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We study regular Schwarzschild black holes in general relativity as an alternative to the singular
counterpart. We analyze two types of solutions which are completely parametrized by the Arnowitt—Deser—
Misner mass alone. We find that both families of regular solutions contain a de Sitter condensate at the core
and admit (quasi) extremal black hole configurations in which the two horizons are arbitrarily close.
Cosmological models based on these regular configurations are also analyzed, finding that they describe

nontrivial Kantowski-Sachs universes free of singularities.
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I. INTRODUCTION

It is well known that general relativity (GR) predicts
singularities inside trapped regions, as stated in the singu-
larity theorems [1,2], based on general and quite reasonable
assumptions about the matter source. If we accept the weak
cosmic censorship conjecture [3] to exclude the presence of
naked singularities in nature, this means that the end of the
collapse could well be described by vacuum black hole
(BH) solutions of GR.

On the other hand, one can consider types of matter that
circumvent the singularity theorems, allowing the collapse
to form an event horizon without leading to a singularity.
This is the case of regular (that is completely nonsingular)
BHs. Unfortunately, this inevitably leads to the existence of
at least a second horizon, the so-called Cauchy horizon,
which has proven particularly problematic [4,5] (see also
Refs. [6-15] for recent studies), thus motivating the strong
cosmic censorship conjecture [3].

If we ignore for now all the problems associated with the
Cauchy horizon and focus mainly on the construction and
analysis of regular BHs, we will quickly realize that their
production remains relatively easy (by employing still
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reasonable forms of matter). It is even possible to describe
them in terms of a nonlinear electrodynamic theory [16].
Unfortunately, the above does not shed much light on the
fundamental problem, i.e., the details of how the singularity
is formed and, above all, how it is avoided. These are
critical aspects in order to investigate the validity of GR
under conditions of extreme curvature. If these nonsingular
configurations really form during the collapse, effects
associated with the Cauchy horizon seem to indicate that
they are unstable, and would therefore represent at best a
transitory state in the eventual formation of a singularity.

All the questions mentioned above require a detailed
study of the inner BH region. Most cases exhibit a simple
internal geometry, which is of course consistent with the
ultimate state of the collapse. However, as argued in
Ref. [17], the interior need not have this extreme simplicity,
since the weak cosmic censorship conjecture establishes the
formation of the event horizon before the singularity
appears, thus allowing for more complex internal structures
than the eventual final singularity. This is precisely the case
reported in detail in Ref. [17], where alternative sources for
the exterior region of the Schwarzschild BH in GR were
investigated. Among the most attractive characteristics of
these solutions, we highlight: (i) they depend on one para-
meter, namely, the total Arnowitt-Deser—Misner (ADM)
mass M (no primary hair); (ii) no form of exotic matter is
present; (iii) the space-time is continuous across the horizon

© 2025 American Physical Society
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without additional structures on it (like a thin shell); (iv) tidal
forces are finite everywhere for (integrable) singular sol-
utions [14,18]; (v) there are simple regular solutions which
might be an alternative to the Schwarzschild BH as the final
stage of gravitational collapse.

So far, only singular cases of revisited Schwarzschild
BHs have been considered, both in the cosmological
context [19] and for the analytical modeling of the gravi-
tational collapse [20]. The aim of this work is therefore
twofold: first, to analyze in detail the case of regular
Schwarzschild BHs and, second, to study the cosmological
models associated with these solutions. The main differ-
ence is given by the unavoidable presence of an inner
horizon which introduces new features with respect to the
singular cases previously studied in Refs. [19,20]. About the
first point, we will show that there exists (quasi) extremal
configurations with Schwarzschild exterior, despite the
metrics only depend on one parameter M. For the second
point, we are not aware of existing papers that exploit regular
BH solutions to generate cosmological models. Again, the
presence of two horizons makes the nonsingular cases richer
than those corresponding to singular metrics that were
studied in Ref. [19], leading to (quasi) cyclic evolutions.

II. INSIDE THE BLACK HOLE

We begin by reviewing briefly the approach employed in
Ref. [19] for static and spherically symmetric metrics of the
Kerr-Schild form [21]

ds* = —f(r)dt*> + ar + r2dQ? (1)
a f(r) ’

where

2n(r)

f=1- )

The Schwarzschild solution [22] is obtained by setting the
Misner-Sharp-Hernandex mass function

m(r) =M, forr>0, (3)

where M is the ADM mass associated with a pointlike
singularity at the center » = 0. The coordinate singularity at
r = 2M = h indicates the event horizon [23-27].

We slightly relax the condition (3) to'

m(r) =m(h) =h/2 =M, forr>h, (4)
so that the metric function (2) is given by
f 1—27’”Ef‘, forO<r<h
1 =PM=ft forr> b

(5)

'"We shall denote F(h) = F(r)|,_, for any F = F(r). We shall
also use units with ¢ = 1 and x = 82Gy.

The system is governed by the Einstein-Hilbert action

S = / @ + cM> J=gd*x, (6)

with R the scalar curvature and the Lagrangian density Ly,
representing ordinary matter. Equations (5) and (6) imply
that £Ly; = 0 for r > h, and inside the horizon 0 < r < h
one finds the energy-momentum tensor

T+, = diag[p,, —€, pg, po), (7)

where the energy density ¢, radial pressure p,, and trans-
2
verse pressure p, read

2m/ m//

R pr:_ﬁv pﬁz_;’ (8)
where primes denote derivatives with respect to r. Since
Eq. (8) are linear in the mass function m, any two solutions
can be linearly combined, as a trivial case of gravitational
decoupling [28,29].

From the contracted Bianchi identities V,G¥*, = 0 one
obtains the continuity equation

= 2 (pe=p)). 9)

€ =——
,

which implies that py > p, if the energy density ¢
decreases monotonically from the center outward (¢/ < 0).
Continuity of the metric (5) across the horizon r = h
requires the matching conditions

m(h) =M,  m'(h) =0, (10)

and, from Egs. (8) and (10), one must also have

e(h) = p,(h) = 0. (11)

The tension py can instead be discontinuous across r = h.

ITII. REGULAR BLACK HOLES

In this section, we will analyze in detail the regular BHs
with Schwarzschild exterior, starting with the scalar cur-
vature for the interior metric (5), which reads

2 " 4 !
R="T" T for0<r<h, (12)
r
In order to have a regular BH solution, we start by

assuming [17]

“Recall that the coordinates ¢ and r exchange roles for
0<r<h.
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neN, (13)

Grmry Y

for0 < r < h, where M and Q are integration constants that
can be identified with the ADM mass of the Schwarzschild
solution and a charge for the Reissner-Nordstrom (RIN)
geometry, respectively. In order to have a nonsingular
configuration, i.e., the Ricci scalar (12), Ricci square
R, R" and Kretschmann scalar R, ,,R**? that are regular
around r = 0, we must then impose

M=Q=0. (15)

On the other hand, Eq. (8) now yield

ke = :02 C,;":_n_; = —Kkp, (16)
and
I 5
er:_inz:;n—l—ZC"rn , (17)
forO<r<h

A. Regular Schwarzschild BHs

The simplest regular solution with Schwarzschild
exterior was found by imposing the continuity conditions
(10) on the mass function (14) [see Ref. [17] for all details],
which yields

)] o

where 2 < n €N is a parameter (not hair) which labels a
family of regular BHs, and whose physical interpretation
will be elucidated later. The corresponding metric function

reads
1 r\ =27 r?
—=1- 1-3(- — 1
T N

which gives rise to the curvature

R:n+;[4—(n+2)<2>n_1;21 (20)

n—

and is sourced by a fluid with

n+1 r\" 21 3
Ke——rcp,—n_z{l—(z> }ﬁ (21)

and

n+1{[n (r\"? 3
- S A D 22
Kpo n_2 |:2 <h> :| hz? ( )

with all expressions of course valid for 0 < r < h. These
fluids sourcing the BH solutions (19) satisfy the weak
energy condition, and represent alternative sources for the
Schwarzschild exterior r > & in Eq. (5). Moreover, density
and pressures behave monotonically, as we can see for
n =4 in Fig. 1.

We further notice that the region near r = 0 always
behaves like the de Sitter solution with effective cosmo-
logical constant Ay = 3/h%, namely

frol=r/m, (23)
with
ke = —Kkp, ~ —Kkpg~3/h* ~R/4. (24)

For increasing n > 2, this de Sitter core grows toward the
horizon, where the behavior changes in order to match the
Schwarzschild exterior, as illustrated for » = 30 in Fig. 2.

B. Regular Schwarzschild BHs with py(h)=0

We have seen that, unlike the density and radial pressure,
the tension p, does not need to vanish on the horizon when
the metric in the exterior is given by the Schwarzschild
geometry. In fact, Eq. (22) yields a finite value py o h™>
at r = h.

A family of regular solutions with smoother match with
the outer Schwarzschild metric can be found by further
imposing

po(h) & m”(h) =0, (25)

which yields
v ) |5 26)

with 2 < n < [ e€N. [Notice that Eq. (26) is invariant under
the exchange [ <> n.] The corresponding metric function
reads
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FIG. 1. Mass function (18) for n = 4 (top panel), corresponding
metric function (5) (middle panel), and density and pressures (21)
and (22) (rescaled by a factor of 100 for convenience; bottom
panel). Vertical dashed lines represent the horizon 7 = 2M. The

Cauchy horizon is at h, = \/Z/_Bh (All quantities in units of M).
(DI [\ 3(1-2) r\"
r=1-tis |6 e e )
3(n—-2) r\!
Tt () | 2

and the source is characterized by

1.0

— f
—

0 1 2 3 4 5 6
r
— €
4
— Pr
3 — P
2
1
0
0.0 0.5 1.0 1.5 2.5 3.0

r

FIG. 2. Metric function (5) for n =30 (upper panel), and
corresponding density and pressures (21) and (22) (rescaled by a
factor of 10 for convenience; lower panel). Vertical dashed line
represents the horizon i =2M coincident with the Cauchy
horizon. (All quantities in units of M).

[ =@ - 0T
X%:_m (28)

+l(n—2) N\ n(l=2)(r\"] 3
2(l—=n) \h 2(l—n) \h r?
D(l+1
An DU (29)
(n=2)(1-2)
The above solution represents the simplest regular BH with
Schwarzschild exterior having continuous energy-momen-
tum tensor across the horizon, i.e., T#,(h) = 0.
Like the cases in Sec. III A, the solutions (27) satisfy

the weak energy condition, and represent an alternative
source for the Schwarzschild exterior r > h in Eq. (5).
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Moreover, the expressions (26)—(29) converge to those in
Egs. (18)—(22) for / > n in the region r < h.
Equation (26) for [ =4 and n = 3 reads

3
nz::é%z(lth-15hr4-6r2) (30)

This is the same mass function for the metric found in
semianalytic form in Ref. [30], which is however not of the
Kerr-Schild type.’ For a Kerr-Schild metric (1), the mass
function (30) results in a Cauchy inner horizon at r = h/2
and the source is characterized by

K6:—Kp,:W(h—r)2(h+2r) (31)
and
6
erzﬁ(h—r)’ (32)
with curvature
R—%<1+5h—}j—6h—’;2), (33)

in the interior 0 < r < h.

C. Extremal Schwarzschild BHs

It is easy to see that all of the regular BH interiors
described by the metric functions (19) and (27) of the
previous Sections have a single inner horizon. A rather
interesting aspect of these solutions is then that they also
contain configurations that are almost extreme black holes,
as we will see below.

The interior metric function f~ has a minimum,

(f7) (re) =0, (34)

which, for the solutions (19), is located at
2 1\ 1=
=h|=(1+- . 35

lim r, = h, (36)

n—oo

Since

this minimum shifts toward the event horizon for increasing
values of n. Consequently, the Cauchy horizon given by
f~(h) =0, with h. < h, is located at

he ~ b, (37)

To our knowledge, this was the first work about a BH with
exact Schwarzschild exterior and distributed source.

3

— €
2

— Pr

1 : —
0
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FIG. 3. Density and pressures (rescaled by a factor of 10 for

convenience) for the solution (27) with n = 3 and [ = 4 corre-
sponding to the mass function (30) (upper panel), and the quasi-
extremal case for [ = 4n = 80 with the Cauchy and event horizon
almost merging at r = h (lower panel). Vertical dashed lines
represent the horizon h = 2 M. (All quantities in units of M).

for n > 2. Such configurations represent quasiextremal BHs
with de Sitter core and Schwarzschild exterior separated
by a (infinitesimally thin) region /. < r < h, as displayed in
Fig. 2. The parameter n for the solutions (19) therefore
measures how close to extremality the object is.

Since the solutions (19) are a particular case of the
expression in Eq. (27) for [ > n, we conclude that the
solutions (27) must have the same causal structure. It is still
important to remark that the solutions (27) are generated
by fluids whose energy-momentum tensor is completely
continuous across the event horizon r = h, as displayed in
Fig. 3. The solutions analyzed in Sec. III B can therefore be
viewed as an improvement over those in Sec. Il A.

We can obtain even smoother solutions by considering a
generic polynomial of N terms of the form

m=Csr + C,r" + Cirl + Cpr? 4 .., (38)

where the unknown coefficients can be determined by the
continuity condition (4) and
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TABLE 1. Interior of regular Schwarzschild BHs with mass functions (18) and (26).
{n,1} m(r) e>0 Energy condition
_ (1) (+1) 3(-2) n ., 3(n=2)

f2<n<i) m = G5 [GF - s 6 + e @15 Weak
{2<nxl} mNZ(n_rm[%(,H_ 1) = 3(%)"] Yes Weak
{2<nxi} m~ % Extremal BH with A, ~ h Yes Weak
{2<n,l-> o} m= sty [hﬁz(n +1)- 3(@:1] Yes Weak
{2<«nl - oo} m ~ 3 Extremal BH with h ~ h Yes Weak

dim 2(7) =

G =0. (3) @(e) = F(z)

g b2 (7) = (7). (44)

forall 1 < g <N — 1. As we have seen, full continuity of
the energy-momentum tensor across the horizon is obtained
for N = 3, corresponding to the inner metric functions (27).
A summary of the cases with N = 3 and N = 2 is given in
Table I for convenience. However, as we have just seen, the
inner regular region could be much richer than illustrated in
Table L.

IV. COSMOLOGY

For all the regular BHs described in Table I, the region
h. < r < h lies between two horizons and can also be
considered as a whole universe [31]. In fact, the metric
signature is (+,—,+,+) inside this region where r
becomes a time coordinate. To make the role of time
and spatial coordinates more explicit, we can swap ¢ <> r
therein, so that the corresponding line element reads

dr

ds> = —m

+ F(t)dr* + dQ?, (40)

where

>0 (41)

with the mass function m given by the different cases listed
inTable I and h, =1 <t <ty =h.

We can next write the metric (40) in terms of the cosmic
(or synchronous) time defined by

dr==+ , (42)

which leads to the generic cosmological solution
ds* = —di® + a*(7)dr? + b*(7)dQ?. (43)

The metric (43) represents a Kantowski-Sachs homo-
geneous but anisotropic universe [32,33] with scale factors

The nonvanishing components of the corresponding
Einstein tensor are given by

1 2ab b?
V= S+ =+ 45
%o <b2+ ab +b2> (45)
Gl = - i+2—B+E (46)
1= b2 b b2
ab a b
Gi=—-—+—-+-]|, 47
2 (ab+a+b) (47)

where dots denote derivative with respect to z.

Let us then consider a regular BH described in the first
line of Table I, with n = 3 and [ = 4, so that the function in
Eq. (41) reads

[ O

where ¢ runs between the two horizons at r =h and
t = h/2. The corresponding expression for the cosmic
time (42) is integrable, leading to a finite lapse between
t =h/2 and t = h. If we choose the initial value 7 =0
corresponding to t = //2, the final time can be computed
numerically and is given by

mo [h_d
B 1/2 1/ F(1)

In the vicinity of the point r = h/2, we can write

~1.9h. (49)

TOE

h

with 0 <y <« h/2, and we find

h %y dx hy
~24 /= — =44/ = 51
‘ \/;/ VX 7 (1)
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Correspondingly, the components of the Kantowski-Sachs
metric read

h? 772
b2:t221<1+ﬁ), (52)
and
4972
a*=F~ i (53)

One can directly check that the scalar curvature

i b ab
R=-"—4--4"—"_2
a b ab

o2

Py Y

is regular near 7 = (. Other invariants are also not singular
and the universe is regular at 7 = 0.
We can repeat the analysis near ¢t = h, by defining
t=h-y, (55)
where again 0 <y < h/2. The cosmic time then reads

t 1y —2/hy, (56)

and the Kantowski-Sachs metric functions are given by

2
P =12~ [1 - L’z hf) } (57)
and
Y
@ =Fx~ %. (58)

This point is also nonsingular.

Overall, the above case corresponds to a quasicyclic
universe which starts at 7 = 0 with @ = 0 and b = h/2 (the
radius of the inner horizon). As the synchronous time
increases, both a and b increase, but a reaches a maximum
at 7 = 7; determined by the condition

dF t r t
—=—(24—5-45—-4+20| =
7 h( 0 5h+ O) 0, (59)
after which a decreases and reaches zero at T = 7;, when
b = h (the radius of the outer horizon). It is easy to
compute the solution of Eq. (59), which is given by

45 —+/105

and the corresponding cosmic time can then be computed
numerically, to wit

7, ~0.79h. (61)

Obviously, the first derivative of the scale factor b is
always positive, since

b=t=VF=a. (62)

Since b = a, when the scale factor a is growing (for
0 < 7 < 17), the scale factor b grows with positive accel-
eration. For 7; < 7 < 7, the scale factor a is decreasing
and the scale factor b increases with negative acceleration.

This behavior remains qualitative the same in all cases
containing two horizons, the main difference being the
location (or time) of the inner horizon (the outer horizon is
fixed at t = h). For example, for n = 3 and [ = 0, one finds

PG

and the inner horizon is at

L1+ V13
=

h=~0.77h, (64)

which is larger than the value t = h/2 forn = 3 and [ = 4.
A particularly simple case is obtained for n =4 and
[ = 0, namely

F:3(1—2—22><2—22—§), (65)

in which the coordinate time runs in the interval

2
0.82h ~ \/;h <t<h. (66)

The function F for the three cases considered here is shown
in Fig. 4. We finally remark that the sign of the proper time

0.20
— n=3,1=4
— n=3, Isw
0.15
— n=4, loco
= 0.10
0.05
0.00
0.5 0.6 0.7 0.8 0.9 1.0

t/h

FIG. 4. Function F in Eq. (41) for the cases discussed in the
main text.
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7 can be inverted, according to the definition (42), so that
the curves in Fig. 4 could be followed in either direction.

V. CONCLUSION

Circumventing the singularity theorem in GR necessarily
implies the existence of nonclassical states of matter
that somehow manage to stop the collapse. Regular
configurations with finite energy density everywhere then
always contain an additional inner horizon. Achieving
this without introducing exotic matter and maintaining
the Schwarzschild exterior is challenging. In this work, we
obtained regular BHs sourced by a fluid that satisfies the
weak energy condition and are characterized by a single
charge, namely, the ADM mass M of the Schwarzschild
exterior. Moreover, unlike the singular metrics considered
previously in Refs. [19,20], these regular BHs admit (quasi)
extremal configurations in which the two horizon (almost)
coincide. At first glance, this might seem odd, since
extremal configurations are usually achieved by specific
combinations of at least two charges (e.g., electric charge
O = M for the Reissner-Nordstrom and angular momen-
tum a = M for the Kerr solutions).

We remark that the solutions considered in this work
technically admit quasiextremal configurations, since the
two horizons are separated by a layer which can be made
as thin as we want, thus effectively merging them in the
limit of Eq. (36). In the same limit, the surface gravity
k(r) = F'(r) on the Cauchy horizon also becomes as small

as possible, namely

limk(h.) = lim F'(h.) = 0. (67)
This fact is quite significant, and could have consequences
in favor of the existence of stable regular BHs, since the
instability caused by the mass inflation is precisely propor-
tional to x. This is a point that certainly deserves to be
investigated further, since the existence of extremal BHs
described only by the ADM mass M, which also happen to
be stable, would greatly support GR as the theory that
correctly describes very compact objects.

We have also studied nonextremal configurations and
showed that the layer between the two horizons describes
anisotropic Kantowski-Sachs universes, which show a
quasiperiodic evolution and contain no singularity at the
end-points.
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