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We revisit the scenario of primordial black hole (PBH) formation from large curvature perturbations
generated during the waterfall phase transition in hybrid inflation models. In a minimal setup considered in
the literature, the mass and abundance of PBHs are correlated and astrophysical size PBHs tend to be
overproduced. This is because a longer length scale for curvature perturbations (or a larger PBH mass)
requires a longer waterfall regime with a flatter potential, which results in overproduction of curvature
perturbations. However, in this paper, we discuss that the higher-dimensional terms for the inflaton
potential affect the dynamics during the waterfall phase transition and show that astrophysical size PBHs of
the order of 1017−23 g (which can explain the whole dark matter) can form in some parameter space
consistently with any existing constraints. The scenario can be tested by observing the induced
gravitational waves from scalar perturbations by future gravitational wave experiments, such as LISA.
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I. INTRODUCTION

The seeds of the structure of the Universe can be
generated by quantum fluctuations of inflatons or curvatons
during inflation. The amplitude of curvature perturbations is
of the order of 10−5 at the cosmic microwave background
(CMB) scale [1], whereas larger curvature perturbations may
be generated at a smaller scale [2–7]. In fact, observations of
supermassive black hole (BH) [8,9] and BH merger events
by gravitational wave detectors [10,11] imply the existence
of primordial black holes (PBHs) that are generated via the
collapse of overdense regions [12–14].1 The PBH is also a
candidate for dark matter (DM) [25] if its mass is within
1017−23 g (see, e.g., Refs. [26–28]). Such large curvature
perturbations can be generated if the inflaton or a spectator
field goes through a very flat potential during inflation (see
also Ref. [29] for a recent review of PBHs).
One of the simplest examples to generate large curvature

perturbations is the hybrid inflation model, where inflation
ends by a waterfall (second-order) phase transition [30].2

The waterfall field can have a flat potential to generate
large curvature perturbations [50–52]. Since the waterfall
phase transition happens at the last stage of inflation, this

results in large curvature perturbations at relatively small
scales. Although one can make its scale larger by flattening
the potential of the waterfall field, the amplitude of
curvature perturbations then becomes too large. PBH mass
and abundance are correlated in the minimal setup, which
results in an overproduction of astrophysical size PBHs.
This naive picture is actually confirmed by analytical
calculation and numerical calculations in the stochastic
formalism [53,54].
In this paper, we point out that PBHs with an astro-

physical size can be generated in a simple hybrid inflation
model, by demonstrating that the quadratic and cubic terms
for the inflaton potential affect curvature perturbations,
which are omitted in the literature. In particular, the
degeneracy between the PBH mass and its abundance
can be removed by those effects, and the peak amplitude
of curvature perturbations can be reduced by tuning
parameters. We discuss how much tuning is required to
predict the desired amount of PBHs. Moreover, the spectral
index of curvature perturbations at the CMB scale can be
consistent with observations.
The organization of this paper is as follows. In Sec. II, we

briefly review the analytic calculation for curvature per-
turbations, following Ref. [53], and clarify that the resulting
spectrum has degeneracy between its peak amplitude and
corresponding wave number if we omit quadratic and cubic
terms for the inflaton potential. In Sec. III, we take into
account quadratic and cubic terms for the inflaton potential
and show that the degeneracy can be resolved by those
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1There are some other scenarios to have a PBH formed: cosmic

strings [15–17], bubble collisions [18], domain walls [16,19–21],
and collapse of vacuum bubbles [20,22–24].

2See Refs. [3–5,7,31–49] for other models.
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effects. In Sec. III D, we solve the classical equation of
motion numerically and search parameter space that pre-
dicts a desired amplitude of curvature perturbations. We
then consider PBH formation in Sec. IV and show that
PBHs with mass 1017−23 g can be generated consistently
with all existing constraints. We also show that observable
gravitational waves (GWs) are generated from the second-
order curvature perturbations. Section V is devoted to
discussion and conclusions.

II. HYBRID INFLATION MODEL

We consider the hybrid inflation model [50–54]

Vðϕ;ψÞ ¼ Λ4

��
1 −

ψ2

M2

�
2

þ 2
ϕ2ψ2

ϕ2
cM2

þ VðϕÞ
�
; ð1Þ

where ϕ is an inflaton and ψ is a waterfall field. We are
interested in the dynamics of fields around the waterfall
phase transition, where curvature perturbations are gener-
ated for the scales of interest. The inflaton potential VðϕÞ is
expanded around the critical point ϕc as

VðϕÞ ¼ ϕ − ϕc

μ1
−
ðϕ − ϕcÞ2

μ22
þ ðϕ − ϕcÞ3

μ33
; ð2Þ

whereΛ,M, ϕc, μ1, μ2, and μ3 are dimensionful parameters.
The curvature along with the waterfall direction changes
its sign when the inflaton ϕ reaches the critical point. We
denote the time at which ϕ ¼ ϕc as the waterfall phase
transition. The Hubble parameter during inflation is
H2

inf ≃ Λ4=ð3M2
PlÞ. We extend the model in Refs. [53,54]

by introducing the cubic potential in VðϕÞ. We will see that
the cubic term plays an important role to obtain a desired
amplitude of curvature perturbations as well as the observed
spectral index.
In this section, we review the calculation for curvature

perturbations generated from waterfall fields by an analytic
method used in Ref. [53], omitting quadratic and cubic
terms in the inflaton potential. In the next section, we
include the effect of those terms.

A. Spectrum at the CMB scale

We first analyze the dynamics of inflaton before the
waterfall phase transition, where ϕ > ϕc. In this regime, we
can solve the equation of motion for ϕ by approximat-
ing ψ ≃ 0.
We want to calculate the spectral index and amplitude of

curvature perturbations at the CMB scale. We denote the
backward e-folding number at the CMB scale and the one
at the waterfall phase transition asN � andN c, respectively.
The observed amplitude of curvature perturbations at the
pivot scale is given by

PRðk�Þ ≃ 2.1 × 10−9; ð3Þ

where k� (¼ 0.05 Mpc−1) represents the wave number at
the pivot scale [1]. These perturbations exit the horizon
before the waterfall phase transition and should come
from the fluctuation of the inflaton ϕ. Its amplitude is
calculated from

PR ¼ H2
inf

8π2ϵM2
Pl

; ð4Þ

where

ϵ ¼ 1

2

�
MPl

Vϕ

V

�
2

≃
M2

Pl

2μ21
: ð5Þ

From Eq. (3), we require

Λ ≃ 1.7 × 1014 GeV

�
μ1

105MPl

�
−1=2

ð6Þ

or

Hinf ≃ 7.0 × 109 GeV

�
μ1

105MPl

�
−1
: ð7Þ

The e-folding number at the pivot scale is given by

N � ≃ 51.5þ 1

2
ln

�
Hinf

7 × 109 GeV

�
þ 1

6
ln

�
HRH

Hinf

�
; ð8Þ

where HRH represents the Hubble parameter at the
completion of reheating.
The spectral index is given by

ns ¼ 1þ 2M2
Pl

Vϕϕ

V

����
k�

≃ 1 − 4
M2

Pl

μ22
; ð9Þ

where we neglected the contribution of ϵ compared to that
of Vϕϕ and ϕ� represents the field value of ϕ at N ¼ N �.

B. Stochastic effect around the waterfall
phase transition

Around the critical point ϕ ¼ ϕc, the curvature of the
potential along with ψ direction is so small that its quantum
fluctuations efficiently grow with time. It obeys the slow-
roll Langevin equation (see Refs. [55–64] for the first
papers on the subject)

∂Nψ ¼ −M2
Pl

Vψ

V
þ 1

2π

ffiffiffiffiffiffiffiffiffiffi
V

3M2
Pl

s
ξðNÞ; ð10Þ

whereN is the forward e-folding number as the time variable
and ξ is the independent noise hξðNÞξðN0Þi ¼ δðN − N0Þ.
We can neglect the noise term for the inflaton ϕ around the
waterfall phase transition for our purpose.
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The noise term for ψ is important at a time around and
before the waterfall phase transition but can be negligible at
a later time. We divide the dynamical regime into two
phases: the stochastic phase and classical phase [53].
Initially, the noise term dominates ψ’s dynamics.3 This
sets the initial condition for the classical phase, where the
classical equation of motion [i.e., the first term in the right-
hand side in Eq. (10)] dominates the dynamics. We solve
the dynamics of ψ and ϕ and calculate the curvature
perturbations by the δN formalism [66–70].
We denote the forward e-folding number at the time of

the waterfall phase transition (at which ϕ ¼ ϕc) as Nc. Let
us consider the dynamics around N ≈ Nc. If we neglect the
stochastic noise for ϕ, its solution is given by

ϕ ≃ ϕc −
M2

PlðN − NcÞ
μ1

; ð11Þ

for N ≈ Nc. From Eq. (10), the equation of motion for hψ2i
is given by

d
dN

hψ2i ¼
�
4

Π

�
2

ðN − NcÞhψ2i þH2
inf

4π2
; ð12Þ

where we define

Π≡M
ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p
M2

Pl

: ð13Þ

The first term in the right-hand side represents the classical
force, while the second term represents the stochastic force
from the noise term. The solution to this equation can be
written by the error function such as

hψ2iðNÞ ¼ ψ2
0

�
1þ Erf

�
2

ffiffiffi
2

p ðN − NcÞ
Π

��

× exp

�
8ðN − NcÞ2

Π2

�
; ð14Þ

where ErfðxÞ≡ ð2= ffiffiffi
π

p Þ R x
0 e

−t2dt and we use hψ2i ≈ 0 for
N → −∞. The amplitude of hψ2i at the waterfall phase
transition (N ¼ Nc) is given by

ψ2
0 ¼

Λ4Π
48

ffiffiffiffiffiffiffi
2π3

p
M2

Pl

; ð15Þ

where we adopted H2
inf ≃ Λ4=3M2

Pl.
The value of Eq. (15) can be used as the initial condition

for the field ψ at the waterfall phase transition. Then we can
calculate the spectrum of curvature perturbations by solv-
ing the classical equations of motion for N > Nc with the
“initial” condition of ψðNcÞ ¼ ψ0 and ϕðNcÞ ¼ ϕc.

C. Dynamics after the waterfall phase transition

Following Refs. [51,53], we analytically consider the
dynamics after the waterfall phase transition. We omit the
second term in the equation of motion for ψ in Eq. (10) and
solve the classical equation of motion for N > Nc. We
denote hψ2i as ψ2 for notational simplicity. The initial
conditions are given by ϕ ¼ ϕc and ψ ¼ ψ0, with ψ0 given
by Eq. (15).
We introduce the following notations:

ϕ≡ ϕceζ ≃ ϕcð1þ ζÞ; ψ ≡ ψ0eχ : ð16Þ

Here, we assume ζ ≪ 1. This is actually the case until the
end of inflation, where

����VψψM2
Pl

V

���� ¼ cEoI ¼ Oð1Þ ↔ −ζend ≃
cEoIM2

8M2
Pl

≪ 1; ð17Þ

with an Oð1Þ parameter cEoI that determines the end of
inflation.
The equations of motion for ζ and χ are expressed,

respectively, as

d
dN

ζ ¼ −
M2

Pl

μ1ϕc
−

4M2
Pl

ϕ2
cM2

ψ2
0e

2χ ; ð18Þ

d
dN

χ ¼ −
8M2

Pl

M2
ζ; ð19Þ

where we use the slow-roll approximation to neglect the
second derivatives.
We note that the last term in Eq. (18) is negligible

initially and then dominates at a later epoch. We, thus,
decompose the waterfall in two phases, such that the first

3This regime was omitted in Ref. [65], where they set the initial
condition for the classical phase by hand. This is the reason a
desirable mass of PBHs was obtained in the hybrid inflation
model, even if the cubic and higher-order terms in the inflaton
potential are irrelevant for the dynamics. However, this is not
allowed if one correctly considers the stochastic dynamics. In fact,
the probability that hψ2i is deviated from Eq. (15) must be
exponentially suppressed because of the following reason. The
relevant mode exits the horizon at the e-folding number of N c
(∼10). The number of Hubble-volume patches corresponding to
that mode within the present observable Universe is then of the
order of e3ðN−N cÞ, whereN ∼ 60 is the total e-folding number for
the observable Universe. The value of hψ2i is calculated from the
ensemble average over those patches, so that the probability for
deviation from its averaged value is exponentially suppressed by a
factor of e−ð3=2ÞðN−N cÞ. Therefore, one should not take a different
value of ψ at the waterfall phase transition from ψ0 by hand. If one
used a different (wrong) value, the resulting relation between PR
and N c, which we will see shortly, would be modified accord-
ingly. We then conclude that the result is extremely unrealistic if
the field value of ψ at the waterfall phase transition is different
from ψ0.
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term dominates in the first phase and the last term
dominates in the second phase. The threshold between
the two phases, denoted by a subscript 2, is determined by

M2
Pl

μ1ϕc
¼ 4M2

Pl

ϕ2
cM2

ψ2
0e

2χ2 ↔ χ2 ¼ ln
�

M
ffiffiffiffiffi
ϕc

p
2ψ0

ffiffiffiffiffi
μ1

p
�
: ð20Þ

Using Eqs. (3) and (20), we obtain

χ2 ≃
1

2
ln
� ffiffiffi

2

π

r
Π

2.1 × 10−9

�
≃ 9.9þ 1

2
lnΠ: ð21Þ

Thus, we expect χ2 ∼ 10.
In the first phase, χ ≪ χ2 and the last term in Eq. (18)

is negligible. The solution to the coupled equations is
given by

ζðNÞ ≃ −
M2

Pl

μ1ϕc
ðN − NcÞ; ð22Þ

χðNÞ ≃ 4M2
Pl

M2

M2
Pl

μ1ϕc
ðN − NcÞ2: ð23Þ

Denoting the e-folding number at the end of the first phase
as N1, we obtain the e-folding number during the first
phase such as

N1 − Nc ≃
M

ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p
2M2

Pl

χ1=22 ; ð24Þ

where we adopt Eq. (22). The value of ζ at the end of the
first phase is given by4

ζ2 ≃ −
M

2
ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p χ1=22 : ð25Þ

In the second phase, χ ≫ χ2 and the first term is
negligible in Eq. (18). The solution is given by

ζ2ðNÞ ¼ ζ22 þ
M2

8μ1ϕc
½e2ðχðNÞ−χ2Þ − 1�: ð26Þ

We expect that the solutions in the two phases are simply
connected at χ ¼ χ2 with ζ ¼ ζ2. Denoting the e-folding
number at the end of the second phase (i.e., at the end of
inflation) as N2, we obtain the e-folding number during the
second phase such as

N2 − N1 ¼ −
Z

χend

χ2

M2

8M2
Plζ

dχ ¼ M2

8M2
Pl

c
jζ2j

; ð27Þ

where we use Eqs. (18) and (26), and define

c≡
Z

χend

χ2

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2=ð8μ1ϕcζ

2
2Þ½e2ðχ−χ2Þ − 1�

q : ð28Þ

One can demonstrate that c < 1 and it is asymptotic to
unity in the limit of χend ≫ χ2.
In summary, the total e-folding number from the water-

fall phase transition to the end of inflation, N c, is given by

N c ¼ N2 − Nc ¼ Π
� ffiffiffiffiffi

χ2
p
2

þ c
4

ffiffiffiffiffi
χ2

p
�
; ð29Þ

where we use Eqs. (25) and (13).

D. Spectrum at a small scale

Now we can calculate the curvature perturbations from
the fluctuation of the waterfall fields after the waterfall
phase transition. According to the δN formalism [66–70],
the power spectrum of the curvature perturbation R can be
calculated from

PR ¼
�
∂N k

∂ψk

�
2
�
Hinf

2π

�
2

; ð30Þ

where ψk represents the value of ψ at which the mode with
a wave number k exits the horizon atN ¼ N k. Here,N k is
understood as N kðϕk;ψkÞ with ϕk and ψk following the
classical trajectory. The derivative ∂N k=∂ψk means the
partial derivative with respect to ψk with a fixed ϕk.
Within the first phase, we note that

χ ≃
4

Π2
ðN − NkÞ2 −

8M2
Pl

M2
ζkðN − NkÞ þ χk; ð31Þ

and, hence,

N k≡N2−Nk≃
Π
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2−χkþ8ζkðN2−NkÞM2

Pl=M
2

q
; ð32Þ

where we neglected the e-folding from the second phase.
Taking the partial derivative with respect to χk, we obtain

∂N kðχkÞ
∂ψk

≃ −
Π

4ψ0eχk
1ffiffiffiffiffi
χ2

p : ð33Þ

Here, we neglect the term with ζk, because the dominant χk
dependence comes from the exponential factor. Here, χk
can be rewritten in terms of the e-folding number such as

4We note that N1 represents N at the end of the first phase,
whereas χ2 and ζ2 represent χ and ζ, respectively, at the beginning
of the second phase. Since the end of first phase is identical to the
beginning of the second phase, ζ2 ¼ ζðN1Þ. This would be
confusing, but we adopt this notation following Ref. [53].
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χk ≃
4

Π2
ðN c −N kÞ2 ≃

χ2
N 2

1

ðN c −N kÞ2: ð34Þ

We note that this procedure is justified only for χk ≥ 0. The
maximal value is obtained at this threshold such as

PðpeakÞ
R ≃

Π
2

ffiffiffiffiffiffi
2π

p
χ2

≃ 0.013N c

�
χ2
10

�
−3=2

; ð35Þ

where we use χ2 ≫ 1 and neglect c=χ2 ≪ 1 in the second
line. The shape of the power spectrum is determined by eχk
in Eq. (33) such as

PRðN kÞ ≃ PðpeakÞ
R e−2χk ; ð36Þ

where χk can be written in terms of N kðχkÞ by using
Eq. (34). The leading term is the Gaussian form with the
width of N 1=ð2 ffiffiffiffiffi

χ2
p Þ (∼N 1=6).

5

From Eqs. (35) and (36), we observe that the peak
amplitude of curvature perturbations PðpeakÞ

R and its wave
number are determined by the e-folding number from the
end of inflation N c. Therefore, the peak amplitude and
corresponding peak wavelength are related with each other
in the leading-order calculation. Thus, we cannot obtain a
desirable number of curvature perturbations to generate
PBHs with astrophysical scales in the minimal model, where
the second and third terms in the last parentheses in Eq. (35)
are neglected [53]. This no-go theorem for massive PBHs in
the mild-waterfall hybrid inflation is also confirmed in the
full-numerical stochastic-δN approach [54].

III. EFFECT OF QUADRATIC AND CUBIC TERMS

We now extend the analysis to include the next-to-
leading-order effect from the quadratic and cubic terms of
the inflaton potential, which becomes important for a
large Π.

A. Spectral index

The spectral index is given by

ns ≃ 1 − 4
M2

Pl

μ22
þ 12

M2
Plðϕ� − ϕcÞ

μ33
; ð37Þ

including the cubic term. We will see shortly that either μ2
or μ3 is determined in order to suppress the peak amplitude
of curvature perturbations at a smaller scale. We can then
take the other parameter appropriately to make ns within
the observed value ns ¼ 0.9649� 0.0042 [1]. We also
calculate the running of spectral index dns=d ln k and check
that 0 > dns=d ln k≳ −0.0026 in our parameter of interest.
This is consistent with the current constraint of dns=d ln k ¼
−0.0045� 0.0067 [1].
We can determine ϕ� by inversely solving its equation of

motion from N ¼ N c to N ¼ N �. This is justified under
the slow-roll approximation, where the initial condition for
the velocity is irrelevant for the dynamics. In Sec. III D, we
numerically calculate ϕ� and ns for each parameter set after
calculating N c.

B. Dynamics after the waterfall phase transition

The equations of motion for ζ and χ are now expressed,
respectively, as

d
dN

ζ ¼ −
M2

Pl

μ1ϕc
þ 2M2

Pl

μ22
ζ−

3ϕcM2
Pl

μ33
ζ2 −

4M2
Pl

ϕ2
cM2

ψ2
0e

2χ ; ð38Þ

d
dN

χ ¼ −
8M2

Pl

M2
ζ; ð39Þ

under the slow-roll approximation. We include the second
and third terms in the right-hand side in Eq. (38) as
perturbations under the following approximation:

M2
PlðN − NcÞ

μ22
≪ 1;

M4
PlðN − NcÞ2

μ1μ
3
3

≪ 1: ð40Þ

We consider their effects up to next-to-leading terms.
We first note that the corrections to χ2 from 1=μ22 and

1=μ33 terms are only logarithmic and are negligible. In the
first phase, χ ≪ χ2, the solution to the coupled equations is
given by

ζðNÞ ≃ −
M2

Pl

μ1ϕc
ðN − NcÞ −

M2
Pl

μ22

M2
Pl

μ1ϕc
ðN − NcÞ2

−
M2

Plϕc

μ33

�
M2

Pl

μ1ϕc

�
2

ðN − NcÞ3; ð41Þ

χðNÞ ≃ 4M2
Pl

M2

M2
Pl

μ1ϕc
ðN − NcÞ2 þ

8M4
Pl

3M2μ22

M2
Pl

μ1ϕc
ðN − NcÞ3

þ 2M4
Plϕc

M2μ33

�
M2

Pl

μ1ϕc

�
2

ðN − NcÞ4: ð42Þ

5We implicitly assume that inflation ends during phase 2,
namely, jζendj > jζ2j. If one adopts the condition of cEoI ¼ 1 in
Eq. (17) for the end of inflation, the condition is not satisfied for
Π2 ≲ 16χ2 ≃ 160. However, we note that inflation continues for
ΔN ∼ 1 and jζj grows much even after jηj becomes as large as
unity. Moreover, the ambiguity for the end of inflation does not
affect our results, because it comes into a factor of c in Eq. (28)
and its dependence is negligible in Eq. (35). We, thus, need to
take cEoI a little bit larger than unity to calculate the spectrum of
curvature perturbations.
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The e-folding number during the first phase is found as

N1−Nc≃
M

ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p
2M2

Pl

χ1=22 −
μ1ϕcM2

12μ22M
2
Pl

χ2−
ϕcM3

ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p
32μ33M

2
Pl

χ3=22 ;

ð43Þ
where we adopt Eq. (42). The value of ζ at the end of the
first phase is given by

ζ2 ≃ −
M

2
ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p χ1=22 −
M2

6μ22
χ2 −

3ϕcM3

32μ33
ffiffiffiffiffiffiffiffiffiffi
μ1ϕc

p χ3=22 : ð44Þ

The dynamics in the second phase does not change
qualitatively. The solution and the e-folding number are
again given by Eqs. (26) and (27).
In summary, the total e-folding number from the water-

fall phase transition to the end of inflation, N c, is given by

N c ¼ N2 − Nc

¼ Π
� ffiffiffiffiffi

χ2
p
2

þ c
4

ffiffiffiffiffi
χ2

p
�
− Π2

M2
Pl

12μ22
ðχ2 þ cÞ

− Π3
M4

Pl

32μ1μ
3
3

�
χ3=22 þ 3c

2
χ1=22

�
; ð45Þ

where we use Eqs. (44) and (13).

C. Spectrum of curvature perturbations

Now we calculate the curvature perturbations from the
fluctuation of the waterfall fields after the waterfall phase
transition. First, χk is solved as

χk ¼
4

Π2

�
ðN c −N kÞ2 þ

2M2
Pl

3μ22
ðN c −N kÞ3

þ M4
Pl

2μ1μ
3
3

ðN c −N kÞ4
�
; ð46Þ

within the first phase. For χ > χk, χðNÞ can be given by

χ − χk ≃
4

Π2

�
ðN − NkÞ2 þ

2M2
Pl

3μ22
ðN − NkÞ3

þ M4
Pl

2μ1μ
3
3

ðN − NkÞ4 þOðζkÞ
�
; ð47Þ

where we neglect the term with ζk for simplicity. We
calculate the peak amplitude of curvature perturbations,
because, as we discussed around Eq. (33), the dominant χk
dependence comes from the exponential factor e−χk. Noting
that N k ≡ N2 − Nk, we obtain the partial derivative of N k
with respect to ψk such as

∂N kðχkÞ
∂ψk

≃ −
Π

4ψ0eχk

�
1ffiffiffiffiffi
χ2

p −
M2

Pl

3μ22
Π −

3M4
Pl

16μ1μ
3
3

Π2χ1=22

�
:

ð48Þ

The maximal value is obtained such as

PðpeakÞ
R ≃

Π
2

ffiffiffiffiffiffi
2π

p
χ2

�
1 −

M2
Pl

3μ22
Π

ffiffiffiffiffi
χ2

p
−

3M4
Pl

16μ1μ
3
3

Π2χ2

�

≃
N cffiffiffiffiffiffiffiffiffiffi
2πχ32

p
�
1 −

M2
Pl

3μ22
N c −

M4
Pl

2μ1μ
3
3

N 2
c

�

≃ 0.013N c

�
χ2
10

�
−3=2

�
1 −

M2
Pl

3μ22
N c −

M4
Pl

2μ1μ
3
3

N 2
c

�
;

ð49Þ

where we use χ2 ≫ 1 and neglect c=χ2 ≪ 1 in the second
line. The shape of the power spectrum is determined by
Eq. (36), where χk can be written in terms of N kðχkÞ by
using Eq. (46).
Now one can see that the effect of the quadratic

and cubic terms for ϕ resolves the degeneracy between
the peak amplitude and wave number. From Eqs. (45)
and (49), the next-to-leading-order terms are relevant
for ðMPl=μ2Þ2=3 ∼N c and/or M4

Pl=ð2μ1μ33Þ ∼N 2
c. We

can then choose μ2 and μ3 appropriately to suppress the
curvature perturbations for a given Π (or N c). For desired

values ofN c and P
ðpeakÞ
R , the parameters of Π and either μ2

or μ3 are determined. Then, we can use the remaining free
parameter to make the spectral index consistent with the
observed value by Eq. (37).
There should be a cancellation in the last parentheses in

Eq. (49) to reduce the amplitude of curvature perturbations.
One may wonder how much fine-tuning is required to
obtain a desired PBH abundance. Let us define the degrees
of fine-tuning such as

���� d lnP
ðpeakÞ
R

d ln μ3

���� ≃ −3
− M4

Pl
2μ1μ

3
3

N 2
c

ð1 − M2
Pl

3μ2
2

N c −
M4

Pl
2μ1μ

3
3

N 2
cÞ
; ð50Þ

where we use the analytic result of Eq. (49). If this quantity
is much larger than unity, a fine-tuning for the parameter μ3
is required to obtain a desired value of PðpeakÞ

R . For example,
if Π2 ¼ 185, μ2 ¼ 4.21MPl, and μ3 ¼ 0.182MPl, which

results in μ1=MPl ≃ 1.3 × 105,N c ≃ 17.3,PðpeakÞ
R ≃ 0.0141,

and ns ≃ 0.969 from our numerical results shown shortly,

we obtain the degrees of fine-tuning such as jd lnPðpeakÞ
R =

d ln μ3j ≃ 1.2. We, therefore, conclude that the tuning of the
parameter is not severe to reduce the amplitude of curvature
perturbations.

D. Numerical results

To check the results of analytical calculations, we
numerically solve the equation of motion and calculate
the curvature perturbations by the δN formalism [see
Eq. (30)]. We adopt a simplified procedure used in
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Ref. [53] (see also Ref. [51]), where the stochastic
dynamics determines an “initial” condition of waterfall
field ψ at the waterfall phase transition, and then solve the
classical equation of motion without the noise term.
The detail of our numerical calculation is as follows.

First, we start from the time of the waterfall phase transition,
at which ψ ¼ ψ0 and ϕ ¼ ϕc. The initial condition of
waterfall field ψ0 is determined by the stochastic noise such
as Eq. (15). We then solve the classical equation of motion
for ϕ and ψ without the noise term until the end of inflation.
From the result, we can calculate the e-folding number at
the waterfall phase transition, N c. By changing the initial
condition slightly and again solving the equation of motion,
we calculate the peak amplitude of curvature perturbations
by the δN formalism. Then we solve the equation of motion
for the inflaton ϕ to the backward-time direction from the
waterfall phase transition by using the slow-roll approxi-
mation. We then calculate the amplitude of curvature
perturbations and its spectral index at the pivot scale of
the CMB. The e-folding number of the pivot scale N � is
given by Eq. (8) with the assumption of instantaneous
reheating (i.e., HRH ¼ Hinf ). We also require that the total
e-folding number is larger than 60 so that the flatness and
horizon problems are addressed by inflation.
We take ϕc=

ffiffiffi
2

p ¼ M ¼ MPl=10 as an example. We
randomly take the parametersΠ, μ2, and μ3 in the following
domains:

Π2 ∈ ð5; 2000Þ;
μ2=MPl ∈ ð2; 15Þ;
μ3=MPl ∈ ð0.03; 10Þ: ð51Þ

The parameter μ1 is determined from Π. These parameter
spaces cover the whole parameter space we are interested in.

Taking those parameters randomly, we solve the equation of
motion and calculate the curvature perturbations and the
spectral index. Each point in Fig. 1 shows the result of a

certain set of parameters in the PðpeakÞ
R -N c plane, where we

keep only the results that are consistent with the observed
spectral index ns ¼ 0.9649� 0.0042. We plot the results

FIG. 1. The peak amplitude of curvature perturbations PðpeakÞ
R

as a function of the e-folding number at the waterfall phase
transition N c. The dashed line represents the analytic result of
Eq. (35) for the minimal model without quadratic and cubic
terms. The green (blue) points represent the results with
μ3=MPl ≥ 1 (μ3=MPl < 1).
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FIG. 2. The e-folding number at the waterfall phase transition
N c as a function of Π (top), μ2=MPl (middle), and μ3=MPl
(bottom). The solid curves represent the fitting functions for

PðpeakÞ
R ≃ 0.1, 0.05, 0.02, 0.01, and 0.005 from the dense to light

ones. The lightest points include the data for PðpeakÞ
R ∈

ð0.0045; 0.11Þ, whereas the dense points are the ones that are
used to determine the fitting curves.
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with μ3=MPl ≥ 1 (μ3=MPl < 1) as green (blue) points. The
green points represent the case in which the cubic term for

the inflaton potential is negligible. We can see that PðpeakÞ
R

and N c are correlated with each other for green points,
consistently with the analytic result of Eq. (35) (shown as the
red dashed line) for the minimal model without quadratic
and cubic terms. For a smaller μ3=MPl, the degeneracy

between PðpeakÞ
R and N c is resolved, and a smaller PðpeakÞ

R
and larger N c can be realized as shown by blue points.
The parameters that satisfy ns ¼ 0.9649� 0.0042 and

PðpeakÞ
R ∈ ð0.0045; 0.11Þ are shown in Fig. 2 as light

points. We plot the points for PðpeakÞ
R ∈ ð0.9P0; 1.1P0Þ

with P0 ¼ 0.005, 0.01, 0.02, 0.05, and 0.1 denser for a
larger P0. The solid curves represent the fitting functions

for PðpeakÞ
R ≃ P0 with P0 ¼ 0.005, 0.01, 0.02, 0.05, and 0.1

from the light to dense ones. The fitting functions are
given by

N c ≃ cΠ;0 þ cΠ;1Π for N c > 15; ð52Þ

N c≃ cμ2;0þ cμ2;1=2

�
μ2
MPl

�
1=2

þ cμ2;1

�
μ2
MPl

�
for N c > 15;

ð53Þ

N c ≃ cμ3;0 þ cμ3;−3

�
μ3
MPl

�
−3

for N c > 10; ð54Þ

for each panel in the figure. The coefficients are chosen for
each P0 and are given in Table I. The form of these
functions is determined by the analytic arguments. For
example, N c is proportional to Π as indicated by Eq. (45).
It is also almost independent of μ3=MPl. This is expected
from Eq. (49) with μ1 ∝ Π2 ∝ N 2

c , by requiring that the
parentheses should be small to suppress the peak ampli-
tude of curvature perturbations. The behavior of μ2=MPl
is difficult to understand, but its order of magnitude is
consistent with the condition to tune the parentheses in
Eq. (49) and obtain the desired value of spectral index
in Eq. (37).
We also plot μ2=MPl-μ3=MPl plane in Fig. 3 to clarify the

correlation between these parameters. It shows that the
quadratic or cubic terms have to be strong enough (i.e.,
μ2=MPl or μ3=MPl have to be small enough) to reduce the
amplitude of curvature perturbations.

Here, we comment on the parameter space considered
in the literature. There are many data with N c ¼ Oð1Þ
for μ2=MPl ≳ 6 as shown at the bottom-right corner in
the middle panel in Fig. 2. The corresponding points are
not shown in the bottom panel, because they require
μ3=MPl ≳ 1. In this parameter space, the analytic calcu-
lation at the leading order is a good approximation,
and, hence, they correspond to the case considered in

Refs. [53,54]. However, PðpeakÞ
R cannot be smaller than

about 0.1 in this parameter space. A parameter space with a

larger N c gives a larger PðpeakÞ
R (see the green points in

Fig. 1). This demonstrates that astrophysical size PBHs
cannot form (or are overproduced) from a hybrid inflation
model if the quadratic and cubic terms for the inflaton
potential are negligible. Including the latter two terms,
we find the parameter space in which N c is Oð10Þ
and PðpeakÞ

R ∼ 0.01.

IV. PBH FORMATION

A. Press-Schechter formalism

Finally, we consider PBH formation from the collapse of
overdense regions. The large curvature perturbations gen-
erated by the stochastic dynamics result in large density
perturbations after inflation. If the overdensity exceeds a
certain threshold, the overdense region tends to collapse to
form PBHs with the size corresponding to the mode
entering the horizon. The perturbation of comoving wave
number k enters the horizon when k ¼ aðtÞHðtÞ. The PBH
mass is given by the total energy enclosed within the
Hubble horizon at the horizon crossing:

MBH ¼ γρ
4πH−3

3

����
k¼aH

≃ 1020 g

�
γ

0.2

��
g�

106.75

�
−1=6

�
k

7 × 1012 Mpc−1

�
−2
;

ð55Þ

TABLE I. Coefficients for fitting functions.

P0 cΠ;0 cΠ;1 cμ2;0 cμ2;1=2 cμ2;1 cμ3;0 cμ3;−3

0.1 4.6 1.4 −207 135 −17 8.6 0.33
0.05 3.2 1.3 −114 80 −9.2 −2.4 0.28
0.02 1.5 1.2 −95 71 −8.0 −20 0.27
0.01 −0.27 1.2 −103 78 −9.4 −31 0.27
0.005 −1.3 1.1 −113 86 −11 −29 0.22

0.1 0.2 0.3 0.4 0.5 0.6
2

4

6

8

10

FIG. 3. The same as Fig. 2 but for μ2=MPl as a function of
μ3=MPl.
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where γ [¼ Oð1Þ] is a numerical constant [14]. The
corresponding e-folding number at the horizon exit, which
we identify N c, is given by

N � −N c ≃ 32.6 −
1

2
ln

�
MBH

1020 g

�
; ð56Þ

where N � is given by Eq. (8) and we use γ ¼ 0.2
and g� ¼ 106.75.
We can estimate the PBH abundance by the Press-

Schechter theory, assuming that the density perturbations
are Gaussian and that a PBH forms from a density
perturbation above a certain threshold δc (∼0.3).6 From
these criteria, the probability for the PBH formation is
calculated from

βðMÞ≡ ρPBHðMÞ
ρtot

≈
Z

∞

δc

dδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðMÞ

p e
− δ2

2σ2ðMÞ

≃
ffiffiffi
2

π

r
σðMÞ
δc

e
− δ2c
2σ2ðMÞ; ð57Þ

where σðMÞ is the variance of the coarse-grained density
contrast for the scale of wave number k corresponding to
the PBH mass MðkÞ [87]:

σ2ðMð1=RÞÞ ¼ 16

81

Z
d ln k0ðk0RÞ4PRðk0ÞWðk0RÞ2: ð58Þ

The window function is taken to be WðxÞ ¼ exp ð−x2=2Þ.
The resulting PBH abundance is given by

fPBH ≡ ΩPBH

ΩðobsÞ
DM

≃
�

βðMÞ
8 × 10−15

��
M

1020 g

�
−1
2

; ð59Þ

where ΩðobsÞ
DM represents the observed DM abundance and

we use γ ¼ 0.2 and g� ¼ 106.75.

There are several constraints on the PBH abundance for
a broad range of the mass scale. The shaded regions in the
middle panel in Fig. 4 are excluded by evaporation (red),
lensing (blue), gravitational waves (gray, GW) [88], CMB
distortions (orange, PA) [89], and accretion from x-ray
binaries (green, XB) [90]. For more details, the evapora-
tion limits come from the extragalactic γ-ray background
(EGB) [91,92], the Voyager positron flux (V) [93].

FIG. 4. Spectrum of curvature perturbations PR (upper panel),
PBH mass function (middle panel), and gravitational waves
ΩGWh2ðfÞ (bottom panel) for the case with Π2 ¼ 185,
μ2 ¼ 4.21MPl, and μ3 ¼ 0.182MPl. The shaded regions re-
present the constraints and future sensitivity curves (see the
main text for detail).

6Note that the estimation scheme for PBH abundance has been
intensively developed since the simplest Press-Schechter approach
with a uniform threshold δc. For example, the number density of
the overdense region is evaluated by the peak statistics of a
random field called peak theory (see, e.g., Refs. [71–74]). The
PBH threshold is also derived in a more sophisticated way from
the so-called compaction function, the excess of the Misner-Sharp
mass from the background one, not uniformly but dependently on
the overdensity’s profile (see, e.g., Refs. [75–79]). It is known that
the resultant PBH mass is not simply given by the horizon mass
but features a scaling relation M ∝ ðδ − δcÞp with a universal
power p ≃ 0.36 (see Refs. [80–86]). We, however, neglect all
these corrections, because we do not even know the precise
statistics of the curvature perturbation beyond the power spectrum
in this model. Even the power spectrum can be modulated by the
stochastic effect in the waterfall phase that we neglected. We,
therefore, leave accurate PBH abundance estimation for future
works, simply pointing out the resolution of the degeneracy in
this paper.
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and annihilation-line radiation from the Galactic Center
(GC) [94,95]. The lensing constraints come from micro-
lensing of supernovae (SN) [96] and of stars in M31
by Subaru (HSC) [97], the Magellanic Clouds by the
Experience pour la Recherche d’Objets Sombres (EROS)
and Massive Compact Halo Object (MACHO)
Collaborations (EM) [98], and the Galactic bulge by
the Optical Gravitational Lensing Experiment (OGLE)
(O) [99] (see also Ref. [100]). Here, we assume a delta-
function spectrum to illustrate the constraints [29], which
should not be compared directly with our nearly Gaussian
spectrum but is useful for illustrative purpose. There is a
window where PBHs can be all DM, whereM ∼ 1017−23 g
and ΩPBHh2 ≃ 0.12. Note that this requires PR ∼ 0.01
from Eqs. (57) and (59). The corresponding e-folding
number N c should satisfy Eq. (56).

B. PBH formation in hybrid inflation model

Now we shall consider PBH formation in the hybrid
inflation model. Let us first look at the analytic result of
Eqs. (45) and (49) for PR and N c. If we omit the
corrections from the quadratic and cubic potentials for
the inflaton, which corresponds to the second and third
terms in the parentheses in Eq. (49), the peak amplitude is
as large as 0.2–0.3 for N PT ≃ 21. This results in an
overproduction of PBHs by many orders of magnitude.
However, the peak amplitude can be smaller thanks to the
corrections from the quadratic and cubic terms. This is the
main idea of the present paper, and the corresponding
parameter space is demonstrated as the light blue curves
in Fig. 2.
The upper panel in Fig. 4 shows the spectrum of curvature

perturbations [Eq. (36)] with PðpeakÞ
R obtained by numerical

calculation and χk given by the analytic one [Eq. (46)] for the
case with Π2 ¼ 185, μ2 ¼ 4.21MPl, and μ3 ¼ 0.182MPl,

which results inN c≃17.3, PðpeakÞ
R ≃0.0141, and ns≃0.969.

The corresponding PBH mass function is shown as the solid
curve in the middle panel, where the peak PBH mass is
5.3 × 1018 g and the total PBH abundance is ΩPBHh2 ≃ 0.1.
The shaded regions in the upper panel represent the excluded
regions or future sensitivity curves. A parameter space with a
relatively small wave number is excluded by constraints of
CMB temperature anisotropies [101–104] and μ and y
distortions [105,106].7 The uppermost region, denoted by
the dotted curve, is excluded by the overproduction of PBHs
(that partially corresponds to the shaded regions in the
middle panel in Fig. 4), where we adopt the constraint for
Gaussian spectrum by referring to Fig. 19 in Ref. [108].
Large curvature perturbations can generate the stochas-

tic GW background through the second-order effect
[109,110]. We calculate the GW spectrum in a hybrid

inflation model and compare the result with constraints
and future sensitivity curves for the GW experiments. The
bottom panel in Fig. 4 shows the prediction of GW
spectrum for the above-mentioned parameter. It is com-
pared with the power-law-integrated sensitivity curves for
ongoing and planned GW experiments [111]. Pulsar-
timing array (PTA) experiments, such as Parkes Pulsar
Timing Array (PPTA) [112], exclude the dense green
shaded region. The aLIGO/aVirgo third observing run
[LV(O3)] [113] excludes the dense red shaded region.8 We
also plot future sensitivity curves for PTA and GW
detection experiments by light shaded regions, including
SKA [116], LISA [117], DECIGO [118,119], BBO [120],
Einstein Telescope (ET) [121,122], Cosmic Explorer (CE)
[123], and aLIGOþ aVirgoþ KAGRA (LVK) [124,125].
The upper panel in Fig. 4 also shows them in terms of the
curvature perturbations.
The case with the solid curve can be tested by future GW

experiments, such as LISA. This is an interesting smoking
gun signal for PBH formation in the hybrid inflation model.
In particular, our GW spectrum has a relatively broad peak,
which comes from the spectrum of the density curvature
perturbations [Eq. (36)]. If we can determine the GW
spectrum by those experiments, we can obtain information
of parameters for the hybrid inflation model, such as Π, μ2,
and μ3. Then one can check the consistency with the
parameter space shown in Fig. 2. One can, therefore, falsify
or confirm our model by observations of the GW spectrum,
which is actually within the future sensitivity curve.

V. DISCUSSION AND CONCLUSIONS

We have revisited the spectrum of curvature perturba-
tions generated during the waterfall phase transition in a
hybrid inflation model. After emphasizing the fact that the
peak amplitude and wave number are correlated with each
other in a minimal setup, we have pointed out that their
degeneracy can be relaxed by quadratic and cubic terms for
the inflaton potential that are omitted in the literature. In
particular, PBHs with masses of the order of 1017−23 g can
be generated consistently with any existence constraints.
Moreover, the scenario can be tested by observing GW
signals induced by second-order scalar perturbations.
The peak amplitude of curvature perturbations can be

reduced by the effect of quadratic and cubic terms in the
inflaton potential. This requires tuning in a parameter,
which we quantify as Eq. (50). The amount of tuning is,
however, not that large, because we need to reduce the peak
amplitude only by a factor of about 10 in order not to
overproduce PBHs.
Still, one has to take particular care of the tail of the

spectrum for curvature perturbations. As one can see in
Fig. 4 or the analytic formula Eq. (36) with Eq. (46), the

7See also Ref. [107] for recent analysis, which improved the
constraint for μ distortion by a factor of 2.

8See also Refs. [114,115] for a specific analysis of the
constraint on the induced GWs.
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spectrum generated during the waterfall phase transition is
not sharp but is widely distributed over many orders of
magnitude in the wave number. In particular, it should not
affect the spectrum around the CMB scale. This constrains
N c ≲ 17 for the parameters we chose throughout this
paper. One can, therefore, generate a PBH with mass of
the order of 1017−19 g but cannot generate arbitrarily larger
PBHs. However, this condition can be relaxed if one
considers a relatively low inflation energy scale and/or
low reheating temperature scenario.
Other than quadratic or cubic terms in the inflaton

potential, a multiple number of waterfall fields [126,127],
a small explicit breaking of symmetry in the waterfall
potential [128], etc., can be a resolution of the PR-N c
degeneracy. Those scenarios are motivated by avoiding the
domain-wall problem in the simplest Z2 symmetric model,
where the domain walls are produced after the waterfall
phase transition and then make the Universe highly inho-
mogeneous by dominating the energy density. In the present
paper, we implicitly assumed either of these extensions to
avoid the problem, while their effect is negligible on the

curvature perturbations. The non-Gaussian effect on PBH
abundance (see, e.g., Refs. [5,72,74,79,129–142]), its
clustering (see, e.g., Refs. [87,143–148]), and the induced
GWs (see, e.g., Refs. [149–155] and Ref. [156] for a recent
review) is also an interesting topic, as the perturbation
generated through the waterfall transition is expected to
show nonvanishing non-Gaussianity [54]. Recently, the
quantum loop correction from the PBH-scale perturbation to
the CMB-scale one is attracting much attention [157–166].
Though our model is not a single-field model, which
conflicts with the hypothetical no-go theorem by Ref. [158],
the loop correction in this model would be worth consid-
ering. We leave them for future works.
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