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Constraints on negative-energy cruxes
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Locally negative energy due to quantum coherence effects in quantum field theory is discussed.
In a previous work, it was argued that a beam carrying negative energy must satisfy an uncertainty-
principle-type inequality of the form

~
AE)b t ~ l, where ~AE

~
is the magnitude of the negative ener-

gy that may be transmitted in a time ht. This conclusion applied only to two-dimensional space-
time, and was based on an examination of particular classes of quantum states. In the present work,
we give more precise formulations of this type of inequality for a free massless scalar field in both
two- and four-dimensional Aat spacetime. These inequalities are proven to hold for all quantum
states. The physical interpretation of these inequalities is also discussed, and it is argued that they
are likely to prevent negative energy from producing such large-scale effects as violations of the
second law of thermodynamics or of cosmic censorship.

I. INTRODUCTION

Quantum field theory has the remarkable property that
the local energy density can be negative, even though the
energy density is a positive-definite quantity in classical
physics. It is a general feature of both free and interact-
ing theories that there exist states in which the energy
density at a particular point can be arbitrarily negative. '

Nonetheless, the total energy, integrated over all space, is
required to be non-negative. Negative energy densities
may be thought of as a quantum coherence effect, arising
in quantum states which are superpositions of different
particle number eigenstates. One class of such states de-
scribe the quantum radiation by a moving mirror, which
can carry negative energy. They are also examples of
negative-energy fluxes, where all particles are moving in
one direction, but the energy Aow is instantaneously in
the opposite direction.

Unrestricted negative-energy fluxes would have alarm-
ing consequences, including violation of the second law of
thermodynamics. By shining negative energy on a hot
object, it would be possible to decrease its entropy
without an apparent compensating entropy increase in
the quantum field. Fortunately, there are strict limita-
tions on the magnitude and duration of a pulse of nega-
tive energy. These limitations were first noted in a previ-
ous publication, henceforth referred to as I. In I it was
noted that negative-energy cruxes in two-dimensional
spacetime seem to obey an inequality of the form

iF/ (r

where ~F) is the magnitude of the negative llux and t is its
duration. This inequality implies that ~F~t, the amount of
negative energy which passes by a fixed location in time t,
is less than the quantum energy uncertainty, t ', on that
time scale. Such an inequality prevents the negative ener-

gy from having gross, macroscopic effects, such as a
violation of the second law of thermodynamics. The pos-
sibility of using negative energy to violate the cosmic-

censorship hypothesis has been recently discussed in the
context of two-dimensional models. It was argued that
this type of inequality prevents a classically observable
violation of cosmic censorship.

The arguments given in I in favor of an inequality on
negative-energy cruxes were incomplete in that they were
applicable only to certain restricted classes of quantum
states. In particular, the inequality was proven for states
in which a single mode is excited and for the states gen-
erated by slowly moving mirrors. However, this left open
the possibility that other quantum states exist in which
the inequality would be dramatically violated. The main
purpose of the present paper is to prove that this is not
the case. The first task is to formulate a precise state-
ment of an inequality, and the second is to prove that it is
true for all quantum states.

In Sec. II an inequality constraining negative-energy
cruxes is proven for a massless, free scalar field in Aat
two-dimensional spacetime. In Sec. III an analogous in-
equality is proven for such a field in four-dimensional
spacetime. The results are discussed in Sec. IV.

II. TWO-DIMENSIONAL FLUX INEQUALITY

Let us consider a massless scalar field in flat two-
dimensional spacetime. The stress tensor is

f — l(kx cot)

+2coL
(4)

where co= ~k~ and periodicity of length L has been im-
posed in the spatial direction, so that k takes on discrete
values.

and the field operator may be expanded in terms of
creation and annihilation operators as

p= g(akfp+akfk*) . (3)
k

Here the mode functions are taken to be
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=—Re g i/kk'( & a ta ~ )e'"1

Ic, k' &0

+ & )
—i(k +k')t)

Note that although the expectation values of the diagonal
components of T„are divergent, and hence require re-
normalization, the off-diagonal components have finite
expectation values. Hence F is finite. The integral of
F ( t ) over all time is non-negative, but F ( t ) may be in-
stantaneously negative. Some explicit examples of states
displaying a negative-energy Aux were discussed in I.

We wish to formulate and prove an inequality involv-
ing a time integral of F. This is most conveniently done
by multiplying Fby a peaked function of time whose time
integral is unity and whose characteristic width is t0. A
suitable choice of such a function is to/[~(t +to)].
Define the integrated fiux P by

p to F(t)dt
—~t +t0

From Eq. (5), P may be expressed as

I' =—Re g i/kk'( & aktak. )e
k, Ic'&0

—(k+k')to+&a„a„)e ') .

In Appendix B it is shown that
k —k'( toi/kk'& akak )e

k, k'&0

i/kk'&ata ~ )e ', (8)
Ic, k'&0

and that the right-hand side of Eq. (8) is real. Thus

F ~ —Re g i/kk'e
k, Ic'&0

X ( & akak') + & akak') ) (9)

However, the right-hand side of the above inequality is of
a form to which the lemma proven in Appendix A may
be applied. Take h(k)=i/ke . Then the lemma [Eq.
(Al 1)] tells us that

F~ — g h'(k) .
Ic &0

(10)

At this point we may let the periodicity length L become
infinitely large, in which limit gk &0~(L /2') f 0 dk
Performing the resulting integration on k yields our final
result:

We are interested in the most general quantum state in
which only particles moving in the +x direction are
present. A negative-energy Aux then arises if the energy
How is in the —x direction. Consider the energy Aux at
an arbitrary spatial point, which we take to be x =0, as a
function of time:

F(t)=&T ')

F(t)= idEi [ 5(t)+—5(t —T)] . (12)

This represents a pulse of negative energy followed a time
T later by an exactly compensating pulse of positive ener-
gy. The inequality [Eq. (11)]yields

T2+t2

16t0T

This relation is true for all t0, but the best constraint on
(b,E( is obtained by setting to = T. Then we find

This inequality tells us that there is a maximum separa-
tion in time between the two pulses which is within the
limits allowed by the uncertainty principle. An inequali-
ty similar to Eq. (14) was derived in Ref. 4 for the case of
6-function pulses produced by moving mirrors. The
present argument shows that, at least for two-
dimensional Bat spacetime, this conclusion is independent
of the mechanism for generating the pulses. In Ref. 4 the
inequality was used to argue against the possibility of us-
ing negative energy to violate cosmic censorship. More
generally, we can see that the effects of a negative-energy
pulse of magnitude ~b,E~ cannot last for a time longer
than 1/~bE~ before the positive energy arrives. Thus the
magnitude of the negative-energy pulse is within the scale
of the natural quantum Auctuations on a time scale T.

III. FOUR-DIMENSIONAL FLUX INEQUALITY

We now wish to turn to the problem of formulating
and proving an inequality on negative-energy Auxes in
four-dimensional spacetime. Again, we consider a free,
massless, minimally coupled scalar field for which the
energy-momentum tensor is of the form of Eq. (2). The
mode functions may be taken to be

F I (k.x —cot)

i/2' V
(15)

where co= ~k~ and V is the normalization volume. The

p&
16mt0

This integrated inequality is a rigorous version of Eq.
(1), the type of inequality conjectured in I and discussed
in the Introduction. Note that t0 is the characteristic
time over which the Aux is sampled. The inequality tells
us that the magnitude of the Aux cannot be more negative
than t0 times a dimensionless number which is small
compared to unity. The sampling time t0 can be chosen
arbitrarily and need not be a physical time scale associat-
ed with a given energy Aux. However, it is most natural
to take it to be a time scale associated with the duration
of the negative-energy pulse. Because the total energy in-
tegrated over all time must be non-negative, there must
be a compensating positive-energy pulse either preceding
or following the negative energy. The most efficient sepa-
ration of positive and negative energy is obtained by 6-
function pulses. Consider the Aux
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energy Aux in the +x direction is given by the expecta-
tion value of T ':

In order to discuss meaningfully whether F„ is negative
as a result of quantum coherence effects, we must restrict
the quantum state to have excitations only of modes with
k, ~ 0. Apart from this restriction, the state is complete-
ly arbitrary. As in the two-dimensional case, we may
take the spatial point at which the Aux is evaluated to
have spatial coordinate x=0. Then F may be expressed
as

1 k„co'+k '
coF (t)= Re g

~ ( (a 1'
)e i ( n& co')—t

+ ( a )ei (co+ru—')t)

quantum state
~ P ), from the original state

~ f ), by a rela-
beling of the modes k~k. This relabeling is defined as
follows: If g (k) )0, then k is obtained by rotating k so
that it lies in the yz plane. However, if g (k) 0, the k is
obtained by rotating k so that it lies along the x axis. The
net e6ect of this relabeling is to remove positive contribu-
tions from F and to enhance the magnitude of negative
contributions. Thus the Aux in the new state is less than
or equal to that in the original state. But the new state
~P) is a state with only modes along the x axis excited.
Consequently, the right-hand side of Eq. (20) is a lower
bound not just for such states, but for all states. Thus, if
we apply the lemma for Appendix A to Eq. (20), we find

F. ~ — y. ~~(k)~', (22)
k

cgt pwhere h = i/coe '. In the limit that V~ ao,
gk~(V/4m ) jo deuce . (Recall that k, ~0.) Perform-
ing the integration on co yields our final result:

where it is understood that only terms with k &0 and
kj', +0 contribute to the sum. We define the integrated
Aux as before:

324.3 2' t o
(23)

„F„(t)dtF =—
t +to

1 kx~ +kx~

—~to co (tpX((a„a„.)e
—(~o+ ~o')tp

+&akak'&e (18)

—(to+ co') tp+&a„a„.&e ') . (19)

However, the inequality proven in Appendix B [Eq. (8)]
may be applied to this expression to show that

1 —(co+ co')t
p6 ~ Re g v coco e

k, k'

X ( & akak. ) + & akak & ) . (20)

This is now in a form to which the lemma of Appendix A
may be applied.

Before doing this explicitly, let us show that the result
will be a lower bound on the Aux for any state for which
the excited modes have k„0, not just states with all
wave vectors in the x direction. For a general state we
could perform the sum on k' in Eq. (18) and define g (k)
so that

F, = gg(k) .
k

(21)

Now classify modes by the sign of g (k), and define a new

Let us first consider the case of a state where all the ex-
cited modes have wave vectors along the x direction. In
this case, k„=co and k„' =co', and so we can write F„ for
such a state, which we will denote by 0, as

C=—Re g i/coco'(&akak. )e
1 —

/co —cu'/tp

This inequality is the four-dimensional version of Eq.
(11). In effect, it states that if a negative-energy fiux lasts
for a time ~, then its magnitude will be less than about
~—4. Thus the magnitude of the negative energy which
passes through an area A in this time is less than Av.
If the collecting area A were to be made arbitrarily large,
then this energy would be unbounded. However, if the
dimensions of the absorbing system are greater than ~ in
any direction, then the diferent parts of the system are
not in casual contact on this time scale. In this case the
system does not act as a coherent whole, but rather as a
collection of disjoint subsystems, each having linear di-
mensions of order ~, and these subsystems become the ob-
jects of interest, rather than the whole system. Thus we
should require that 3 ~ ~, in which case the magnitude
of the negative energy absorbed is less than I/v, again
within the limits of quantum Auctuations on this time
scale. Let us return to the case of 6-function pulses; the
four-dimensional analog of Eq. (12) is

F (t)= [
—5(t)+5(t —T)] .

fSE)
(24)

This represents a plane 5-function pulse of negative ener-
gy which has a magnitude ~AE~ over a collecting area 2
and which is followed a time T later by compensating
positive energy. Here we may regard T as being the time
scale ~ for the duration of the negative energy. If we in-
sert this into Eq. (23), set to = T, and require that A ~ T,
then we find that

(25)

Again, there is a constraint which requires the positive
energy to arrive within a time I /~b, EI,

IV. DISCUSSION

We have seen that there are inequalities which con-
strain the magnitude and duration of a Aux of negative
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1
p I2

(26)

In four dimensions we consider a region of length l and
cross-sectional area A. Again, the duration of the Aux

energy. These inequalities may be formulated as integrals
of the Aux multiplied by a sampling function. The partic-
ular sampling function used in Eqs. (6) is a convenient
choice; however, it is expected that similar theorems
could be proven using other sampling functions. Both
the two- and the four-dimensional versions of the in-
tegrated inequality [Eqs. (11) and (23), respectively] are
valid for all quantum states with particles moving only in
the +x direction. These inequalities ensure that on a
time scale t, a system cannot absorb negative energy
whose magnitude exceeds about I /t T.hus this negative
energy is within the scale of the quantum energy Auctua-
tions on this time scale. This prevents Aat-space
negative-energy fluxes from having dramatic, macroscop-
ic effects.

The key to the proofs of these inequalities is the lemma
[Eq. (All)] proven in Appendix A. Because the sum Sz
contains N terms, we might have expected that Sz could
vary as —X as N increases. In fact, the lemma guaran-
tees that it cannot become negative any faster than —X.
It is this limit on the negativity of S& that is crucial to
the existence of limits on the negativity of the energy
Aux.

Davies has noted that it is possible to find two-
dimensional moving-mirror trajectories which produce
rapidly changing negative-energy Auxes. Such Auxes can
even be made to diverge in some appropriate limit. These
rapidly changing Auxes appear to violate an inequality of
the form of Eq. (1) because an arbitrary amount of nega-
tive energy can be radiated in a given time interval.
Davies suggested that this is due to the fact that the argu-
ments given in I for states produced by moving mirrors
assume slow motion. However, the proof of Eq. (11)
given in the present paper has no such restriction. We
may understand why a rapidly varying Aux is consistent
with Eq. (11) in the following way: If we wish to accu-
rately sample such a Aux in the region where it is becom-
ing very negative, we must choose to to be very small
and, hence, make the right-hand side of Eq. (11)very neg-
ative. In the case of a rapidly changing Aux, the effective
value of t that we should understand in Eq. (1) is not the
entire duration of the negative flux, but rather the (much
shorter) time during which the greater amount of nega-
tive energy is emitted. Conversely, if we choose to to be
large, the right-hand side of Eq. (11) is less negative be-
cause the sampling function is picking up some of the
compensating positive Aux that must precede or follow
the negative Aux.

It is of interest to note that there also seem to be con-
straints on the density of negative energy. First, consider
the two-dimensional case. If we wish to fill a region of
length l with negative energy, then we need to shine a
beam of negative energy of duration t ~ l into the region.
Thus the energy in the region is bounded by
E ~ —t '~ —l ', and the average energy density is
bounded by

which injects negative energy into the region must be
t &l, so that the energy in the region is bounded by
E ~ —Al and the average energy density by

1
p l4

(27)
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The above argument is somewhat heuristic as it assumes
that the negative-energy density is built up by shining
negative energy into a region. One could conceive of a
process which is better visualized as being the result of
forcing positive energy to leave the region. In the latter
case it is unclear that there would be a constraint on the
negative-energy density. The task of proving more
rigorous inequalities on p„remains.

Both the inequalities on Auxes and those on energy
densities are presumably examples of a wider class of ine-
qualities which constrain all quantum violations of classi-
cal energy conditions. A11 of these inequalities prevent
quantum coherence effects from producing such large-
scale effects as gross violations of the second law of ther-
modynamics or of cosmic censorship. However, this does
not mean that the effects of negative energy are never ob-
servable. Such effects can lead to a suppression of the
natural quantum vacuum Auctuations. To the extent that
the latter produce observable effects, then so can negative
energy. The observability of negative energy has been
discussed by several authors. In particular, Grove
has shown how negative energy can reduce the excita-
tions that would otherwise occur in a switched detector.

The treatment in this paper has been restricted to Aat
spacetime, and so it will be of interest to generalize these
inequalities to curved spacetime. It is clear that there can
be observers in curved spacetime for whom the Aux ap-
pears to be unconstrained by an inequality of the form of
Eq. (1). An example is an observer near the horizon of an
evaporating black hole who sees a steady negative Aux

going across the horizon to compensate the thermal
Hawking radiation being emitted to infinity. ' However,
this Aux leads to no violation of the second law of ther-
modynamics. Furthermore, such observers are not iner-
tial, and so one must be careful in the interpretation of
their measurements. It is well known that accelerated
detectors in the Minkowski vacuum state appear to
detect particles.

In summary, in this paper we have provided a precise
formulation and proof of inequalities which constrain
negative-energy Auxes in Aat spacetime. These inequali-
ties are of the form required to prevent macroscopically
observable violations of the second law of thermodynam-
ics and of cosmic censorship. Further work is needed
to generalize this work to curved spacetime, but it is
reasonable to expect that there are inequalities that con-
strain all quantum violations of classical energy condi-
tions.
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APPENBIX A

In this appendix we wish to state and prove a lemma
concerning the expectation value of a bilinear product of
creation and annihilation operators. Let g) be a general
quantum state for a boson field. In the Pock representa-
tion it may be expressed as

(Al)

N
I'z= g h;h~(a, a +a;a +H. c.), (A3)

and let

s =&pie ly&

Let the [h,. } be an arbitrary set of real numbers, and
define the operator P& by

=2Re g h;h. ((a,. a )+(a;a )) . (A4)

g lc(In;})l =1. (A2)

where
l t n; } ) is a particle number eigenstate with n, par-

ticles in mode i, and the label i runs over all modes. Here
is a sum on all possible values

of the occupation numbers n, . The coefficients c( [n; } )
satisfy the normalization condition

Here N is an arbitrary integer, and H.c. denotes the Her-
mitian conjugate. The quantity SN is an expectation
value of products of creation and annihilation operators
of the form which appears in the expectation value of the
energy-momentum tensor. We wish to establish a lower
bound on this quantity.

First, let us write SN explicitly as

r

S&= g g h, [n, lcl +Qn, .(n; —1)c*(n;—2)c]
In, j i =1

+ g h;h~[Qn (n;+1)c*(n;+1, n —1)c+Qn;n~c*(n; —1, n, —1)c] +c.c.
IWJ

(A5)

Here c.c. denotes complex conjugate, and the arguments of the coefFicients c are only written explicitly if they are
different from n, Thus c =c ( I n; } ) =c (n „nz, . . . ), whereas c (n, —2) =c (n „nz, . . . , n; —2, . . . ), etc. Next, write

N
S~= y y h I(n;+1)lcl'+n;lcl'+Vn;(n; —1)[c'(n; 2)e+c c ]}

In,. j i=1

+g h;h [Qn (n, +1)c*(n,+1, n —1)c+Q.n, n c*(n, l,. n . —1)e—+c.c. ] —g h; (A6)

where we have used the normalization condition [Eq. (A2)] to add and subtract the term

y y h,'lcl'= y h,'.
In,. j i =1

Relabeling the sums on the occupation numbers n; enables us to write

(A7)

S~= g g h, [n, lc(n, —1)l +(n;+1)lc(n;+1)l +Qn, (n, +1)[c*.(n; .—1)c(n, +1)+c.c.]}.
In,. j i =1

+ g h;h I+n n;c (n —1)c(n; —1) +Q( n+1)(n;+1)c (n +1)c(n; +1).
I WJ

+[+(n;+1)n~e*(n —1)c(n;+1)+c.c. ]} —g h,
2 .

Here examples of the relabelings which we have used include

g Qn (n;+1)c (n, +1, n —1)c = g Qn n, c*(n —1)c(n; —1).,
I n,. j I n,. j

g Qn (n;+1)c*(n, +1, n —1)c = g Q(n~ +1)(n;+.1)c*(n +1)c(n;+1) .
I n,. j

(A9)

FinaHy, we may factor the terms which are quadratic in the coeS.cients c, and write
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N
SN= g g h;[Qn;c(n; —I)+Q(n;+l)c(n, +1)]

In,. I i =1

From this form it is apparent that
N

SN~ —g h,
i =1

This is the lower bound on SN which we wish to establish.

N—gh (A 10)

(Al 1)

APPENDIX 8
In this appendix we wish to establish the inequality [Eq. (8)]

—k —k' —k+k')
Re g &kk'(akak )e '~ g &kk'(akak )e

k, k'&0 k, k'&0
(B1)

B „=&mn e ' +"'Re(a a„)
and

a~m——
n~

—a(m+n))+ R ( t ) (e
—a[~m —

n~
—1m+n)]

mn e oman mn

With k =2mmL ', k =2rtnL ', and a=2rttoL ', we see that Eq. (Bl) is equivalent to

(B2)

(B3)

m, n =1

First, we note that B„„Obecause ( a„a„)is just the mean number of particles in mode n Furthe. rmore, the sum of the
B „over any square block centered on the diagonal is the norm of a state vector and, hence, non-negative:

J+M
B „=

m, n =J

J+M
&n e "a„IQ) ~0 .

n=J
(B5)

Here J and M are any non-negative integers. Hence the right-hand side of Eq. (Bl) is both real and non-negative. We
wish to demonstrate Eq. (B4) by considering first a finite sum:

N N N —1 —1

~ n= X ~tt+ X (~ tN +~N —,, l) (B6)
m, n =1 /=I j=O

In Eq. (B6) we are summing over all of the elements of the matrix A in the following way: For each diagonal element
sum up the elements in the same row lying to the right of and the same column lying below the diagonal element. The
index j in Eq. (86) runs up the column and across the row from right to left.

Note that for fixed I, each of the A „which appears on the right-hand side of this sum is related to the correspond-
ing B „by a factor of (e ' —1) because (m+n) —Im nI=1+—N —j —IN —j —lI =2l. Thus we may write

N N N —1 —1

~ „=g (e' ' —1) Bit+ g (Bl,N j+BN j,l)— —
m, n =1 j=0

1)BNN+(e I )I BN —1, N —1+(BN—I,N N N —1)]

1 ) [BNN+BN —1,N —1+(BN —1,N+BNN —1 ) ]

1+(e"" "—1) BN 2, N 2+ g (BN —2, N——j+—BN —j,N —2) +
j=0

2 2

(e ' ' —1) g BN;N +(e ' —1) BN 3N 3+ g (BN 3N '
N N 3) +

i,j=0 j=0
J

k)( 2 (N —ak) 1) y B +( 2a(N —k —1)
7

i,j =0
k

N —k —1, N —k —1+ X (BN —k —1,N —j+ N —j,N —k —1)
j=0

—(
' —1) g BN; N, =(e' —1)

i,j =O

N
B „~0.

m, n =1
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Here we have repeatedly used the non-negativity of a sum on 8 „over a square block [Eq. (B5)] and the fact that
(e ~ —1)~(e~ ' "—1). From Eqs. (B5) and (B7), we can see that

N „~0. (BS)

Because this is valid for all N, we have the result which we wish to prove [Eq. (B4)] or the equivalent [Eq. (Bl)].
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