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Lower critical dimension of the random-field XY model and the zero-temperature critical line
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The random-field XY model is studied in spatial dimensions d = 3 and 4, and in between, as the limit
q — oo of the g-state clock models, by the exact renormalization-group solution of the hierarchical lattice or,
equivalently, the Migdal-Kadanoff approximation to the hypercubic lattices. The lower critical dimension is
determined between 3.81 < d. < 4. When the random field is scaled with g, a line segment of zero-temperature
criticality is found in d = 3. When the random field is scaled with ¢?, a universal phase diagram is found at

intermediate temperatures in d = 3.
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I. INTRODUCTION: ISING AND XY LOWER CRITICAL
DIMENSIONS

Quenched randomness strongly affects the occurrence of
order at low spatial dimension d, reflected as the lower-critical
dimension d,. below which no ordering occurs for a given class
of systems. In the random-magnetic-field n = 1 component
spin Ising model, after a strong experimental and theoret-
ical controversy between d. = 2 claims [1-3] and d. =3
claims [4], the issue was settled for d. = 2 [5,6]. The fact that
d. is not 3 fell in contradiction with the prediction of a dimen-
sional shift of two due to random fields coming from all-order
field-theoretic expansions from d =6 down to d =1 [7],
which indeed is a considerable distance to expand upon for
a small-parameter expansion of € = 6 — d. In this study, the
logically next model, namely the n = 2 components spin-XY
model under random fields is examined and surprising results
are obtained, this time in near agreement with the dimensional
shift of two, but also with an interesting zero-temperature
critical line segment and a universal scaled finite-temperature
phase diagram.

Random-field Ising results supporting d. =2 were ob-
tained [5,6] by the Migdal-Kadanoff [8,9] renormalization-
group calculations in d = 2 (no random-field order), d = 2.32
(random-field order), and d = 3 (more random-field order).
In the same vein, for the random-field XY model, Migdal-
Kadanoff renormalization-group calculations are done here
in d =3 and 4, and in between. The Migdal-Kadanoff
renormalization-group calculation (Fig. 1) is a highly suc-
cessful, flexible, and therefore most used to date and today,
physically motivated approximation for hypercubic lattices
and, simultaneously, an exact calculation for d-dimensional
hierarchical lattices [10-12]. The hierarchical lattice con-
nection makes the Migdal-Kadanoff procedure a physically
realizable approximation. For recent work using hierarchi-
cal lattices, see Refs. [13-24]. Migdal-Kadanoff-hierarchical
lattices correctly give the lower critical dimensions of d, =
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1 of the Ising model [8,9], d. =2 of the XY [25,26],
and (n =3 spin components) Heisenberg [27] models in
the absence of quenched randomness. For the much more
complex system with competing quenched-random interac-
tions, Migdal-Kadanoff gives the noninteger d. = 2.46 for
the Ising spin-glass system [28-34]. In addition to giving
the lower critical dimensions, it yields such diverse re-
sults as, e.g., the low-temperature algebraic order of the
d =2 XY model [25,26], the chaotic nature [35-37] of
the ferromagnetic-antiferromagnetic [38] and left-right chi-
ral [39] Ising spin glasses, and the changeover from second- to
first-order phase transitions of g-state Potts models in d = 2
and 3 [40].

II. MODEL AND METHOD

The XY model is approached as the g — oo limit of the
g-state clock models. For other works on the random-field XY
model, see Refs. [41-45]. In the g-state clock models, at each
site i of the lattice, a planar unit spin s5; can point in one of g
directions in the plane, namely with the angle 6, = k(27 /q),
where k =0, 1, ..., — 1. A detailed renormalization-group
study on the phase transitions and thermodynamics of the
g-state clock models, without quenched randomness, has been
done [24]. The currently studied g-state clock model, with
quenched random fields, is defined by the Hamiltonian

—BH = U535 +5 B +5; - H)), (1)

<ij>

where 8 = 1/kgT and sum is over all nearest-neighbor pairs
of spins. In each term in the sum, the random fields 1-7,-, H f
have magnitude H and each randomly points along one of the
allowed directions 6.

We solve this model using the Migdal-Kadanoff renor-
malization group. The local renormalization-group transfor-
mation is given in Fig. 1 and is simple to implement in

©2022 American Physical Society


https://orcid.org/0000-0002-5172-2172
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.014151&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevE.106.014151

KUTAY AKIN AND A. NIHAT BERKER

PHYSICAL REVIEW E 106, 014151 (2022)

(a)
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FIG. 1. From Ref. [24]: (a) Migdal-Kadanoff approximate
renormalization-group transformation for the d =3 cubic lattice
with the length-rescaling factor of b = 2. (b) Construction of the
d = 3, b = 2 hierarchical lattice for which the Migdal-Kadanoff re-
cursion relation is exact. For general spatial dimension d, the bond
moving is (b?~")-fold. The renormalization-group solution of a hier-
archical lattice proceeds in the opposite direction of its construction.

systems without quenched randomness. In both steps of the
transformation, the magnetic field terms of the input bonds
are added with their own direction and magnitude, which
reflects their microscopic effect on the system. After the
first transformation, there is a distribution of random-field
magnitudes and directions (extending the original clock di-
rections of the unrenormalized system). With our currently
studied quenched random-field model, the renormalization-
group evolution of quenched random distributions has to
be pursued. Initially, 5000 nearest-neighbor Hamiltonians
are created, with 10000 randomly chosen magnetic field
directions as described above. From this distribution, 5¢
nearest-neighbor Hamiltonians are randomly chosen, to ef-
fect the local Migdal-Kadanoff transformation and obtain a
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FIG. 2. Phase diagrams for (¢ =7, 10, 20, 50, 100, 150)-state
random-field clock models in d = 3, occurring in the figure, respec-
tively, from high field to low field. Disordered and ferromagnetic
phases occur at high temperature-high field and low temperature-low
field, respectively. It is seen that the ferromagnetic phase, in random
field, disappears as ¢ — oo, indicating that no ferromagnetic phase
occurs in the random-field XY model at nonzero temperature in d =
3. However, for high ¢, the ordered phase extends to gH/J = 5.1
at zero temperature, as also seen in the left inset. For high ¢, the
zero-field ferromagnetic transition temperature saturates, as also seen
in Ref. [24] and in the right inset in this figure.

¢? x Random Magnetic Field H/J

Temperature 1/J

FIG. 3. Phase diagrams for (¢ = 7, 10, 20, 50, 100, 150)-state
random-field clock models in d = 3. At low temperature, the curves
are, from low field to high field, ¢ = 7, 10 and indistinguishably
q = 20, 50, 100, 150. It is seen that when the random field is scaled
with g2, a universal phase diagram is found above low temperature
for high g.

renormalized nearest-neighbor Hamiltonian. This is repeated
5000 times and the renormalized distribution is obtained. Each
nearest-neighbor Hamiltonian in the distribution is exponen-
tiated and thus kept as a transfer matrix [24,38]. To conserve,
in this distribution, the (ij) <> (ji) and the random-field di-
rection symmetries, each transfer matrix is replicated by its
transpose and by the simultaneous cyclic permutations of the
rows and columns. Of the resulting 2¢g x 5000 matrices, 5000
are randomly chosen. Thus, the distribution continues as 5000
g x q matrices. We have ascertained that our results do not
vary with increasing the number 5000 of realizations.

The flows of the distributions determine the phase diagram:
Renormalization-group trajectories starting in the ferromag-
netic phase flow to the strong-coupling sink of J;; — oo, H; =
0. Renormalization-group trajectories starting in the disor-
dered phase flow to the decoupled sink of J;;, H; = 0. The
boundaries between these flow basins are the phase bound-
aries.

III. d = 3 DIMENSIONS AND ZERO-TEMPERATURE
CRITICALITY SEGMENT

Our calculated phase diagrams for (¢ =7, 10, 20, 50,
100, 150)-state random-field clock models in d = 3 are in
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FIG. 4. Phase diagrams for (¢ = 3,4, 5, 6, 7, 10)-state random-
field clock models in d = 3.32, occurring in the figure, respectively,
from high field to low field.
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FIG. 5. The critical line segment, at zero temperature, is between
gH/J =0 and the gH/J values shown in this figure for each di-
mension d. The values are consistent with a divergence as d = 4 is
approached.

Fig. 2, occurring in the figure respectively from high field
to low field. Disordered and ferromagnetic phases occur at
high temperature, high field and low temperature, low field,
respectively. The H/J values on the vertical axis are mul-
tiplied with ¢, originally for better graphical visibility, but
eventually leading to a physical result, as seen here. First, note
that the ferromagnetic region under random fields recedes and
disappears as ¢ is increased. This result is even more evident
when we recall that the vertical axis values are amplified by
a factor of g for better pictorial visibility. The ferromagnetic
phase, in random field, disappearing as ¢ — oo, indicates that
no ferromagnetic phase occurs in the random-field XY model
at nonzero temperature in d = 3.

Second, and quite interestingly, given our choice of ver-
tical axis values, it revealed that the ordered phase extends
at very low temperatures, for the high ¢ to the universal
value of gH/J = 5.1. This is more visible in the left inset of
Fig. 2. Thus, at ¢ — 00, a line segment of zero-temperature
critical points occurs between gH/J =0 and gH/J = 5.1.
Zero-temperature critical segments and multicritical points
have been found before, under exact renormalization-group
treatment, in the d = 1 Blume-Emery-Griffiths model [46].

Third, for high ¢, the zero-field ferromagnetic transition
temperature saturates, as also seen in Ref. [24] and in detail in
the right inset in Fig. 2. Furthermore, when the vertical axis is
scaled, not by g, but by ¢2, a universal phase diagram emerges
above low temperature for high g, as seen in Fig. 3.

IV. d = 4 DIMENSIONS AND LOWER CRITICAL
DIMENSION

The phase diagrams for (g =3,4,5,6,7,10)-state
random-field clock models in d =3.32 are shown in
Fig. 4. It is again seen that the ferromagnetic phase, under
random fields, recedes and disappears as ¢ — oo. Thus, no
ferromagnetic phase occurs under random fields in the XY
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FIG. 6. Phase diagrams for (¢ =7, 10, 20)-state random-field
clock models in d = 4, occurring in the figure, respectively, from
low field to high field.

model in d = 3.32. However, our calculation again gives the
zero-temperature critical segment, between gH/J = 0 and
gH/J = 7.6 universally for all g in d = 3.32.

The same results are obtained for d = 3.58 and 3.81, with
the zero-temperature critical segment expanding, reaching
qH/J =10.2 and 13.9, respectively. (The volume rescaling
factor of a hierarchical lattice, b7, is equal to the number of
bonds being replaced by one bond in the transformation. The
length rescaling factor b is equal to the number of bonds on
the path between the external spins of the graph. Thus, only
discrete values of the dimension d are realized [32].)

A qualitatively different picture occurs in the phase dia-
grams for d = 4, seen in Figs. 5 and 6. Going from g = 7
to g = 10, the ferromagnetic phase slightly expands in the
random field, as opposed to drastically receding as in the
lower dimensions. Going from g = 10 to ¢ = 20, a much
larger ¢ interval, the ferromagnetic phase even more slightly
expands in the random field. Thus, the ferromagnetic phase
occurs, under random fields, for ¢ — oo and for the XY model
in d = 4. We thus see that the lower critical dimension for
the random-field XY model is between d = 3.81 and d = 4,
namely 3.81 < d, < 4.

V. CONCLUSION

In order to investigate the random-field XY model, we have
studied the random-field g-state clock models for increasing g,
for dimensions d = 3, 3.32, 3.58, 3.81, 4. We find that for the
random-field XY model, the lower critical dimension is be-
tweend = 3.81 andd = 4,namely 3.81 < d, < 4. Atd < d,,
we find a zero-temperature segment of criticality, stretching
from zero to a value of gH/J that is g independent for large g
and that increases as d, is approached.

Our calculation is exact for hierarchical lattices. For hy-
percubic lattices, the Migdal-Kadanoff approximation is an
approximation, be it physically intuitive. However, it has done
very well with respect to lower critical dimension results for
other systems, be it nonrandom or quenched random, as listed
in Sec. L.
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