0 , P∗
1 , . . . , P∗

n−1)T is the corresponding eigenvector, then
P ∼ eyt P∗ for values of t in a range sufficiently large so
that other eigenvectors no longer affect the power spectrum,
but not so large for nonlinear effects to come into play. The
scaling law H (t ) ∼ eyt also holds, since H (t ) is a linear sum-
mation of the power spectrum Pk (t ). Therefore, the maximum
eigenvalue y corresponds to the growth rate of the hetero-
geneity d ln H (t )/dt . Figure 4(a) shows that the value of y
derived from Eq. (23) agrees with the numerically estimated
growth rate d ln H (t )/dt and Fig. 4(b) shows how the shape
of the corresponding eigenvector P∗ depends on p. Note that
the effect of the Delta-Notch interaction 2 Re[�] on Pk is
determined by the value of 2πk/n, so we plot P∗

k against
2πk/n in Fig. 4(b).

To obtain the balanced frequency p∗, we used Newton’s
method to derive the value of p such that the maximum eigen-
value of Yp is zero. The values of p∗ obtained in this way are in
very good agreement with the corresponding values estimated
from the numerical simulations of (5) for varying β [Figs. 4(c)
and S7 [28]] and r (Fig. S8 [28]). In addition, the values of y
and p∗ obtained in Figs. 4(a) and 4(c) are almost identical for
n � 100 [Figs. S9(A) and S9(B) [28]].

Furthermore, we obtain the growth rate d ln H (t )/dt and
the balanced frequency p∗ as n → ∞ as solutions of the
integral equations (Supplemental text A [28]). They are also in
very good agreement with the numerically estimated values.

We can derive an approximation to the balanced frequency
p∗ from the linear stability analysis of the spatially uniform
steady state in the deterministic system that is obtained by
regarding the effect of cell mixing as a diffusion process:

dDx

dt
= v

(
1

1 + βNx
h

− Dx

)
+ p(Dx−1 + Dx+1 − 2Dx ),

dNx

dt
= r(Dx−1 + Dx+1)

1 + r(Dx−1 + Dx+1)
− Nx + p(Nx−1 + Nx+1 − 2Nx ).

(25)

System (25) has the same spatially homogeneous steady state
as in (1), so we can linearize the system as in Appendix A and
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obtain the Jacobian matrix:

M̃k =
(

−a − 4p sin2(πk/n) −b

2α cos(2πk/n) −d − 4p sin2(πk/n)

)
.

(26)

The eigenvalue λ̃k with the larger real part, obtained from the
matrix M̃k , is

λ̃k = λk − 4p sin2 πk

n
, (27)

where λk is given by (A9), so the time evolution of the power
spectrum can be approximated by

d

dt
Pk =

(
2 Re[λk] − 8p sin2 πk

n

)
Pk . (28)

This equation corresponds to the system that is obtained by
ignoring the nondiagonal components of the matrix Yp in (23).
From (28), the balanced frequency p∗ is approximated as p
such that

max
θ∈[0,2π )

[
Re[λ(θ )] − 4p sin2 θ

2

]
= 0. (29)

When the range of θ for which λ(θ ) is positive is suf-
ficiently narrow, the values of Pk , except around k = n/2,
quickly decay. Hence the nondiagonal components of the ma-
trix Yp are ignorable and we can approximate the effect of cell
mixing as a diffusion of the Delta and Notch activities.

Figure 4(c) shows that the estimation in Eq. (29) is a good
approximation for 95 < β < 120. If λ(θ ) is positive only in
the region that is very close to θ = π , then we can obtain the
simpler form of (29):

p∗ = λmax/4. (30)

Here λmax is given by Eq. (2) and we used the approximation
sin2(θ/2) 	 1 in the region that is close to θ = π . Consistent
with (30), λmax was 0.02 and the balanced frequency p∗ was
estimated around 0.005 for the conditions used in Fig. 3.

2. Cell proliferation model

The cell proliferation model (7) was also analytically
transformed into the corresponding system of stochastic dif-
ferential equations that represent the time evolution of δk . The

effect of a cell proliferation event, which increases the cell
number n to n + 1, on the Fourier coefficients δn, is given as
below:

Ĉ j = F̂B jF
−1, (31)

where F̂ is a square (n + 1) × (n + 1) matrix, F−1 is the
square (n × n) matrix defined in (19), and Bj is the (n + 1) ×
n matrix given by (6). The matrix F̂ is defined by

{
F̂
}

l,m = 1√
n + 1

e−i2π (l−1)(m−1)/(n+1). (32)

Therefore, the time evolution of δn(t ) is given as below:

δn(t + dt ) = e� dtδn(t ) if dLq, j
t = 0,

δn+1(t + dt ) = Ĉ je� dtδn(t ) if dLq, j
t = 1. (33)

By calculating the average of the effect of the cell prolif-
eration event for j, the expected time evolution of the power
spectrum Pn(t ) is given (Appendix C) by

Pn(t + dt ) = e2 Re[�]dt Pn(t ) if dLqn
t = 0,

Pn+1(t + dt ) = S e2 Re[�]dt Pn(t ) if dLqn
t = 1, (34)

where the components of the matrix S are given by

{S}l,m =
⎧⎨
⎩

(n + 1)/n (if l = m = 1),

1
n(n+1)

sin2 πm
n

sin2( π l
n+1 − πm

n )
(otherwise).

(35)

Since the matrix S is nonsquare, the stability of the ho-
mogeneous steady state cannot be determined as in the cell
mixing model. Hence we approximate the matrix S by a
square matrix, as below.

The power spectrum Pn is represented by the superpo-
sition of the cosine waves from the symmetry Pk = Pn−k .
By assuming that the shortest wavelength component of SPn

is negligible, the matrix S is approximated by the square
matrix 
 (given below) and Eq. (34) is approximated by
(Appendix C)

dPn 	 2 Re[�]Pndt + (
 − I )PndLqn
t , (36)

where I is the identity matrix. When n is even, the components
of the matrix 
 are given by

{
}l,m =2

n

n/2∑
k=2

cos
2π (m − 1)(k − 1)

n

[
k − 1

n + 1
cos

2π (l − 1)(k − 2)

n
+
(

1 − k − 1

n + 1

)
cos

2π (l − 1)(k − 1)

n

]

+ 1

n

[
1 + (−1)m+k−2

(
1 − n

n + 1
sin2 π (m − 1)

n

)]
(37)

and when n is odd

{
}l,m =2

n

(n+1)/2∑
k=2

cos
2π (m − 1)(k − 1)

n

[
k − 1

n + 1
cos

2π (l − 1)(k − 2)

n
+
(

1 − k − 1

n + 1

)
cos

2π (l − 1)(k − 1)

n

]
+ 1

n
. (38)

As in the cell mixing model, assuming n is sufficiently large, Lqn
t /n is approximated by qt as in the cell mixing model, so the

time evolution of Pn in (36) is approximated by

d

dt
Pn 	 JqPn, (39)
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where

Jq = 2 Re[�] + qn(
 − I ). (40)

Therefore, by using the maximum eigenvalue and the corre-
sponding eigenvector of the matrix Jq, we can approximately
derive the expected pattern dynamics.

Figure 4(d) shows that the maximum eigenvalue of the
matrix Jq is in very good agreement with the numerically
estimated growth rate d ln H (t )/dt and Fig. 4(e) shows how
the shape of the corresponding eigenvector P∗

n depends on q.
To obtain the balanced frequency q∗, we used Newton’s

method to derive the value of q such that the maximum eigen-
value of Jq is zero. Figure 4(f) shows that the values of q∗
obtained in this way are in very good agreement with the
numerically estimated q∗. The values obtained in Figs. 4(d)
and 4(f) are almost identical for n � 100 (Fig. S9 [28]), al-
though the definition of the matrix 
 is different depending
on whether n is odd or even.

3. Eigenvalue problems corresponding to (23)
and (39) explain the pattern dynamics

In the above analysis, we have shown that the pattern
dynamics of the cell mixing model and the cell proliferation
model can be captured by solving for the maximum eigen-
value problem of the matrices Yp (24) and Jq (40), respectively,
and yield results that agree well with our numerical simula-
tions of the full model.

First, the maximum eigenvalues of Yp and Jq capture the
growth or attenuation rate of the heterogeneity of the pattern.
Figures 4(a) and 4(d) show that the exponents are consis-
tent with the maximum eigenvalue y and j, respectively.
Therefore, the balanced frequencies p∗ and q∗ are derived
as the frequencies that make y = 0 and j = 0, respectively
[Figs. 4(c), 4(f), and Fig. S8].

Second, the maximum eigenvalues y and j also explain
the time for the pattern to be established. Figures S10(A)
and (C) [28] show that the time required for H (t ) to reach
a saturated value extends as p and q increase. Here, we define
the characteristic time t∗ as the time required for H∗(t ) to
reach H∗(10000)/e and find that the values of yt∗ and jt∗
for each p and q are within an error margin of 8.2% and
7.3%, respectively [Figs. S10(B) and S10(D) [28]]. Therefore,
cell mixing and cell proliferation extend the time required for
pattern establishment, as t∗ ∼ 1/y and t∗ ∼ 1/ j, respectively.

In addition, the eigenvectors corresponding to y and j,
shown in Figs. 4(b) and 4(e), explain the pattern envelope in
Fig. 2. Figure 4 shows that, in the model that includes only
the Delta-Notch interaction, the eigenvector corresponding to
the maximum eigenvalue has nonzero component only for
k = n/2. On the other hand, in the model that includes cell
mixing and proliferation, the eigenvector takes nonzero values
for several wave numbers. When several wavelength compo-
nents are mixed at a similar scale, the corresponding envelope
pattern structure is generated.

Although cell mixing and proliferation similarly affect the
pattern dynamics as discussed above, their individual effects
on the power spectrum are qualitatively different. We per-
formed numerical simulations of the model including only one
of the processes (cell mixing, cell proliferation), without the

Delta-Notch interaction and setting the salt and pepper pattern
as the initial state. The results show that cell mixing, unsur-
prisingly, “scrambles” the pattern and the power spectrum is
uniformly distributed, while cell proliferation elongates the
periodic length of the pattern and shifts the power spectrum
to the long-wavelength region (Fig. S11 [28]). This is because
both effects are regarded as the redistribution of the power
spectrum in frequency space since the determinants of W
and 
 in Eqs. (22), and (37) and (38), respectively, are 1.
Their eigenvectors, corresponding to the maximum eigenval-
ues, are shown in Fig. S11(E) [28]. The components of the
eigenvector of W are all equal to each other and those of 


have only one nonzero component for k = 0. These results
mean that cell mixing smoothens the power spectrum so that it
becomes uniformly distributed, while cell proliferation shifts
the distribution of the power spectrum to the long-wavelength
region. These differences correspond, in the absence of cell-
cell interaction, to the scrambling of existing patterns due to
cell mixing and elongation of an existing pattern due to cell
proliferation. However, when they are incorporated into the
Delta-Notch model, the pattern dynamics are dominated by
the interaction between the increasing power spectrum around
k = n/2 by Delta-Notch interaction and its redistribution by
cell rearrangement. The pattern dynamics in the cell mixing
and proliferation models become similar.

Based on the above discussion, the pattern dynamics of the
Delta-Notch interaction with cell rearrangement events results
in the growth and redistribution of the power spectrum. In the
model that includes only Delta-Notch interaction, the power
spectrum around k = n/2 grows according to the dispersion
relation, while the rest of the spectrum decays (Appendix A).
As a result, the power spectrum finally concentrates around
k = n/2, which corresponds to the salt and pepper pattern.
However, when cell mixing and proliferation are introduced,
the power spectrum around k = n/2 is distributed to other
regions and undergoes attenuation. If the attenuation of the
redistributed power spectrum exceeds the growth of the power
spectrum around k = n/2, then the sum of the power spectrum
decreases, which means that the homogeneous steady state
is stabilized. The cell flip and proliferation frequency at the
balanced point is the balanced frequency p∗ and q∗, respec-
tively. Note that cell mixing and proliferation themselves do
not stabilize the homogeneous steady state, but require the
attenuation of the redistributed power spectrum due to the
Delta-Notch interaction. Therefore, if the Delta and Notch
activities are bistable without spatial interactions, as reported
by Formosa-Jordan et al. [31], then the redistributed power
spectrum is not attenuated. Hence the pattern is not homoge-
nized, only disturbed.

IV. DISCUSSION

This paper provides a framework to analytically eval-
uate the effect on Delta-Notch pattern formation of cell
rearrangement arising from migration or proliferation in a
one-dimensional line of cells. We model cell rearrangement
events as occurring intermittently and randomly in a dis-
crete spatial linear structure. We modeled the intermittency
of cell rearrangement events by a jump process and analyzed
the model while maintaining the discreteness of the spatial
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structure by considering the time evolution of the power spec-
trum. In our framework, the stochastic and intermittent effects
of cell rearrangement were approximated by the deterministic
effects on the power spectrum. Accordingly, the instabili-
ties of the pattern dynamics were analyzed by solving the
maximum eigenvalue problem of the resultant systems (23)
and (39).

In endothelial cells within the retinal vasculature, the cells
align in a one-dimensional array and Delta-Notch pattern
formation [8,13,14], cell mixing and proliferation [23,24,32]
occur. The expression pattern of Delta-like ligand 4 (Dll4)
mRNA is alternating in arteries, and homogeneous in veins
[Fig. S12(A)] [8,13,14]. Our preliminary experiments indi-
cated that endothelial cell motility and proliferation rates are
higher in veins than in arteries (Supplemental text B and
Fig. S12 [28]). This relationship has also been reported in
the developing zebrafish vasculature [33,34]. Our theoretical
predictions regarding the relationship between the frequency
of cell rearrangement events and expression patterns are con-
sistent with these experimental findings.

In this study, we assumed that the daughter cells inherit
the same activity of Delta and Notch in the cell proliferation
model. However, if we adopt an asymmetric inheritance rule,
we obtain different pattern dynamics. Figure S13 [28] shows
how the magnitude of the perturbation to the expression in
daughter cells caused by asymmetric cell division affects het-
erogeneity in the cell proliferation model (7). Although the
steady value of H (t ) decreases with q as in the symmet-
ric inheritance rule case, the time required to establish the
pattern decreases and the pattern maintains a certain degree
of heterogeneity even for large q and does not converge to
the homogeneous steady state [Figs. S13(B) and S13(C)]. It
should be noted, however, that the results exhibited for the
symmetric inheritance rule are similar to those for the asym-
metric inheritance rule, for small perturbations [Fig. S13(D)].

Our analysis can be applied to a wide range of pattern for-
mation mechanisms. For example, a Delta-Notch interaction
model that includes cis-interaction, which is the inhibition of
Notch activity by Delta activity, is proposed by Sprinzak et al.
[3]. This model (S47) consists of three variables and has dif-
ferent interaction terms when compared to the Collier model
(1). We find that cell rearrangement events also inhibit salt and
pepper pattern formation in the Sprinzak model and our anal-
ysis yields expressions for the balanced frequencies p∗ and q∗
that are consistent with the numerical results (Supplemental
text E and Fig. S14 [28]). To determine the stability of the
homogeneous steady state, our method is effective regardless
of the details of the model, such as the number of variables and
the interaction terms, and could be applied to models which
include the effect of other ligands in the Delta-Notch system,
such as the Delta-Notch-Jagged system [35].

In addition, phase synchronization phenomena in coupled
agent-based models can be investigated by our analysis. Uriu
et al. [36] showed that the exchange of positions in a coupled
phase oscillator system in a one-dimensional array promoted
phase synchronization and the relaxation time is consistent
with the mean-field approximation if the exchange frequency
is sufficiently large. This phase synchronization model is
similar to the model we used, in the sense that interactions
between neighboring cells are affected by positional pertur-

bations, suggesting we can also capture this phenomenon by
interpreting phase synchronization as convergence to a homo-
geneous steady state of the pattern composed of the agents’
phase state. Replacing the effects of flip and proliferation by
a linear operator acting on the power spectrum should be
applicable to the other system of cell-cell interaction. (See
also Refs. [37–43] for supplemental texts A–E.)
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APPENDIX A: DISPERSION RELATION
OF THE COLLIER MODEL

To derive the necessary and sufficient conditions for pattern
formation, we performed a linear stability analysis of the
Collier model (1).

The homogeneous steady state (D0, N0) in the Collier
model (1) with periodic boundary conditions is given by

D0 = 1

1 + β(N0)h
, (A1)

N0 = 2rD0

1 + 2rD0
. (A2)

By setting Dx = D0 + dx, Nx = N0 + nx, where |dx| �
1, |nx| � 1, the Collier model (1) can be linearized to obtain

d

dt
dx = −adx − bnx,

d

dt
nx = −dnx + α(dx−1 + dx+1), (A3)

where a = v, b = [βhv(N0)h−1]/[1 + β(N0)h]2, d =
1, and α = r/(1 + 2rD0)2.

To examine the stability of the homogeneous steady state
in the Collier model (1), we consider a discrete Fourier trans-
formation of dx, nx as below:

δk (t ) = 1√
n

n∑
x=1

dx(t )ei2πkx/n,

νk (t ) = 1√
n

n∑
x=1

nx(t )ei2πkx/n, (A4)

where

dx(t ) = 1√
n

n−1∑
k=0

δk (t )e−i2πkx/n,

nx(t ) = 1√
n

n−1∑
k=0

νk (t )e−i2πkx/n. (A5)
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Here, k is the wave number and takes integer values from 0
to n − 1, while δk (t ) and νk (t ) are the Fourier coefficients that
take complex values.

Substituting (A5) into (A3), we obtain a system of ordinary
differential equations for the coefficients δk and νk as below:

d

dt

(
δk (t )
νk (t )

)
= Mk

(
δk (t )
νk (t )

)
, (A6)

where

Mk =
( −a −b

2α cos (2πk/n) −d

)
. (A7)

Setting (
δk (t )
νk (t )

)
=
(

δk (0)
νk (0)

)
eλkt , (A8)

we find that λk is an eigenvalue of Mk and the solution is dom-
inated by the larger eigenvalue of the Jacobian matrix Mk (if
both eigenvalues are real). Therefore, whether the components
δk, νk grow or decay is determined by the sign of λk , where

λk = −(a + d ) +
√

(a + d )2 − 4[ad + 2bα cos (2πk/n)]

2
.

(A9)

Note that if λk is complex, then the real part of λk is negative
and so the perturbation decays with time. Since 2πk/n takes
equally spaced values in the range [0, 2π ), when we set

λ(θ ) = −(a + d ) +
√

(a + d )2 − 4(ad + 2bα cos θ )))

2
,

and if maxλ(θ ) < 0, pattern formation will not occur. In the
Collier model (1), λk in (A9) takes its largest value at k = n/2
and negative values in the long-wavelength region (Fig. S1).
As a result, |δk| exponentially grows if k is near n/2 and
attenuates for values of k in the other region. It corresponds
to the salt and pepper pattern and the necessary and sufficient
condition for pattern formation is obtained as below:

λmax = −(a + d ) +
√

(a + d )2 − 4(ad − 2bα)

2
> 0.

(A10)

From (A1) and (A2), we have that

β(N0)h+1 = −(2r + 1)N0 + 2r. (A11)

Thus

b = hv[2r − (2r + 1)N0]

4r2(1 − N0)2
, (A12)

α = (1 − N0)2r, (A13)

and

2bα = hv

(
1 − N0 − N0

2r

)
. (A14)

Since ad = v and 0 < N0 < 1 from (A2), ad > 2bα if h � 1,
so that the inequality (A10) does not hold. Hence a necessary
condition for (A10) to hold is h > 1.

APPENDIX B: DERIVATION OF THE TIME EVOLUTION EQUATION FOR THE POWER SPECTRUM (21)

From Eq. (20), the value of δk (t + dt ) is given by

δk (t + dt ) = δk (t ) + λkδk (t )dt +
n∑

j=1

n−1∑
l=0

{C j − I}k+1,l+1δl (t )dLp, j
t . (B1)

The value of the power spectrum Pk (t + dt ) = |δk (t + dt )|2 is obtained by multiplying δk (t + dt ) in (B1) by its complex
conjugate δk (t + dt ) as below:

|δk (t + dt )|2 = |δk (t )|2 + λk|δk (t )|2dt + λk|δk (t )|2dt +
n∑

j=1

[(
δk (t )

n−1∑
l=0

{C j − I}k+1,l+1δl (t ) + δk (t )
n−1∑
l=0

{C j − I}k+1,l+1δl (t )

)

+
(

n−1∑
l=0

{C j − I}k+1,l+1δl (t )

)(
n−1∑
l=0

{C j − I}k+1,l+1δl (t )

)]
dLp, j

t + O(dLp, j dt ) + O(dt2). (B2)

Here we used the result

(
dLp, j

t

)(
dLp,ξ

t

) =
{

0 if j �= ξ,

dLp, j
t if j = ξ .

(B3)

By denoting a j
k =∑n−1

l=0 {C j}k+1,l+1δl , we obtain

n−1∑
l=0

{
C j − I

}
k+1,l+1δl (t ) = a j

k (t ) − δk (t ). (B4)
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Substituting (B4) into (B2), we obtain (ignoring higher order terms)

|δk (t + dt )|2 = |δk (t )|2 + 2 Re[λk]|δk (t )|2dt +
n∑

j=1

[∣∣a j
k (t )
∣∣2 − |δk (t )|2

]
dLp, j

t

= |δk (t )|2 + 2 Re[λk]|δk (t )|2dt +
n∑

j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2

− |δk (t )|2
⎤
⎦dLp, j

t . (B5)

The third term on the right-hand side of (B5) is the effect of cell flipping on the power spectrum for the flip position j. Based
on the symmetry of the cell position j in the system (5), we assume that the third term on the right-hand side of (B5) can be
approximated by replacing the effect of each flip event with Wk , which is the averaged effect for the flip position j as below:

n∑
j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2

− |δk (t )|2
⎤
⎦dLp, j

t 	
n∑

j=1

WkdLp, j
t = WkdLpn

t , (B6)

where

Wk = 1

n

n∑
j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2

− |δk (t )|2
⎤
⎦ = 1

n

n∑
j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2
⎤
⎦− |δk (t )|2. (B7)

Here, we used
∑n

j=1 dLp, j
t = dLpn

t and note that

1

n

n∑
j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2
⎤
⎦ = 1

n

n−1∑
m=0

n−1∑
l=0

⎡
⎣δlδm

⎛
⎝ n∑

j=1

{C j}k+1,l+1{C j}k+1,m+1

⎞
⎠
⎤
⎦. (B8)

From (17), the components of the matrix C j are given as below:

{C j}k,l =
{

− 4
n sin π (l−1)

n sin π (k−1)
n e

iπ (2 j−1)(k−l )
n if k �= l,

1 − 4
n sin2 π (k−1)

n if k = l,
(B9)

so

n∑
j=1

{
C j
}

k+1,l+1
{C j}k+1,m+1 =

⎧⎪⎪⎨
⎪⎪⎩

0 if l �= m,

16
n sin2 πk

n sin2 π l
n if l = m and k �= m,

n
(
1 − 4

n sin2 πk
n

)2
if k = l = m.

(B10)

Here we used
n∑

j=1

eiπ (2 j−1)(l−m)/n =
{

0 if l �= m,

n if l = m.
(B11)

Therefore, from (B8) and (B10), we obtain

1

n

n∑
j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2
⎤
⎦ = 1

n

n−1∑
l=0
l �=k

[
|δl (t )|2 16

n
sin2 πk

n
sin2 π l

n

]
+ |δk (t )|2

(
1 − 8

n
sin2 πk

n
+ 16

n2
sin4 πk

n

)

=
n−1∑
l=0

[(
4

n
sin

πk

n
sin

π l

n

)2

|δl (t )|2
]

+
(

1 − 8

n
sin2 πk

n

)
|δk (t )|2. (B12)

By replacing the third term on the right-hand side of (B5) by the averaged effect (B6) and substituting (B7) and (B12), we
obtain

|δk (t + dt )|2 	 |δk (t )|2 + 2 Re[λk]|δk (t )|2dt + 1

n

n∑
j=1

⎡
⎣
∣∣∣∣∣

n−1∑
l=0

{C j}k+1,l+1δl (t )

∣∣∣∣∣
2

− |δk (t )|2
⎤
⎦dLpn

t

= |δk (t )|2 + 2 Re[λk]|δk (t )|2dt +
(

n−1∑
l=0

[(
4

n
sin

πk

n
sin

π l

n

)2

|δl (t )|2
]

− 8

n
sin2 πk

n
|δk (t )|2

)
dLpn

t . (B13)

Therefore, the time evolution of the power spectrum can be represented more concisely in the form

dP = 2 Re[�]P dt + W P dLpn
t , (B14)
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where � is given in (15), P = [|δ0(t )|2, |δ1(t )|2, . . . , |δk (t )|2, . . . , |δn−1(t )|2]T, and

{W }l,m =
⎧⎨
⎩

− 8
n sin2 π (l−1)

n + ( 4
n sin2 π (l−1)

n

)2
(l = m),(

4
n sin π (l−1)

n sin π (m−1)
n

)2
(otherwise).

(B15)

APPENDIX C: DERIVATION OF THE TIME EVOLUTION OF THE POWER SPECTRUM (36)

From Eq. (31), the components of the matrix Ĉ j are given as below:

{Ĉ j}k,l =
{√

(n + 1)/n (if k = l = 1),

− 1√
n(n+1)

sin ( π (l−1)
n )

sin ( π (k−1)
n+1 − π (l−1)

n )eiπ ( (2 j−1)(k−1)
n+1 − 2( j−1)(l−1)

n ) (otherwise).
(C1)

The power spectrum after proliferation of cell j is obtained
from the Fourier coefficient δk before proliferation as below:

|δk−1|2 j
after =

(
n∑

l=1

{Ĉ j}k,lδl−1

)(
n∑

m=1

{Ĉ j

k,m}δm−1

)

=
n∑

m=1

n∑
l=1

[{Ĉ j}k,l{Ĉ
j}k,mδl−1δm−1]. (C2)

As in the cell mixing model, the time evolution of the power
spectrum is approximated by replacing the effect of each
proliferation event with an average effect. Considering the av-
erage effect on the power spectrum, we calculate the average
of |δk|2 j

after over j:

1

n

n∑
j=1

|δk−1|2 j
after = 1

n

n∑
j=1

n∑
m=1

n∑
l=1

[{Ĉ j}k,l{Ĉ
j}k,mδl−1δm−1]

= 1

n

n∑
m=1

n∑
l=1

δl−1δm−1

⎡
⎣ n∑

j=1

{Ĉ j}k,l{Ĉ
j}k,m

⎤
⎦

(C3)

and
n∑

j=1

{Ĉ j}k,l{Ĉ
j}k,m

=

⎧⎪⎪⎨
⎪⎪⎩

0 if l �= m,

1
(n+1)

sin2 π (l−1)
n

sin2 ( π (k−1)
n+1 − π (l−1)

n ) if l = m and l �= 1,

(n + 1) if k = l = m = 1.

(C4)

Here we used the fact that
n∑

j=1

ei2π ( j−1)(l−m)/n =
{

0 if l �= m,

n if l = m.
(C5)

Hence

1

n

n∑
j=1

|δk−1|2 j
after

=
⎧⎨
⎩
∑n

l=1
1

n(n+1)
sin2 ( π (l−1)

n )
sin2 ( π (k−1)

n+1 − π (l−1)
n ) |δl−1|2 if k �= 1,

n+1
n |δ0|2 + 1

n(n+1)

∑n
l=2 |δl−1|2 if k = 1.

(C6)

Therefore, the effect of a single proliferation event on the
power spectrum is represented by the matrix S in (34).

Since the Delta expression Dx are real values, it follows
that Pk = Pn−k . Because of this symmetry, Pn can be repre-
sented by the superposition of cosine waves:

Pn =
n−1∑
k=0

ekzn
k, (C7)

zn
k =

(
1, cos

2πk

n
, cos

4πk

n
, . . . , cos

2(n − 1)πk

n

)T

. (C8)

Here, ek are the coefficients of the cosine waves, and zn
k is

obtained by discrete and equal sampling of cos 2πkx. From
the orthogonality of the trigonometric function, we obtain

e = ZPn, (C9)

where e = (e0, e1, . . . , en−1)T and Z is a square n × n matrix
such that

{Z}l,m = cos
2π (l − 1)(m − 1)

n
. (C10)

From the symmetry of Pn, we can also obtain ek as a discrete
Fourier transform of Pn. As the discrete Fourier transform of
the power spectrum is the autocorrelation function (from the
Wiener-Khinchin theorem), ek corresponds to the averaged
autocorrelation function of Dx.

SPn is also represented by the superposition of cosine
waves with different coefficients êk :

SPn =
n∑

k=0

êkzn+1
k . (C11)

Therefore, the power spectra Pn and SPn can be regarded as
the sampled values of the function P(θ ) and P(θ )after, respec-
tively:

P(θ ) =
n−1∑
k=0

ek cos kx, (C12)

P(θ )after =
n∑

k=0

êk cos kx. (C13)

Hence, the matrix S can be regarded as a map that transforms
the coefficients of superposition ek to êk .

The vector 2 Re[�]Pn is also regarded as the sampled
values of the function 2λ(θ )P(θ ), where

λ(θ ) = Re

[
−(a + d ) +

√
(a + d )2 − 4(ad + 2bα cos θ )

2

]
.

(C14)
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Therefore, the stability of the power spectrum vector Pn can
be examined by approximating S with a square matrix 
 such
that 
Pn shares the same coefficients of the superposition of
the cosine wave with SPn.

We write

S = 1

n
ẐQZ, (C15)

where Ẑ is a square (n + 1) × (n + 1) matrix and Q is an
(n + 1) × n matrix whose components are, respectively,{

Ẑ
}

l,m = cos
2π (l − 1)(m − 1)

n + 1
(C16)

and

{Q}l,m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n + 2 − l )/(n + 1) (if l = m),
(l − 1)/(n + 1) (if l + 1 = m and l � 2),
1/(n + 1) (if l = n and m = 1),
0 (otherwise).

(C17)

Therefore, the coefficients êk are determined by ek as follows:

ê0 = e0,

êk = n + 1 − k

n + 1
ek + k

n + 1
ek−1 (1 � k � n − 1),

ên = n

n + 1
en−1 + 1

n + 1
e0. (C18)

This relationship is derived from the formulas in Supplemen-
tal text B [28].

When n is even, we define an n × n square matrix Q̂ by
removing the (n/2 + 1)th row of the matrix Q and then define
an n × n square matrix 
 such that


 = ZQ̂Z. (C19)

Here,

{
}l,m = 2

n

n/2∑
k=2

cos
2π (m − 1)(k − 1)

n

[
k − 1

n + 1
cos

2π (l − 1)(k − 2)

n
+
(

1 − k − 1

n + 1

)
cos

2π (l − 1)(k − 1)

n

]

+ 1

n

[
1 + (−1)m+l−2

(
1 − n

n + 1
sin2 π (l − 1)

n

)]
. (C20)

The n-dimensional vector 
Pn is represented as the superpo-
sition of the cosine waves:


Pn =
n/2∑
k=0

êkzn
k +

n−1∑
k=n/2+1

êk+1zn
k . (C21)

Since zn
k = zn

n−k holds and n is even, Eq. (C11) can be simpli-
fied:

SPn =
n/2∑
k=0

ẽkzn+1
k , (C22)

ẽk =
{

êk (if k = 0),

êk + ên−k (otherwise).
(C23)

Equation (C21) can also be simplified:


Pn =
⎛
⎝n/2−1∑

k=0

ẽkzn
k

⎞
⎠+ ên/2 zn

n/2. (C24)

When n is odd, we define an n × n square matrix Q̂ by
removing the [(n + 3)/2]th row of the matrix Q and define an
n × n square matrix 
 such that


 = ZQ̂Z. (C25)

Here,

{
}l,m = 2

n

(n+1)/2∑
k=2

cos
2π (m − 1)(k − 1)

n

[
k − 1

n + 1
cos

2π (l − 1)(k − 2)

n
+
(

1 − k − 1

n + 1

)
cos

2π (l − 1)(k − 1)

n

]
+ 1

n
. (C26)

The n-dimensional vector 
Pn is represented as the superpo-
sition of the cosine waves:


Pn =
(n−1)/2∑

k=0

êkzn
k +

n−1∑
k=(n+1)/2

êk+1zn
k . (C27)

Since n is odd, Eq. (C11) can be simplified:

SPn =
(n+1)/2∑

k=0

ẽkzn+1
k , (C28)

ẽk =
{

êk [if k = 0 or (n + 1)/2],

êk + ên−k (otherwise).
(C29)

Equation (C27) can also be simplified:


Pn =
(n−1)/2∑

k=0

ẽkzn
k . (C30)

Comparing (C24) with (C22) and (C30) with (C28), 
Pn

and SPn can share the coefficients of the superposition of the
cosine wave except for that of the shortest wavelength (ẽn/2

when n is even and ẽ(n+1)/2 when n is odd).
The shortest wavelength component of the superposition

ẽn/2 or ẽ(n+1)/2 corresponds to the long-range correlation of the
Delta expression pattern Dn. Since the Delta-Notch interaction
and cell proliferation locally affect the pattern, we expect the
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long-range correlation to be small. Thus the contribution of
the shortest wavelength component of the cosine wave super-
position alone to the spectral structure of the power spectrum
would be small when n is sufficiently large. Therefore, 


is a square matrix that approximates S, in the sense that it

preserves the spectral structure of the power spectrum. Based
on this assumption, we can analyze Eq. (34) in the same way
as in the cell mixing model by replacing S with 
 and find
that it gives results that agree with the numerical results of the
cell proliferation model (7) [Figs. 4(d) and 4(f)].
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