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We study two versions of the XY model where the spins but also the interaction topology is allowed to change.
In the free XY model, the number of links is fixed, but their positions in the network are not. We also study a
more relaxed version where even the number of links is allowed to vary, we call it the freer XY model. When the
interaction networks are dense enough, both models have phase transitions visible both in spin configurations
and the network structure. The low-temperature phase in the free XY model is characterized by tightly connected
clusters of spins pointing in the same direction and isolated spins disconnected from the rest. For the freer XY
model the low-temperature phase is almost completely connected. In both models, exponents describing the
magnetic ordering are mostly consistent with values of the mean-field theory of the standard XY model.
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I. INTRODUCTION

The XY model is one of the fundamental spin models of
statistical physics. Let G = (V, E ) be a graph of N vertices V
and M edges E (connected pairs of vertices); let every node
i be associated with a spin variable � = {θi}i∈V , θi ∈ [0, 2π ).
The XY model on this graph is defined via the Hamiltonian

H (G,�) = −J
∑

(i, j)∈E

cos(θi − θ j ), (1)

where J is a coupling constant (that could be N-dependent),
and the Boltzmann distribution saying that the probability of
the spin configuration � at temperature T is

exp(−H/T )

Z
, (2)

where the normalization constant Z is called the partition
function. In our analysis, we put the coupling strength, the
Boltzmann’s constant, and all the constants of a physical
dimension to one, as customary in theoretical studies.

Traditionally, the XY model has primarily been used
as a model for superconductors and superfluids [1]. Most
famously, Kosterlitz and Thouless [2] and, independently,
Berezinskii [3] found that—although there cannot be any
regular type of spin ordering in less than three dimensions
[4]—there can be a topological type of order where the spins
form vortices that are bound in pairs. Kosterlitz and Thouless
were awarded the 2016 Nobel Prize for this discovery. The
XY model has also been used to model (for a physicist) exotic
systems such as birdflocks [5] and discrete-event simulations
[6].
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In classical statistical physics, the underlying topology of
the XY model is a regular lattice. However, when networks
science became popular among statistical physicists around
the turn of the millennium [7,8], there were many studies
of spin models [9], including the XY model, on various
network topologies [10–12], contributing with new insights
on topology-dependence to the literature of phase transitions.
Some early studies, for example, concluded that if the path
lengths of the underlying networks exhibits a logarithmic
scaling (as opposed to the geometric scaling of lattices), then
the XY model, like high-dimensional lattices, shows a mean-
field behavior. More recently, De Nigris and Leoncini found
that if one allows the number of links to scale nonlinearly with
N , then one can find phases not observed in lattice models
[13,14]. Expert et al. [15] mapped the XY model to a dynamic
model, whose time series, they argued, could characterize the
phases of the XY model on arbitrary networks. The paper most
akin to the current work, however, is Ref. [16] that investigates
the YX model, as they call it. The model where the links of the
graph, rather than the spins, are updated. Yet other extensions
of the YX model includes studying it on a geometry with
negative curvature [17], or extending the dimensionality of
spins [18].

In this paper, we study the equilibrium XY model where
neither the spins, nor the links between them, are fixed.
Almost everything is allowed to vary. The only constraints
that we impose are that the number of nodes (N) and links
(M) are fixed, and that G should be simple (i.e., there should
be no multiple links or self-links). We call this model the
free XY model. Additionally, we also study the model where
M is allowed to vary. Naturally, we call this the freer XY
model. The coupling constant is rescaled by N, for the freer XY
model, in order to ensure the energy is an extensive quantity,
by analogy to other fully connected (at least in the ground
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state) spin models like the Sherrington-Kirkpatrick spin glass
[10,19]. An optional definition of J would be J = N/M, but
as we will see below, M is proportional to N (N − 1)/2 for all
temperatures so this choice would not matter beyond the value
of the critical temperature.

II. PRELIMINARIES

A. Monte Carlo simulations

In this section we will go through details of the Monte
Carlo simulations. It is quite technical and could be skipped
for a reader who is only interested in the model (not how to
sample it). The code we use is available at Ref. [20]. At that
page we discuss technicalities of the implementation such as
how we initialize the configurations (before thermalization).

To simulate the free and freer XY model we apply the
standard Metropolis rule to the following three update steps:

(1) For node i, replace θi by a new trial angle θ ′
i . We let

θi = θ + δθ , where δθ is a uniformly distributed random num-
ber in the interval [−�θ,�θ ]. We use a Fermi function (see
the code for details) to determine �θ (this is to get interments
acceptance rates—if �θ is too large for low temperatures,
then the acceptance rate is too small, and vice versa for high
temperatures).

(2) For an edge (i, j), find an unconnected node pair
(i′, j′) and replace (i, j), in E , by (i′, j′).

(3) (Only for the freer XY model.) For a node pair (i, j),
chose a next state as (i, j) ∈ E or (i, j) �∈ E with equal
probability.

Steps 1 and 2 ensure ergodicity for the free XY model;
steps 1 and 3 ensure ergodicity for the freer XY model. For
the freer XY model, we keep step 2 (without it, the acceptance
rates would be too low at low temperatures). Steps 1 and
3 also ensure the system is as random as possible (i.e., the
random choice in step 3) at the highest temperatures (highest
acceptance ratios), this will correctly sample the free and
freer XY models for reasonably short number of updates.
(Otherwise, an easy mistake would be to first try to add, then
try to delete, links—at very high temperatures, the second
step would just undo the first.) One Monte Carlo sweep in
our simulations consists of running step 1 for all nodes 10
times, then step 2 for all node edges and (for the freer XY
model) step 3 for all node pairs. The reason that the spin
updates are performed more often is that the small trial angles
at low temperatures make the simulation dynamics too slow
otherwise.

The energy landscape of the free and freer XY models is
probably not so complex. Still, we use exchange Monte Carlo
[21] to manage the temperatures. This is a kind of parallel
tempering scheme, where nT replicas of the system are simu-
lated at nT different temperatures in parallel. At some different
times replicas at adjacent temperatures are swapped. Let

� =
(

1

T
− 1

T ′

)
(E ′ − E ), (3)

then the probability for a swap is given by the Metropolis-like
condition

1 if � < 0

exp(−�) otherwise. (4)

Like other parallel tempering schemes, this guarantees the
system not to be stuck in local energy minima since the
replicas perform a random walk in an exponential sequence
of temperatures. One advantage with exchange Monte Carlo
is that (after the initial thermalization), it will always follow
the Boltzmann distribution, even immediately after the
temperature swaps.

Another advantage of exchange Monte Carlo is that one
can use the random walk feature to define a independence
criterion. When every replica has visited one quarter (or half,
for the first thermalization updates) of the temperatures, it is
sufficiently updated to be called independent of the previous
save. We measure quantities after every sweep, but save the
averages of these quantities after the above independence cri-
terion is fulfilled. Finally, we use 1000 independent averages
to calculate pooled averages and standard errors that we use
in our analysis. Since larger networks have larger energy gaps,
they will change temperatures more rarely. This means that the
saves happen less frequently for larger networks, which makes
sense, because there could be nonlocal effects that hinders the
updates to propagate through the system. It also means, we
cannot sample very large networks. One could probably relax
the independence criterion (now every spin and every node
pair is updated several thousand times between each save),
but then it is hard to say whether the samples are statistically
independent or not.

After every Monte Carlo sweep, we measure a number
of quantities describing the system. When every replica has
traversed more than 1/4 of the temperature levels (1/2 the first
time, to ensure thermalization), we save averages quantities.
We confirm that these averages do not display any autocorre-
lations (indicative of too frequent measurements versus Monte
Carlo updates). These averages—at least 1000 of them for
every data point (except the freer XY model for N = 512
where we only use 150 averages)—are then the basis for the
statistics that we present.

B. Quantities

After every Monte Carlo sweep, we measure a number
of quantities describing the system. In order to have the
complete scenery we present, in this section, results for the—
structural-topological—equilibrium configurations along with
the regular functions describing the spins-alignment.

1. Network structure

From inspecting the networks [Figs. 1(a)–1(c)], is visible
how the free XY passes from a magnetized phase, charac-
terized by one system-size dense cluster with similar spins
and few isolated disoriented nodes, at low temperature to
a disorder phase, constituted by random angles-nodes on
Erdős-Rényi-like networks, at high temperatures. In the freer
XY model, the number of links goes from the maximum
[N (N − 1)/2] for low temperatures to [N (N − 1)/4] for high
temperatures, and the networks are very rarely fragmented.

Based on the above observations, we measure only the
simplest metrics to characterize the networks structures: The
number of components c, the average size of the largest S and
second largest components S2, the diameter (the longest short-
est path within a connected component—which in random
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FIG. 1. Low (a and d), middle (b and e), and high (c and f) temperature configurations of the free XY model (a, b, c) with N = 32 and
M = 64 and the freer XY model (d, e, f) with N = 32. The colors represent the spin angles.

enough networks carries the same information as the average
distance [22]). We add to our analysis, the number of links for
the freer XY model.

2. Characterizing the spin configuration

The magnetization, m, is the fundamental order parameter
for the XY model on lattices in three and more dimensions. For
a connected network, the definition is

m = |〈eiθi〉|. (5)

The average is over all nodes in the network. Our networks
could be split into mutually disconnected components—
G = G1, . . . , Gc. The most straightforward generalization of
Eq. (5) is an average weighted by the number of nodes of the
components (Ni for component i):

m =
∑

c Ncmc

N
, (6)

where Nc is the number of nodes, and mc is the magnetization
of component c ⊂ G.

To perform the finite-size scaling analysis on our system,
we start the fluctuations-based study by the commonly used,
Binder’s cumulant,

U = 1 − 〈m4〉
3〈m2〉2

, (7)

measuring the kurtosis of the magnetization distribution. The
averages are taken over difference samples of configurations
in the Monte Carlo simulations.

Another quantity characterizing the fluctuations of the
magnetization is the susceptibility,

χ = 〈m2〉 − 〈m〉2

T
. (8)

We also measure the specific heat, which is related to the
fluctuations in the energy:

CV = 〈H2〉 − 〈H〉2

NT 2
. (9)

Both the specific heat and the susceptibility diverges at most
phase transitions (notably not at the Berezinskii-Kosterlitz-
Thouless transition of the two-dimensional XY model [1]).

III. RESULTS

In this section we present our simulation results. Most plots
are very well-converged, and error bars would be smaller than
the line width or symbol size. We omit them throughout the
analysis, but comment on the case with larger errors.

A. Ferromagnetic transition

We start by showing the thermodynamic functions to ana-
lyze the magnetic transition of the XY model (not quantities
relating to the BKT transition, since there can be no notion of
vortices in networks). We will stick to the notation of the lit-
erature of the XY model. This means that some exponents that
are known to be same—such as ν that describes the critical
behavior both of Binder’s cumulant and the susceptibility—
could actually be different.

1. Binder’s cumulant

At a ferromagnetic phase transition, the value of Binder’s
cumulant will be independent of N . Therefore, it is a con-
venient quantity for determining the critical temperature. In
Fig. 2, we plot U for both the free and freer XY models. For the
freer XY model, the denser the networks [k = 4 of panel (b)
and k = 8 panel (c)], the clearer the crossing point of the U (T )
curves. For k = 4 this happens at Tc = 1.93 ± 0.03, while at
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FIG. 2. Binder’s cumulant for the free [panels (a)–(d)] and freer
[panel (e)] XY models as a function of temperature for various system
sizes. For the free XY model, we plot four values of the average
degree—k = 1 in panel (a), k = 2 in panel (b), k = 4 in panel (c),
and k = 8 panel (d). The T axes are logarithmic.

Tc = 3.91 ± 0.03 for k = 8. These values are also close to
the mean-field values—for a lattice where every spin has k
neighbors, the mean-field transition happens at temperature
TMF = k/2, so Tc = 0.96TMF and Tc = 0.98TMF, respectively.
Probably Tc/TMF approaches one when increasing k.

This supports the conclusion that the free XY model un-
dergoes a phase transition primarily akin to the mean-field
ferromagnetic transition of the XY model on high-dimensional
lattices. This conclusion is corroborated by the observation
that the critical exponent ν (related to the divergence of the
correlation volume) is close to the mean-field value νMF = 2
[10]; see Fig. 3. We use the relationship

�U ≈ constant × N1/ν, (10)

where �U = U (Tc + δT ) − U (Tc − δT ) for small δT . We
observe ν = 2.4 ± 0.1 for k = 4 and ν = 2.1 ± 0.1 for k = 8,
which are slightly larger than, but still compatible with the
mean-field value νMF = 2 [10].

For the sparser networks of k = 1 and k = 2, Binder’s
cumulant does not have a crossing point. For these values
of k, the networks are rather fragmented. Recall that Erdős-
Rényi random graphs have their transitions between being

FIG. 3. Determining the critical exponent ν by finite size effects
on U near the critical point. For the free XY model [panels (a) and
(b)—the former for k = 4, the latter for k = 8] and the freer XY
model [panel (c)]. Colors define the same system size as in Fig. 2.
The axes are logarithmic.

fragmented and having a giant component (a largest connected
component scaling like N) at k = 2. At k = 1, the network
is so sparse that the largest possible connected component is
N/2. In practice, however, it is much smaller (see Fig. 9), so
effectively there can be no long-range spin correlations, and
there is thus no wonder that the behavior of the model at such
parameter values is very far from the large-N values.

For the freer XY model, there is also a clear crossing of the
Binder’s cumulant; see Fig. 2(e). Also in this case, the critical
temperature Tc = 0.446 ± 0.005 is slightly lower than the
mean field value TMF = 1/2 (recall that the freer XY model’s
Hamiltonian is divided by N , if we used the same form for the
free XY model, TMF would be 1/2 for that as well).

2. Magnetization

The order parameter—the magnetization—is another way
to analyze the critical behavior on the phase transition, which
close to Tc is expected to follow the scaling relation

m = N−β/ν f (T N1/ν ), (11)

for a smooth function f . This means that the correct choice of
ν would make curves of mNβ/ν cross at Tc. As seen in Fig. 4,
this is possible for k = 4 and k = 8, where Binder’s cumulant
showed a crossing of the curves. The obtained critical tem-
peratures Tc = 2.01 ± 0.05 (for k = 4) Tc = 4.03 ± 0.06 (for
k = 8) are also consistent with the predictions from mean-
field theory. We find the scaling exponent ν/β to be ν/β =
3.1 ± 0.3 (k = 4) ν/β = 3.3 ± 0.3 (k = 8). For the freer XY
model we get Tc = 0.453 ± 0.002 with ν/β = 4.0 ± 0.2.

Unlike the analysis of Binder’s cumulant, we can obtain
a crossing plot for k = 2 as well (but none for k = 1); see
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FIG. 4. Crossing plots for the magnetization to determine Tc and
the exponent ν. For the free XY model [panels (a)–(c)] and the freer
XY model [panel (d)]. The lines have the same color as in Fig. 2. The
T axes are logarithmic.

Fig. 4(a). This happens at a temperature further from the
mean-field prediction: Tc = 0.87 ± 0.01 and at a much larger
value of the exponent ν = 6.6 ± 0.1.

From Eq. (11) also follows that we can determine β by
finding a value that collapses all curves to one. Our estimates
of β give the collapse plots seen in Fig. 5. The values are:
β = 0.36 ± 0.05 (k = 2), β = 0.48 ± 0.02 (k = 4), and β =
0.53 ± 0.02 (k = 8). Once again, for the denser networks
these values are close to the mean-field value βMF = 1/2 [10].
The freer XY model has the β value β = 0.56 ± 0.04.

The values of ν are smaller than the mean-field value of
νMF = 2. We will not dwell much on this discrepancy more
than noting two scenarios: Either it will disappear for yet
larger system sizes; or (more likely) the extra flexibility from
the underlying dynamic network changes the universality
class of the model. Note that there is no a priori reason that
the exponents should be the same.

3. Specific heat

A third way of monitoring phase transitions is by the spe-
cific heat. This is another quantity that is scale-independent at
Tc for mean-field transitions. Like for the magnetization, for
k = 2 there is a crossing (although somewhat blurry) at Tc =
0.95 ± 0.05; see Fig. 6. For k = 4 and k = 8, the crossing is
very sharp at Tc = 1.97 ± 0.01 (k = 4) and Tc = 3.99 ± 0.01
(k = 8), respectively. For the freer XY model, CV also gives
a crossing at Tc = 0.52 ± 0.06 but the curves follow different
functional forms than the free XY model, the scaling is also
reversed (so that larger system sizes lies above the smaller
ones below Tc, and above them for T > Tc) and the crossing
is less clear.

FIG. 5. Collapse plots to determine ν and β. For the free XY
model [panels (a), (b), and (c)] and the freer XY model [panel (d)].

4. Susceptibility

The susceptibility χ is known to follow a scaling relation,

χ ∼ N−1/ν f (T − Tc), (12)

FIG. 6. The specific heat for the free [panel (a)–(c)] and freer
[panel (d)] XY models as a function of temperature for various system
sizes. For the free XY model, we plot the results for k = 2 in panel
(a), k = 4 in panel (b), k = 8 in panel (c), and the freer XY model
panel (d). The lines symbolize the same as in Fig. 2. Note the axes
are logarithmic.
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FIG. 7. The crossing plot for the susceptibility of the free [panels
(a)–(c)] and freer [panel (d)] XY models as a function of temperature
for various system sizes. For the free XY model, we plot the results
for k = 1 in panel (a), k = 2 in panel (b), k = 4 in panel (c), and
k = 8 panel (d). The lines symbolize the same as in Fig. 2. The axes
are logarithmic.

for temperatures close to Tc. In Fig. 7, we do indeed find
crossings around the same values of Tc as determined by
Binder’s cumulant and the magnetization—Tc = 0.91 ± 0.04
for k = 2; Tc = 1.98 ± 0.06 for k = 4; Tc = 4.1 ± 0.1 for k =
8; and Tc = 0.44 ± 0.04 for the freer XY model. The values of
the exponent ν that we obtain in this way are closer to the
mean-field value of ν = 2 than the ones we obtained from
the crossing plots for the magnetization—ν = 1.8 ± 0.1 for
k = 2; ν = 1.9 ± 0.1 for k = 4; ν = 1.9 ± 0.1 for k = 8; and
ν = 2.1 ± 0.2 for the freer XY model. A striking difference
between Fig. 7 and the mean-field behavior however is that
χN1/ν does not seem to diverge (or does so extremely slowly)
as the temperature approaches criticality from below.

B. Network structural effects

In this section, we search phase transitions in the network
structure.

1. Number of edges

This first analysis applies only to the freer XY model,
where the number of links is allowed to changed. For low
temperatures it is clearly favorable to have as many links
as possible. For high temperatures, a link exists or not with
equal probability. Thus, we can see that the connectance
(the fraction of node pairs that have a link) goes from 1 at
zero temperatures to 1/2 at T = ∞. This is confirmed in
Fig. 8. Interestingly, there is almost no size dependence in this
quantity—it goes smoothly from one limit to the other. This
also means that an alternative freer XY model with J = N/M
would have a phase transition with the same exponents but

FIG. 8. The connectance [number of links M divided by the
maximal possible number of links N (N − 1)/2] in the freer XY
model as a function of temperature. The lines symbolize the same
as in Fig. 2. The T axis is logarithmic.

(since the temperature is measured in units of J) a different
critical temperature.

2. Size of the largest component

Probably the most common quantity to characterize phase
transitions in networks is the size of the largest connected
component [8]. We use the fraction of nodes in the largest
component S for our analysis. The freer XY model is so dense
(Fig. 8) that it is basically only fully connected (only for
N = 8, we were able to observe fragmented networks). Thus,
in this section, we focus on the free XY model for our further
analysis.

In Fig. 9, we plot S for all k values that we investigate.
Just like the quantities related to the magnetic order, the k = 1
case is very different. For k = 2, 4, 8 the S(T ) curves seem to

FIG. 9. The size of the largest connected component of the free
XY model as a function of temperature for various system sizes. We
show results for k = 1 in panel (a), k = 2 in panel (b), k = 4 in panel
(c), and k = 8 panel (d). The lines symbolize the same as in Fig. 2.
The T axes are logarithmic.
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FIG. 10. Panel (a) shows the logarithmic scaling of the diameter
of an Erdős-Rényi model of the same N and M (i.e., the diameter
for infinite temperature), d∞. Panels (b) and (c) show the diameter
relative to d∞ for k = 2 (b) and k = 4 (c). The lines symbolize the
same as in Fig. 2. The T axes are logarithmic.

converge to a plateau at high T accompanied by a monotonic
increase for lower temperatures. For k = 1, however, S just
goes to zero for all temperatures as N increases.

When k � 2, the borders between the different scaling
regimes of S seem to be very close the phase transition as
indicated by, e.g., Binder’s cumulant. If one just takes the
maximum curvature of the N = 512 curves in Fig. 9 as an
estimate of Tc one obtains: Tc = 0.9 ± 0.1 for k = 2, Tc =
1.9 ± 0.2 for k = 4, and Tc = 3.8 ± 0.2 for k = 8. These
values are consistent with the hypothesis that the free XY
model has a phase transition visible in both spin-related and
network quantities.

3. Diameter

Our final network-structural analysis concerns diameter d
of the networks. In the high-temperature limit the free XY
model networks are effectively Erdős-Rényi random graphs,
thus having a logarithmic scaling of the diameter [21]. We
use d∞ to denote the diameter at T = ∞. This is shown in
Fig. 10(a). To analyze d for lower temperatures, we find it
useful to rescale the values by d∞. For k = 8, d/d∞ are so
close to one that the noise makes it impossible to identify
meaningful trends. The d/d∞ curves for k = 2 and k = 4 are
shown in Figs. 10(b) and 10(c), respectively. Interestingly they
both show crossing points (but for k = 8 there is not crossing).
These crossing points do not, however, coincide with the Tc

detected by other quantities.
This could perhaps point at another structural phase transi-

tion, but since there is no such behavior for k = 8, we believe
this be a transient phenomenon that would disappear for larger
sizes. Further studies are needed to resolve this issue. Another
interesting observation is that the behavior outside of the
crossing point is different for k = 2 and k = 4. For the former,

larger system sizes have smaller d/d∞ for high temperatures
and smaller d/d∞ for lower temperatures, for the latter, this
situation is reversed. How the transition between these situa-
tion looks is another interesting open question.

IV. DISCUSSION

We have studied two versions of the XY model where the
interaction topology is free to change. One (the free XY model)
where the number of links is fixed; another (the freer XY
model) where the number of links is also allowed to vary.
For the freer XY model, and the free XY model when it is
dense enough, we find a phase transition that is visible both in
spin and network related quantities. For low temperatures, the
free XY model is characterized by tightly connected clusters
of spins pointing in the same direction and isolated spins
disconnected from the rest. In the freer XY model, in the low-T
phase, the system is always connected and the system has
close to the maximum number of links. One could imagine
that the spin ordering and network fragmentation have tran-
sitions at different temperatures, but we find no evidence of
that.

To recapture our findings in a bit more detail: for k > 2
in the free XY model and the freer XY model, the critical
temperatures and exponents obtained from finite-size scaling
are close to the values of the mean-field approximation to
the standard XY model. There are also traces of a transition
in the network structural measures. From these observations,
we believe there is one transition, primarily driven by spin
alignment and similar to in high-dimensional lattices. The
network structure could be regarded as following the spin-
ordering, rather than the other way around. We get a similar
conclusion for critical exponents—the exponent ν of tradi-
tional spin systems [10] as measured by Binder’s cumulant
and susceptibility is consistent with the mean-field values,
but for magnetization they are consistently lower than those
obtained from the magnetization. The one exception to this is
the freer XY model where ν is almost twice as large as νMF.

When k = 2, the critical temperature is consistently lower
than the mean-field prediction; probably the approximation
breaks down at that point, but there is still a transition fitting
the above description. For even sparser systems (i.e., our
k = 1) simulations, we cannot find evidence of a phase transi-
tion. There might still be one, or there could be a crossover
behavior with a continuous change from disorder at high-
temperature to fragmented components of aligned spins close

TABLE I. Estimates of Tc from different quantities. The last row
gives the mean-field values.

Quantity k = 2 k = 4 k = 8 Freer

U — 1.93(3) 3.91(3) 0.446(5)
m 0.87(1) 2.01(5) 4.03(6) 0.453(2)
CV 0.95(5) 1.97(1) 3.99(1) 0.52(6)
χ 0.91(4) 1.98(6) 4.1(1) 0.44(4)
S 0.90(10) 1.9(2) 3.8(2) —
MF 1 2 4 1/2
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TABLE II. Estimates of ν from different quantities. The mean-
field value is νMF = 2.

Quantity k = 2 k = 4 k = 8 Freer

U — 2.4(3) 2.1(2) 2.1(5)
m 1.4(2) 1.5(2) 1.7(2) 3.7(3)
χ 2.8(3) 1.8(3) 1.9(2) 1.9(3)

to zero temperature. We summarize the measured critical
temperatures in Table I and the ν values in Table II.

Perhaps the greatest lesson of this analysis is just how
robust the magnetic ordering is in the XY model. We know that
putting spin models on random networks with their short path
lengths is equivalent to placing them on high-dimensional
lattices [10,23]. Not even the fairly large perturbation to the
original model that our models make manages to change the

spin-order transition much from the mean-field one of high-
dimensional lattices. The exception to this conclusion is the
extreme sparse case we study (k = 1). Thus, even though the
transition is visible in network-structural quantities, it seems
to be driven by the spin ordering.

The main open question is what kind of transition the
free XY model experiences when k decreases. Obviously the
system at k = 1 behaves very differently from the larger k
values. One scenario is that there is a phase transition in k
(note that k is a continuous parameter); another scenario is that
there is a crossover from the mean-field dominated situation
at denser networks.
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