
PHYSICAL REVIEW D VOLUME 5, NUMBER 4 15 FEBRUARY 1972

Post-Newtonian Gravitational Radiation from Point Masses

in a Hyperbolic Kepler Orbit*

R. O. Hansen
University of Chicago, Chicago, Illinois 60637

(Received 18 August 1971)

The energy and the angular momentum radiated away in the form of gravitational waves
from a system of two point particles with positive total energy are calculated in the lowest
nonvanishing post-Newtonian approximation. By these radiations a particle arriving from
infinity can be captured, and the cross section for such captures is determined as a function
of the energy at infinity. The radiation from elliptic (bound) orbits can also be inferred, and
is found to be in agreement with known results.

I. INTRODUCTION

The rate of radiation of energy and angular mo-
mentum by gravitational waves by a system of two

point masses describing elliptic orbits about one
another in the linearized theory of gravitation has
been known for some time. " In this note, we
shall consider the same problem for hyperbolic
orbits. For such unbounded orbits one cannot,
without justification, use the averaged formulas
usually written for the rate of loss of energy and
angular momentum by multiply periodic systems.
To avoid possible ambiguity, we shall use the
post-Newtonian formalism, which explicitly in-
cludes contributions that vanish on averaging.

terested only in the secular changes. These same
terms in the second derivatives will also not con-
tribute when integrated over an unbounded orbit if
the terms take the same values at+ ~ and —~;
and this clearly happens for the hyperbolic orbits.

We will assume that the orbit lies in the xy
plane, and that the coordinates of the two mass
points m, and m, are (r, cos8, r, sin8) and
(-r, cos 8, r, si-n8), respectively. We choose the
origin at the center of mass, so that

m2 Sl J

ml+ m2
' ml+ m2

Then the nonvanishing components of the moment-
of-inertia tensor are

II. THE TOTAL ENERGY RADIATED

The rate of loss of energy from a system by
gravitational radiation, in the 2-,' post-Newtonian
approximation, ' is given by

dt c' dt' dt' 3 dt. ' dt'

dt 3 dt dt 3 dt dt

I =py cos g

I„=pr'sin 8,

I„,=I„„=p.y sin|9cos19,

where g = m, m, /(m, + m, ) is the reduced mass.
The equation of the orbit is

r = a(e' —1)/(1 —e cos 8),

where a is the semimajor axis and e is the eccen-
tricity of the orbit; and the angular velocity along
the orbit is given by

5d I;, d I
6 dt dt'

—= —,[G(m, + m, )a(e' —1)]' ' .
do 1

(4)

where I,, is the ijth component of the moment-of-
inertia tensor of the system. In the foregoing, the
terms in the second derivatives will not contribute
if the system is multiply periodic and we are in-

The derivatives of the components of the mo-
ment-of-inertia tensor can be evaluated with the
help of Eqs. (3) and (4); substituting the resulting
expressions in (1), we obtain

' (1 —ecos8) [12(1—e cos8)'+ e' sin'8]
& G'm, 'm, '(m, + m, )

dt 15 c' a'(e' —1)'

+ ——,„', '1„,[9(l —ecos8)'+3e'sin'8(1 —ecos8)+-,'e'(e-cos8)']. (5)
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The total energy radiated is then the integral of this expression over the orbit.
The asymptotes of the hyperbolic orbit are given by

cos8p = 1/e;

thus we have

(6)

8
15

2

15

G7/2 m 2 2( + m )1/'2 2w-8P
(1 —e cos 8)'[12(1-ecos 8)'+ e' sin' 8]d8

0

[(p —8p)(96+292e +37e )+ &esin8p(602+457e )j. (7)

The explicit appearance of the angle 8, in this expression is to be noted.
The energy radiated during one period from particles describing an elliptic orbit can be obtained from

Eq. (7) by the obvious substitutions e-- e, e' —l- l —e'. Also, the terms in 8, in the equation now vanish.
Thus we obtain

C
(8)

for the energy radiated during one elliptic orbit. The average rate of radiation of energy, obtained from
(8) by dividing the expression on the right-hand side by the period of the orbit, agrees with the formula
given by Peters and Mathews. '

III. THE TOTAL ANGULAR MOMENTUM RADIATED

The post-Newtonian formalism' gives the rate of radiation of angular momentum as

dL, 6 2 d'I» d'I„d 3 d'I„d'I, , dI„2 d'I» d'I&&, d'I..
dt " c' 5 dt' dt' dt 5 dt " dt' dt 3 dt' ' ' dt' " dt' (9)

where v, =dx, /df, and e„., is the alternating symbol in three indices. The earlier remarks about the terms
that appear as total time derivatives also apply to Eq. (9); therefore, the total angular momentum radiated
during one orbit will be given by the secular terms alone. Substituting the expressions for the components
of the moment-of-inertia tensor of the unbound two-particle system, we obtain

m, 'm, ', '2™,(1 —e cos 8)'[2(1—e cos 8)(2 —e cos 8) —e' sin'8]

,—(e sing(1 —e cos 8)[11(1—e cos 8) —5 sin 8]] .4 G' m, 'm.,' d 2

15 c' a'(e' —1)'- dt

Thus we have

(1O)

~L.= 'dt

3 mama 2, eo
(1 —e cos 8) [2(1 —e cos 8)(2 —e cos 8) —e' sin' 8]d 8

15 c a(e —1)

, [(v —8 )(8+ 7e')+ e sin 8,(13+e') j .5c' a e —1

Again we can obtain the angular momentum radiated during one period by a system describing an elliptic
orbit from Eq. (11), by the substitutions e- —e, e' —l-l —e'; thus we have

(12)

The corresponding expression for the average rate of radiation of angular momentum agrees with that
found by Peters.
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system:
/ ( ) /

5 7/2(e2 1)v/2

x([w- cos '(1/e)] (96+292e'+ 37e')

+ —.'e(e'-1)' "(602+467e'));

or, eliminating g with the aid of Eq. {l,6), we have

j jj&l
to-'

E
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FIG. 1. Disk of capture as a function of energy. (A.}
~,/~, =1. P}m, /m, =0.1. {C}m, /m, =0.01.

ol

8 (~ 1) /mm e'
2Gm, /c' ' E (14)

The impact parameter of a Keplerian system is
given by

Gm, m, (, 1)g/,

&&

@ 1 ~/, (96+ 292em+ 37e~)
w- cos '(1/e)

-2/5
+—, , (602+ 457em)

Elimination of e between (14) and (1,7) will yield
the required expression for the disk of capture as
a function of energy; this elimination is most con-
veniently carried out numerically by choosing.
suitable values for the eccentricity of the orbit and
solving for 8 and E from Eqs. (14) and (17). Figure
I showers the result of this calculation. Of course,
all systems with zero initial energy are captured;
and the disk of capture shrinks to essentially a
constant at sufficiently high energies. One' cannot
regard the curves toward the right-hand side of
the graph as corresponding to a physically mean-
ingful situation, as they represent relativisitic
energies; furthermore, the disk of capture appears
to be smallex than the Schwarzschild radius for
curves B and C.

For a particle to be just captured, the energy
radiated aw'ay must equal the total energy of the
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