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The gravitational wave memory effect is a prediction of general relativity. The presence of memory effect
in gravitational wave signals not only provides the chance to test an important aspect of general relativity,
but also represents a potentially non-negligible contribution to the waveform for certain gravitational wave
events. In this paper, we study the prospect of detecting the gravitational wave memory effect directly with
the planned space-based gravitational wave detector—TianQin. We find that during its five years of
operation, for the gravitational wave signals that could be detected by TianQin, about 0.5–2.0 signals may
contain displacement memory effect with signal-to-noise ratios (SNRs) greater than 3. This suggests that
the chance for TianQin to detect the displacement memory effect directly is low but not fully negligible. In
contrast, the chance to detect the spin memory is negligible. We also study that in which parameter space,
the memory effect is expected to be significant in waveform modeling.
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I. INTRODUCTION

The observations of gravitational waves (GWs) from
binary black hole mergers [1–3] have opened a new
window to observe the universe, which not only
promise a deeper understanding of compact objects in
the universe [4–6] but also provide a new way to test
general relativity [7–9]. Both the detection of GWs and
the testing of general relativity require accurate wave-
forms of GWs. Among all the contributions to the GW
waveforms, the GW memory effect is particularly inter-
esting not only in that it can potentially be directly
observed and thus serves as an important test of general
relativity, but also in that it depends on the entire past
history of the gravitational systems [10,11].
Under real physical conditions, the spacetime back-

ground seen by an observer near the null infinity before
and after a flux of GW radiation is not purely vacuum, but
contains GW sources at a long distance. Due to the loss of
energy and other conserved charges of the GW sources, the
radiation of GWs typically leads to a permanent change to
the spacetime, and this has been known as the linear
memory effect since the early 1970s [12,13]. A second type
of memory effect was later discovered by Christodoulou
[14] and has been called the nonlinearmemory effect, for it
involves the contribution of the GW strain at the quadratic
order. The Christodoulou effect does not appear as a change
of the charges of the GW sources but is still related to the

permanent change of the background spacetime. It has been
suggested to rename the linear and nonlinear memory
effect as the ordinary and null memory effect, respectively,
to be more clear on what they truly represent [15].
Since the memory effect is a persistent change of the

spacetime, it is natural to relate it to the symmetries and the
corresponding charges that characterize different space-
times (see [16] for some early references). However, it was
only in the past few years that the relations among the
various types of memory effect and the various types of
Bondi-Metzner-Sachs (BMS) transformations [17–24]
were elucidated and established [16,25–27]. Such under-
standing has enabled systematic calculations of the
memory effect using the so called BMS flux-balance
laws [27–32].
The detection of memory effect has attracted much

attention in recent years. Attempts have been made to
calculate the memory effect for cosmic strings [33] and
core-collapse supernovae [34]. There have also been
calculation of memory effect in alternative theories of
gravitation, such as scalar tensor theory [35], Brans-Dicke
theory [36,37] and Chern-Simons modified gravity [38].
Using the memory effect to test alternative theories of
gravitation has also been studied, such as for the Brans-
Dicke theory with screening [39].
The strategies for detecting the GW memory effect were

first proposed by Braginsky and Thorne in the 1980s
[13,40]. Since the first detection of GWs by LIGO in
2015 [41], many works about detecting memory effect with
current and future GW detectors have appeared [30,42–56].
It has been found that the memory effect is difficult to
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detect directly with the current ground-based GW detec-
tors, but the future ground-based detectors such as Cosmic
Explorer [57] and Einstein Telescope [58] may be able to
detect the memory effect [59]. The memory effect produced
by the massive BBH systems can fall in the most sensitive
frequency band of space-based detectors, and thus have
better chance at revealing the memory effect with space-
based detectors. Indeed, the prospect of detecting memory
effect with the planned space-based GW detector LISA has
been studied in [60], and it has been shown that LISA can
directly detect the displacement memory from the merger
of massive black hole binarys (MBHBs). It is also possible
to detect memory effect with pulsar timing array [42–47].
TianQin is a space-based GW detector targeting GWs in

the frequency band 10−4 Hz ∼ 1 Hz [61,62]. Among the
promising scientific discovery potential of TianQin in many
different directions [63–74], the detection of MBHBs is an
outstanding one [75,76]. Motivated by the known result on
LISA, it is likely that TianQin can also detect memory
effect directly. But the orbit, the constellation size and
motion of TianQin are quite different from those of LISA,
and so are the sensitive frequency band and the response of
the detector to GWs. So it is necessary to study the related
problems for TianQin independently, especially when it
comes to the question of when the memory effect will
become a must-consider factor during science and data
analysis.
In this paper, we study the prospect of directly detecting

the gravitational wave memory effect with TianQin and
also determine the region of parameter space in which the
contribution of memory effect is potentially non-negligible.
The paper is organized as following. In Sec. II, we recall

the basic results on memory effect. In Sec. III, we introduce
the calculation of memory corrections to the waveform. In
Sec. IV, we study the potential of detecting memory effect
directly with TianQin. In Sec. V, we study the parameter
space in which the memory effect could become an adverse
factor if not properly taken into consideration. Finally, we
summarize in Sec. VI.

II. MEMORY EFFECT

In this section, we recall some of the basics of memory
effect and the calculation of the corresponding waveform
and we set G ¼ c ¼ 1. The purpose is to have all the
relevant nomenclature clearly defined and to keep the logic
in a self-contained manor. There is nothing particularly new
in this section and we mainly follow the treatment and
notation of [29,31].
Physically, there are three different types of memory

effect: the displacement memory [12,13], which causes the
relative displacement between two test masses to change
after the passage of GWs, the spin memory [26], which
causes the change in the relative time delay of two free-
falling test masses that are initially on antiorbital trajecto-
ries, and the center-of-mass memory effect [16], which

causes the change in the relative time delay of two free-
falling test masses that are initially on antiparallel trajecto-
ries. All three types of memory effect contain the pre-
viously mentioned linear (ordinary) and nonlinear (null)
contributions.
The physical consequences of the memory effect

described above are easy to visualize, but they do not
constitute the best ways for detection. Due to the intrinsic
weakness of GWs, the permanent change in the displace-
ment and time delays in various detector dependent setup is
also very small and cannot be directly measured with any
currently known technology. The practically more relevant
consequence of memory effect is the shifts and corrections
to the GW waveforms, and it is the knowledge about
the waveform correction that offers the best chance for a
detection.
Earlier methods for computing the waveform of

memory effect include the post-Newtonian (PN) approxi-
mation and various kinds of postprocessing techniques
based on existing numerical waveforms [16,30,77–80].
We will follow [31] to calculate the memory waveforms in
this paper.
Following [29,31], the Bondi-Sachs metric of a generic

asymptotically flat spacetime containing GWs can be
written as [17,18],

ds2 ¼ −e2βðUdu2 þ 2dudrÞ
þ r2γABðdθA − UAduÞðdθB − UBduÞ; ð1Þ

where u ¼ t − r is the retarded time, θA ∈ fθ1; θ2g are
coordinates on the two-sphere, and U, β, UA and γAB are
functions of u, r, and θA. A special feature of the Bondi-
Sachs metric is

grr ¼ grA ¼ 0: ð2Þ

The radial coordinate r is determined by requiring that the
determinant of γAB is the same of that of the fixed round
metric, denoted as qAB, on the unit two-sphere,

detðγABÞ ¼ detðqABÞ; ð3Þ

where, if written in the usual spherical coordinates,

qABdθAdθB ¼ dθ2 þ sin2 θdϕ2: ð4Þ

Note the metric qAB will be used to raise and lower all
capital Latin indices (e.g., A, B) throughout this paper.
The functions U, β, UA and γAB in metric (1) can be

determined by sourceless Einstein equations as
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U ¼ 1 −
2m
r

−
2M
r2

þOðr−3Þ;

β ¼ −
C2

32r2
−

C2
2

48r3
þOðr−4Þ;

γAB ¼ qAB þ CAB

r
þOðr−3Þ;

UA ¼ −
DBCAB

2r2
þ 1

r3

�
−
2

3
NA þ 1

16
DAC2

þ 1

2
CACDBCBC

�
þOðr−4Þ; ð5Þ

where all coefficient functions on the right-hand sides are
functions of ðu; θAÞ only, DA is the covariant derivative
associated with qAB, and

C2 ¼ CABCAB; qABCAB ¼ 0;

_m ¼ −
1

8
_CAB

_CAB þ 1

4
DADB

_CAB;

_NA ¼ DAmþ 1

4
DBDADCCBC −

1

4
DBDBDCCCA

þ 1

4
DBð _CBCCCAÞ þ

1

2
DB

_CBCCCA;

_M ¼ −
1

2
DADA

�
mþ 3

8
CBC

_CBC

�
þ 1

3
DA

_NA

−
1

4
ðDA

_CBCÞðDACBC − 2DBCACÞ

þ 1

8
_CAB

�
DCDC þ 3

2

�
CAB; ð6Þ

where CAB is shear tensor,m is the Bondi mass aspect,M is
the function of ðu; θAÞ and NA is Bondi angular-momentum
aspect. Here an overdot means a derivative with respect to
u. Follow [29,31,32], we rewrite NA in terms of N̂A, N̂A is

N̂A ¼NA−uDAm−
1

16
DAðCBCCBCÞ−1

4
CABDCCBC: ð7Þ

The solution solves Einstein’s equations to the Oðr−3Þ
order, i.e.,

Rμνdxμdxν ≤ Oðr−4Þ; ð8Þ

where Rμν is the Ricci tensor of the Bondi-Sachs metric (1),
dxμ ∈ fdu; dr; dθ1; dθ2g, and we take

du; dr ∼Oðr0Þ; dθ1; dθ2 ∼Oðr−1Þ: ð9Þ

All dynamical properties of the solution are encoded in the
two unconstrained functions of the shear CAB.
Solutions with all possible values of CAB form the

solution space that preserves the structure of the Bondi-
Sachs metric with the boundary conditions (2), (3), and (5).

The solutions are related to each other through the BMS
transformations,

ξ ¼ f∂u þ
�
YA −

1

r
DAf þ 1

2r2
CABDBf þOðr−3Þ

�
∂A

−
�
1

2
rDAYA −

1

2
DADAf þ 1

4r
ðDACABÞDBf

þ 1

4r
DAðDBfCABÞ þOðr−2Þ

�
∂r; ð10Þ

where

f ¼ αðθAÞ þ 1

2
uDBYBðθAÞ: ð11Þ

Here αðθAÞ is unconstrained and YAðθBÞ must obey the
conformal Killing equation on the unit two-sphere,

DAYB þDBYA ¼ qABDCYC: ð12Þ

Under the action of (10), the shear transforms as

δCAB ¼ f _CAB − 2DADBf þ qABDCDCf

þ 1

2
ðDCYCÞCAB þ LY⃗CAB; ð13Þ

where LY⃗ is the Lie derivative with Y⃗ ¼ fY1; Y2g. Other
functions in the solution will transform accordingly, and we
refer to [29] for details on the transformation of the Bondi
mass aspect m and the angular-momentum aspect NA.
The BMS transformations (10) are examples of asymp-

totic symmetries which are associated with conserved
charges that characterize different solutions in the solution
space. In general, only the difference between the charges
of a pair of solutions is defined (see [81] for a reader
friendly exposition). In GW-free and matter-free cases,
however, it is possible to write the charges for each solution
directly,

Q ¼ 1

16π

Z
d2Ω

�
4αm − 2u0YADAmþ 2YANA

−
1

8
YADAC2 −

1

2
YACACDBCBC

�
; ð14Þ

where the integral is over a two-sphere near the null infinity
and at the retarded time u0.
In the usual spherical coordinates, the standard BMS

algebra is generated by

α ¼ t0 − tini þ
X∞
l¼2

Xl
m¼−l

αlmYlm;

YA ¼ w0ieAi þ wijeA½inj�; ð15Þ
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where tμ ¼ ft0; tig and w0i; wij are free parameters,
ni ¼ fsin θ cosϕ; sin θ sinϕ; cos θg, eAi ¼ DAni and Ylm is
the usual spherical harmonics. The corresponding charges
are

Q ¼ −Pμtμ þ
1

2
Jμνwμν þ

1

4π

X∞
l¼2

Xl
m¼−l

αlmP
�
lm: ð16Þ

Here Pμ is the usual four-momentum, Jμν is the usual
angular momentum, and Plm are the supermomenta
associated with the supertranslations, i.e., the l ≥ 2 terms
in α. So the standard BMS algebra is simply the Poincaré
algebra extended with the supermomenta.
The BMS algebra can be extended if one allows for

singular Killing vectors on the future null infinity [28,82].
To do this, it is more convenient to use the complex
stereographic coordinates (z; z̄) with z ¼ cotðθ=2Þeiϕ
instead of the usual spherical coordinates. In this case,
the conformal Killing equation requires Yz ¼ YzðzÞ and
Yz̄ ¼ Yz̄ðz̄Þ, i.e., both to be meromorphic functions of their
arguments. The corresponding Killing vector can be
expanded with the set of vectors,

lm ¼ −zmþ1
∂z; l̄m ¼ −z̄mþ1

∂z̄; ð17Þ

where m ∈ Z. Among the vectors, l0; l�1; l̄0 and l̄�1 have
already appeared in Eq. (15), while the rest are called the
superrotations. Although the Killing vectors are singular
for the superrotations, the corresponding charges have been
shown to be finite [29]. The charges of the superrotations
can be split to the spin parts, corresponding to operations
analogs to the rotations in the Lorentz group, and the
center-of-mass parts, corresponding to operations analogs
to the Lorentz boost.
It has been realized that the displacement memory is

related to changes in the supermomenta and the corre-
sponding flux, the spin memory is related to changes in the
spin parts of the super-angular momenta and the corre-
sponding flux, and the center-of-mass memory effect is
related to changes in the center-of-mass parts of the super-
angular momenta and the corresponding flux [16,25–27].
As we have mentioned earlier, however, that for a true
detection of the memory effect we have to focus on the
waveforms. From this perspective, the displacement
memory is characterized by a finite change in the GW
strain, the spin memory is characterized by a change in the
time integral of the magnetic part of the GW strain, while
the center-of-mass memory effect is characterized by a
change in the time integral of certain expression that has the
dimension of the GW strain [16].
It was only recently that the displacement and spin

memories are successfully captured in the SXS catalog
[83,84] by using the Cauchy-characteristic extraction
(CCE), in which one has to evolve a world tube produced
by a Cauchy evolution to asymptotic infinity and then to

extract the GW strain [85]. In [31], the authors use the BMS
flux-balance law to calculate the memory effect from
numerical waveforms known at the null infinity, and they
find that the results agree with those from CCE well.
In the treatment of [31], the key quantity to calculate is

the leading order spin-weight −2 GW strain,

h ¼ 1

2
q̄Aq̄BCAB ¼

X
l≥2

X
jmj≤l

hlm−2Ylmðθ;ϕÞ; ð18Þ

where qA is the complex dyads [85], qA ¼ −f1; i csc θg,
−2Ylmðθ;ϕÞ is spin-weighted -2 spherical harmonics and
the angles ðθ;ϕÞ are the inclination and the reference phase
of the source respectively. In reverse, one has

CAB ¼ 1

2
ðqAqBhþ q̄Aq̄Bh̄Þ: ð19Þ

Splitting the shear into the electric and the magnetic
components,

CAB ¼
�
DADB −

1

2
qABDCDC

�
Φþ ϵCðADBÞDCΨ; ð20Þ

where ϵAB is the Levi-Civita tensor on the two-sphere, Φ
and Ψ are the electric and magnetic parts of shear tensor
CAB. one has for the electric and magnetic memory effect,
respectively,

ΔJðEÞ ¼ 1

2
q̄Aq̄BΔCðEÞ

AB ¼ 1

2
ð̄2ΔΦ

¼ 1

2
ð̄2D−1

�
Δmþ 1

4

Z
u

−∞
j _hj2du

�
; ð21Þ

ΔJðBÞ ¼ 1

2
q̄Aq̄BΔCðBÞ

AB ¼ −
1

2
ið̄2ΔΨ

¼ 1

2
ið̄2D−1D−2Im

�
ð̄ð∂uN̂Þ

þ 1

8
½ðð3hð̄ _̄h−3_h ð̄ h̄þ _̄h ð̄ h − h̄ ð̄ _hÞ�

�
: ð22Þ

The Δm ¼ mðuÞ −mð−∞Þ and N̂ ¼ qAN̂A. In Eqs. (21)
and (22), Im means the imaginary part of the function,
D2 ¼ ð̄ð is the usual Laplacian on the two-sphere, D ¼
1
8
D2ðD2 þ 2Þ, and ð and ð̄ are the spin-weight operators in

the Newman-Penrose convention [86],

ðsYlm ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm;

ð̄sYlm ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm: ð23Þ

For the spin weight 0 spherical harmonics Ylm,
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D2Ylm ¼ −lðlþ 1ÞYlm;

DYlm ¼ 1

8
ðlþ 2Þðlþ 1Þlðl − 1ÞYlm: ð24Þ

The l ≤ 1 modes of Ylm are in the kernel of D, so D−1 is
defined by projecting out the l ≤ 1 modes [31],

D−1Ylm ¼
(

0∶ l ≤ 1;

½1
8
ðlþ 2Þðlþ 1Þlðl − 1Þ�−1Ylm∶ l ≥ 2:

ð25Þ

The first term in the right-hand side of Eq. (21) is the
ordinary part of the displacement memory, and the second
term is the null part. The Bondi mass aspect m can be
written in terms of Weyl scalar Ψ2 and h as

m ¼ −Re
�
Ψ2 þ

1

4
_h h̄

�
: ð26Þ

Similarly, the first term in the right-hand side of Eq. (22) is
the ordinary part of spin memory mode and the second part
is the null part. N̂ can be written in terms of Weyl scalar Ψ1

and h as

N̂ ¼ 2Ψ1 − uðm −
1

8
ððhh̄Þ − 1

4
h̄ðh: ð27Þ

As discussed in [31], ΔJðEÞ is dominated by the
displacement memory,

R
ΔJðBÞðuÞdu is the spin memory,

while the explicit formula for computing the center-of-
mass memory by using the BMS flux-balance law is not
known yet. The detection of the center-of-mass memory
effect using PN waveform has been studied in [16]. It
has been found that, for a future ground-based detector
such as the Einstein Telescope, which can achieve a signal-
to-noise ratio (SNR) at the order Oð103Þ for a signal
like GW150914, can only detect the ordinary part of the
center-of-mass memory effect with a SNR several orders of
magnitude below unit. The prospect for space-based
detector will be similar, so the chance for detection is
negligible for TianQin. Therefore, in this work, we only
consider the displacement memory and the spin
memory mode.

III. WAVEFORM MODEL

We use the IMRPhenomXHM waveform [87–89] to
calculate the displacement memory strain with Eq. (21) and
the spin memory strain with Eq. (22),

hdis ¼ ΔJðEÞ; hspin ¼ ΔJðBÞ: ð28Þ

IMRPhenomXHM can fastly produce relatively accurate
waveforms containing the most dominant modes, such as

(2, 2), (2,1), (3,3), (3,2), and (4,4), which are expected
to contribute to the memory effect. It should also be
noticed that IMRPhenomXHM is an aligned-spin model
and has only been calibrated with NR for mass ratios
q ¼ m1=m2 ∈ ½1; 18�, but it has been noted in [87] that the
waveforms still have reasonable accuracy outside of the
calibration region. So we will use waveforms with mass
ratios in the region q ∈ ½1; 23� in this work.
In our calculations, we use IMRPhenomXHM to gen-

erate the frequency domain waveform first, and then use the
inverse Fourier transform method from LALSimulation [90] to
generate the time domain waveform, which is necessary for
calculating the memory effect. We only keep dominant
modes for the displacement memory and the spin memory
mode, i.e., hð2;0Þ and hð3;0Þ, respectively. This is reasonable,
since the higher l modes are strongly suppressed, as one
can see from Eq. (25).
To assess the detection potential of memory effects, we

need to convert waveforms to the frequency domain by a
Fourier transformation. We use Planck-taper window [91]
to window the time-domain waveform to remove edge
effects. In the calculation, we choose ϵ ¼ 0.04 (see Eq. (7)
in McKechan et al. [91] for the detail of window function).
Since the memory effect is always subdominant com-

pared to the full GW strain, one should search for memory
effect in GW signals with the highest possible SNR. So we
focus on MBHBs with masses in the range 104 M⊙ ∼
107 M⊙ in this study. In the following part of this work, all
the mass mentioned are redshifted mass.
It is important to determine how much data will be

needed in the calculate the memory effect. For this we note
that the vast majority of the SNRs produced by MBHBs on
TianQin can be obtained within the last hour of data before
merger [75,76]. But as wewill see below, wewill not need a
full hour of data for total masses near 104 M⊙. We also
note the memory effect is mainly accumulated during the
merger phase when the most energy and angular momen-
tum are radiated away, while the spin memory may get
relatively more contribution from the inspiral phase
[30,31]. So we choose to calculate the memory effect by
keeping a fixed number of waveform cycles (for any given
mass ratio) before merger, where the number of cycles is
defined as [92]

N ¼ 1

32π8=3

�
GMc

c3

�
−5=3

ðf−5=3min − f−5=3max Þ: ð29Þ

Here fmin and fmax are the frequencies at the beginning and
the end points of the waveform, G is gravitational constant,
c is light speed, Mc is the chirp mass,

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
: ð30Þ

For the efficiency of calculation, we have generated
the waveforms for a chosen total mass (2 × 106 M⊙)
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with a given duration (one day) at different symmetric mass
ratios,

η ¼ m1m2

ðm1 þm2Þ2
; ð31Þ

ranging from η ¼ 0.04 to η ¼ 0.25 at a 0.01 incremental
rate, and the waveform is then used for all source masses
through appropriate scaling (For sources with total mass
104 M⊙ and 107 M⊙, this corresponds to a duration of
0.12 hour and 5 day, respectively). The number of cycles
involved in such waveforms increases monotonically when
the symmetric mass ratio is lowered, varying from about
57 for η ¼ 0.25 to about 113 for η ¼ 0.04. The lost SNR
for cycles not included is expected to be negligible. We
have explicitly checked that the difference between the
memory SNRs from waveforms keeping the last 150 cycles
and the last 50 cycles before merger is no greater than
0.026%, for equal mass sources with different total masses.
For unequal-mass sources, the number of cycles in the
waveform is always greater than that of the equal-
mass sources and so the lost SNR is expected to be even
smaller. In Fig. 1, we give an example of the waveforms
generated with IMRPhenomXHM. One can see that the
accumulation of memory effect is most significant near the
time of merger.

IV. DETECTION POTENTIAL

In this section, we study the prospect of using TianQin to
detect the memory effect.
The data stream output from a detector can be sche-

matically written as

dðtÞ ¼ sðtÞ þ nðtÞ; ð32Þ

where sðtÞ is the GW signal registered by the detector and
nðtÞ is the noise in the data stream.
The registered signal depends on the detector through the

antenna pattern functions. For space-based GW detectors
like TianQin and LISA, they are given by

Fþðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
ð1þ cos2θÞ cos 2ϕ cos 2ψ

− cos θ sin 2ϕ sin 2ψ

�
;

F×ðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
ð1þ cos2θÞ cos 2ϕ sin 2ψ

þ cos θ sin 2ϕ cos 2ψ

�
; ð33Þ

where the θ and ϕ are the position of the source in the
detector frame, and ψ is the polarization angle. For any
incoming GW signal with the usual plus and cross modes,
hðt; ι;φcÞ ¼ hþðt; ι;φcÞ − ih×ðt; ι;φcÞ, where ι and φc are
the inclination and the reference phase, respectively, the
registered signal is given by

sðtÞ ¼ Fþðθ;ϕ;ψÞhþðt; ι;φcÞ þ F×ðθ;ϕ;ψÞh×ðt; ι;φcÞ:
ð34Þ

For a preliminary estimation, we focus on the sky-averaged
response of GWs,

hs�ðtÞsðtÞi ¼
Z þ∞

0

ShðfÞR̄ðfÞdf; ð35Þ

where ShðfÞ is the power spectral density (PSD) of the
incoming GW signal and R̄ðfÞ is the sky-averaged response
of the detector. In this work, we use

ShðfÞ ¼
2

T
jh̃þ;×ðfÞj2 ≡ 2

T
jh̃ðfÞj2;

R̄ðfÞ ¼ 3

10

�
1þ

�
2fL0

0.41

�
2
�
−1
; ð36Þ

where T is the time span of the data stream, h̃þ;×ðfÞ are the
Fourier components of hþ;×ðtÞ, and L0 is the arm-length of
the detector.

FIG. 1. Example of waveforms generated with IMRPhe-
nomXHM. Plotted with a nonspinning MBHB with mass
ratio q ¼ 1, total mass M ¼ 106 M⊙ at luminosity distance
DL¼ 2 Gpc. The top panel is the real part of dominant GW
mode hð2;2Þ, the middle panel is the real part of dominant mode of
displacement memory hð2;0Þ, and the bottom panel is the imagi-
nary part of dominant spin memory mode hð3;0Þ. The cycles of the
waveform for this plot is about 57.
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The noise nðtÞ is usually given in terms of its PSD,

SNðfÞ ¼
2

T
jñðfÞj2; ð37Þ

where ñðfÞ is the Fourier component of nðtÞ. For a space-
based detector like TianQin and LISA, the noise can be
grossly grouped into two categories: those from the
propagation of the laser used to measure the change of
spacetime due to the passage of GWs and those from the
irregular motion of the test masses serving as reflecting
endpoints for the lasers. The former is quantified with the
total displacement measurement noise in a single laser link,
denoted by Sx, and the latter is quantified with the residue
acceleration noise of a test mass in the sensitive direction,
denoted by Sa. The structure of SNðfÞ and the constants L0,
Sx and Sa are different for different detectors. For TianQin,
L0 ¼

ffiffiffi
3

p
× 108 m, and the following noise model is used

in the process of mission development [61,62],

SNðfÞ ¼
1

L2
0

�
Sx þ

4Sa
ð2πfÞ4

�
1þ 10−4 Hz

f

��
;

S1=2x ¼ 1 × 10−12 m=Hz1=2;

S1=2a ¼ 1 × 10−15 m=s2=Hz1=2: ð38Þ

The huge number of Galactic compact binaries, most of
which are ultracompact double white dwarf systems, can
generate a foreground confusion noise that may affect the
detection of GWs from other sources. However, it has been
shown that the expected foreground confusion noise for the
TianQin is relatively weak [67]. So we will not consider it
in this work. For LISA, the parameters of the Galactic
confusion noise [93,94] are for four years of data.
The sky averaged sensitivity, or equivalently the ampli-

tude spectral density (ASD), of TianQin is define as

heffðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
; SnðfÞ≡ SNðfÞ

R̄ðfÞ : ð39Þ

The numerical results are plotted in Fig. 2. As a compari-
son, we plot the sensitivity curve of LISA [94], for which
the contribution of the foreground confusion noise is non-
negligible. We also plot the strains for the dominant mode
hð2;2Þ, the dominant mode of displacement memory hð2;0Þ,
and the dominant spin memory mode hð3;0Þ.

A. SNR

The SNR is a key quantity one can use to assess the
detection potentia of a signal, which is defined as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

Z
fmax

fmin

jh̃ðfÞj2R̄ðfÞ
SNðfÞ

df

s
; ð40Þ

where fmin, fmax are the minimal and maximal frequency
limits of the waveform. For ground-based detectors,
one may use an SNR threshold as low as ρ ¼ 3 to
claim a detection of the memory effect [48,95,96].
However, for space-based detectors, there could be
several signals coexisting in the data, potentially making
it more difficult to identify the memory effect. But since
the actual SNR threshold is still not well studied so far,
we will use the set of thresholds ρ ¼ 3, 5, 8 to get an
indicative result for the detection potential of TianQin.
As an explicit example, for the source parameters
used in Fig. 2, the SNRs are: ρð2;2Þ¼1112.2, ρð2;0Þ¼14.7,
and ρð3;0Þ ¼ 3.8.
There are several parameters that can strongly affect the

SNR. The most significant one is the inclination angle ι,
and the dependence of inclination has been well studied
(see, e.g., [55,78,80]). We plot the SNR of memory effects
as a function of ι in Fig. 3. For the displacement memory,
the SNR will get its maximum at ι ¼ π=2, and approaches
to 0 as ι approaches to 0 and π. On the other hand, for the
spin memory mode, the SNR will be 0 while ι ¼ π=2, and
get its maximum near ι ¼ 3π=10 and ι ¼ 7π=10. For all the
examples to be studied in the following part, we will choose
ι ¼ π=2 for the displacement memory and ι ¼ π=4 for the
spin memory mode.
Another important parameter is the spin of the compo-

nents of the binaries, which can increase the efficiency of
energy loss through GW radiation [97,98]. In our situation,
we consider the aligned spin systems. We use the effective
spin defined by [99,100],

χ ¼ m1χs1 þm2χs2
m1 þm1

; ð41Þ

FIG. 2. The sensitivity curves of TianQin and LISA, together
with the dominant modes, hð2;2Þ, hð2;0Þ, and hð3;0Þ, for the usual
GW strain, the displacement memory and the spin memory mode,
respectively, plotted with a nonspinning MBHB with mass ratio
q ¼ 1, total mass M ¼ 106 M⊙, inclination ι ¼ π=4 and lumi-
nosity distance DL ¼ 2 Gpc.
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where χs1;s2 is aligned dimensionless spin components of
two black holes and are defined as

χs1;s2 ¼
S⃗1;2 · L⃗

m2
1;2jL⃗j

; ð42Þ

where S⃗1;2 are the spins (intrinsic angular momentum) of the
two individual black holes, L⃗ is the orbital angular momen-
tum and m1;2 are the masses of two black holes. The
dependence of SNR on the effective spin χ is plotted in
Fig. 4. One can see that the SNRof the displacementmemory
increases nearly monotonically with χ, while the SNR of the
spin memory mode does not vary too much with χ.
It is expected that the SNR will strongly depend on the

source distance, for it is inversely proportional to the
magnitude of the GW strain. In Fig. 5, we plot the horizon
distance for detection in terms of the redshift z as a function
of the total mass M. For the displacement memory, the
maximum redshifts for SNRs equal to 3, 5, 8 are z ¼ 4.6,
z ¼ 2.98 and z ¼ 2.03, respectively. For the spin memory
mode, the maximum redshifts for SNR equal to 3 is
z ¼ 0.48. As a comparison, we also give the results on
LISA and the joint detection with TianQin and LISA
(denoted as TianQinþ LISA). The horizon distance for
LISA is almost twice of that for TianQin within a large part
of the mass ranges, with the maximum redshifts reaching
z ¼ 10.3, z ¼ 6.6, z ¼ 4.4 for the SNRs of the displace-
ment memory equal to 3, 5, and 8, and the maximum
redshift for detecting the spin memory mode with SNR
equal to 3 is z ¼ 1.7. There is also obvious improvement of
TianQinþ LISA over LISA alone, with the contribution of
TianQin being more significant near the lower mass end.
The dependence of SNR on the total mass M and the

symmetric mass ratio η is plotted in Fig. 6 for different
values of χ. The maximal SNRs for both displacement

memory and spin memory mode appear around η ¼ 0.25,
which is consistent with the expectation that systems of
equal mass can radiate the most energy and angular
momentum during GW radiation and thus can incur the
largest memory effect. For the displacement memory, it is
possible to have SNRs passing ρ ¼ 3 for η roughly in the
range 0.06–0.25, while for the spin memory mode, the
allowed range for η is narrowed to the small region of
roughly 0.22–0.25. Depending of the values of the χ, the
maximal SNRs for the displacement memory appear
roughly in the range 4 × 105 M⊙–8 × 105 M⊙, while the
maximal SNRs for the spinmemorymode appear roughly in

FIG. 4. Dependence of SNR on the effective spin χ. Plotted
using a MBHB with mass ratio q ¼ 1, total mass M ¼ 106 M⊙
and luminosity distance DL ¼ 2 Gpc. The blue horizontal line
represents SNR equal to 3. We choose inclination ι ¼ π=2 for
displacement memory, and inclination ι ¼ π=4 for spin memory
mode.

FIG. 3. Dependence of SNR on the inclination angle ι. Note
different values of ρmax are used for the displacement memory
and the spin memory mode. Plotted using a MBHB with mass
ratio q ¼ 1, total mass M ¼ 106 M⊙ and luminosity distance
DL ¼ 2 Gpc.

FIG. 5. The dependence of detection horizon for memory effect
on the total mass, at SNRs equal to 3, 5, 8 for the displacement
memory and the SNR equal to 3 for the spin memory mode. Other
source parameters are q ¼ 1 and χ ¼ 0.8. Three detector con-
figurations are considered: TianQin (solid), LISA (dashed), and
TianQinþ LISA (dotted).
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the range 8 × 105 M⊙–1.5 × 106 M⊙. As a comparison, we
have also included the contours for LISA and TianQinþ
LISA in the same plots. One can see that in detecting the
displacement memory, LISA is superior in most parameter
space, while TianQin can be competitive in a small region
near the lower mass end and such advantage grows bigger
with χ. There is obvious improvement of TianQinþ LISA
over LISA at the lowermass end of the plots. In the detection
of the spin memory mode, LISA is always superior than
TianQin while the improvement of TianQinþ LISA is
obvious for all mass ranges.

B. Detection number

It is known that TianQin can detect several to dozens of
MBHBs per year [75]. So a natural question to ask is how
many of the detected events will contain memory effect that
is directly detectable.
There is still a lot of uncertainty in the astrophysical

models that determine the population of MBHBs in the
universe. In this work, we use three different models for
merger history of massive black holes which have been used
in [75]. These three models are generated using the semi-
analyticmodel proposed in [101] and successively improved
in [102,103]. One model is referred as “popIII” which
corresponds to a light seed model [104], and the other two
models are referred as “Q3_d” and “Q3_nod,” which
correspond to two heavy seed models [105–107] with
and without the time delay between the merger of a
MBHB and that of their host galaxies.

In [75], 1000 mock catalogs have been generated for
each of the astrophysical models. We search in each of
these mock catalogs for events containing memory effect
with SNRs exceeding ρ ¼ 3, counting the detection num-
ber, and then average over the 1000 mock catalog for each
of the astrophysical models.
The result is given in Table I. One can see that, depending

on the astrophysical models used, TianQin can in average
detect 0.5–2.0 events whose displacement memory has
SNRs no less than 3 and about 0.1–0.7 events whose
displacement memory has SNRs no less than 8. On the
one hand, these result suggests that the chance for TianQin to
directly detect the displacement memory is not very high.
But on the other hand, these results suggest that the chance
for TianQin to directly detect the displacement memory is
not fully negligible. In contrast, less than 0.2 events are
expected to be detected which will contain the spin memory
mode whose SNR can reach 3, meaning that the chance for
TianQin to directly detect the spin memory mode from a
singleMBHBevent is likely negligible. The results on LISA
have also been included in Table I. One can see that the
expected detection number of LISA is about 2–4 times that
of TianQin, depending on which astrophysical model and
which SNR value one is looking at.

V. RELEVANT PARAMETER SPACE

Due to the important application of MBHB events in
fundamental physics [69,70], astrophysics [75] and cosmol-
ogy [108], each detected MBHB event would be extremely
precious and it is extremely important to have accurate

FIG. 6. The dependence of SNRs on the symmetric mass ratio η and the total massM, for three values of the effective spin, χ ¼ −0.8,
0, 0.8, and fixed luminosity distance DL ¼ 2 Gpc. The upper panel is for the displacement memory and the lower panel is for the spin
memory mode. The numbers on the contours are the corresponding SNRs. Three detector configurations are considered: TianQin
(solid), LISA (dashed), and TianQinþ LISA (dotted).
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waveform models to precisely measure the source param-
eters. As we have mentioned before, although the memory
effect is physically interesting on its own right, it can also
lead to systematic errors if not properly taken into consid-
eration in waveform modeling. In this section, we study
when the contribution of memory effect will become non-
negligible. One can intuitively reason that this should be
equivalent to when the memory effect will become detect-
able. So our key task here is to determine the relevant
parameter space.
The effect of neglecting the memory effect in the

waveforms can be quantified using the mismatch between
the waveforms with and without the memory effect. For
two different waveform models h̃1ðfÞ and h̃2ðfÞ, the
mismatch is defined as

M ¼ 1 −
hh̃1; h̃2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh̃1; h̃1ihh̃2; h̃2i
q ; ð43Þ

where

hh̃1; h̃2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð44Þ

The systematic errors introduced by a reliable waveform
need to be lower than statistical errors. In high SNR regime,
the statistical errors can be estimated from the inverse of
Fisher matrix Γij ¼ ð∂ihj∂jhÞ (where i, j are the waveform’s
parameters), and these errors are decreased as SNR−1 [109].
The threshold value of mismatch is given by [110–112]

Mth ¼
D
2ρ2

; ð45Þ

where D is the number of parameters whose estimation is
affected by the waveform model accuracy. In our case, we
have D ¼ 4. One needs M < Mth to ensure that the

FIG. 7. The dependence of mismatch on the symmetric mass ratio η and the total mass M, for three values of the effective spin,
χ ¼ −0.8, 0, 0.8, and fixed luminosity distance DL ¼ 2 Gpc. The upper panel is for the displacement memory while the lower panel is
for the spin memory mode. The black dashed lines mark where the memory SNR equals 3. The red solid lines mark where the mismatch
reaches the threshold determined by Eq. (45), in which ρ is calculated using the complete waveform but containing no memory effect.

TABLE I. The expected IMR detection number and both displacement memory and spin memory mode detection number on TianQin
and LISA detectors for “popIII,” “Q3_d,” and “Q3_nod” astrophysical models.

IMR M > Threshold ρdis > 3 ρdis > 5 ρdis > 8 ρspin > 3 ρspin > 5 ρspin > 8

popIII TianQin 56.8 0.9 0.5 0.3 0.1 ∼ 0 ∼ 0 ∼ 0
Q3_d TianQin 18.1 0.9 0.6 0.3 0.2 ∼ 0 ∼ 0 ∼ 0
Q3_nod TianQin 271.4 3.6 2.0 1.2 0.7 0.2 0.1 ∼ 0
popIII LISA 148.35 3.3 1.6 0.7 0.4 0.1 ∼ 0 ∼ 0
Q3_d LISA 37.4 4.9 2.6 1.4 0.8 0.2 0.1 ∼ 0
Q3_nod LISA 295.5 12.2 5.8 2.6 1.4 0.4 0.2 0.1
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parameter estimation is unbiased. It should be noted that the
results given by Eq. (45) become unreliable as the SNR
decreases [109,112].
The dependence of the mismatch on the symmetric mass

ratio η and the total mass M, for several values of the
effective spin χ and the fixed luminosity distance DL, is
plotted in Fig. 7. One can see the contours for the mismatch
threshold and those for the SNR equal to 3 are close to
each other.
We also plot the critical contours where the mismatch

reaches its threshold for different redshift values on M-η
plane in Fig. 8. One can see that the critical contours shrink
when the redshift is increased. For a source with total mass
near 4 × 105 M⊙, one should consider the contribution of
displacement memory to the waveform even when the
source is beyond redshift 5, while for the spin memory
mode, it can only have influence for very small redshift,
another indication that spin memory is unlikely to be
directly detected with a single source.
In Fig. 9, we compare the horizon distance deduced by

using the mismatch threshold and by requiring ρ ¼ 3. One
can see that the horizon distance to pass the threshold of

mismatch is always larger than requiring ρ ¼ 3. Using the
criterion of mismatch, the maximum redshift is z ¼ 6.37
for the displacement memory and z ¼ 0.58 for the spin
memory mode.

VI. CONCLUSION

Among all the curious effects, the radiation of GWs also
cause permanent changes in the background spacetime.
Such changes are caused not only by the changes in the
BMS charges in spacetime, but also by the energy and
angular momentum fluxes that go to the null infinity. So the
detection of memory effect will serve as an important portal
to study the nature of gravity and spacetimes.
These permanent changes, which are called the displace-

ment, spin and center-of-mass memory, are related to the
various types of BMS transformations and their extensions.
Such connection has enabled the calculation of the dis-
placement memory strain and the spin memory mode strain
using the BMS flux-balance laws.
In this paper, we study the prospect of using TianQin, a

planned space-based GW detector, to directly detect the
memory effect.
The SNRs depend strongly on many of the source

parameters. For the displacement memory, the maximal
SNRs can be achieved with the inclination angle ι ¼ π=2,
large effective spin, nearly equal mass and with total
masses in the range 4 × 105 M⊙ ∼ 8 × 105 M⊙. For the
spin memory mode, the maximal SNRs can be achieved
with the inclination angle near ι ¼ 3π=10 and ι ¼ 7π=10,
nearly equal mass and with total masses in the range
8×105 M⊙∼1.5×106 M⊙. With favorable source param-
eters, the memory SNRs can reach 3 for sources located as
far as z ≈ 4.6 for detecting the displacement memory and
z ≈ 0.48 for detecting the spin memory mode. By using
currently available astrophysical models for MBHBs, For

FIG. 8. The critical contour of mismatch at different redshift
values. We have used χ ¼ 0.8 in the plots.

FIG. 9. The horizon distance in redshift for the detection with a
criterion of mismatch and SNR in terms of reshifted total mass.
The calculation is made by the MBHB withM ¼ 106 M⊙, q ¼ 1
and χ ¼ 0.8. In calculation, we choose inclination ι ¼ π=2 for
displacement memory, and inclination ι ¼ π=4 for spin memory
mode.
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memory effect with a SNR equal to 3, we find that TianQin
can detect about 0.5–2.0 MBHB events with the displace-
ment memory effect, and less than 0.7 events with spin
memory mode during its 5 years observation. Thus TianQin
will have a low but non-negligible chance to detect the
displacement memory while the chance to detect the spin
memory from a single MBHB event is likely negligible.
We also study the question of when the contribution of

memory effect will become non-negligible in the waveform
modeling of MBHBs. We find that contour of SNR ¼ 3 are
included in the criterion for the mismatch beyond the
threshold. By using (nearly) optimal values for the incli-
nation angle and the effective spin, we determine the
parameter space in which the memory effect can be safely
neglected.
We note LISA can do better than TianQin in detecting

the memory effect for most sources while TianQin can
become competitive for sources with lower total masses.
With the current astrophysical models on MBHBs, the
expected detection number of LISA is about 2–4 times that

of TianQin, depending on which astrophysical model and
which SNR value one is looking at. We also note
TianQinþ LISA can have obvious improvement over each
of the individual detectors.
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