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Dipole excitations via isoscalar probes: The splitting of the pygmy dipole resonance in 124Sn
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Inelastic α-scattering excitation cross sections are calculated for electric-dipole excitations in 124Sn based
on the transition densities obtained from the relativistic quasiparticle time-blocking approximation (RQTBA)
in the framework of a semiclassical model. The calculation provides the missing link to directly compare the
results from the microscopic RQTBA calculations to recent experimental data measured via the (α,α′γ ) reaction,
which show a structural splitting of the low-lying E1 strength often denoted as pygmy dipole resonance (PDR).
The experimentally observed splitting is reproduced by the cross-section calculations, which allows us to draw
conclusion on the structure of the PDR.
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The study of nuclei with neutron excess have been pursued
in the last years with focus on the properties of collective
states. Special attention has been devoted to the electric-dipole
strength at low excitation energy, the so-called pygmy dipole
resonance (PDR), both in theory [1] as well as experimen-
tally [2]. While the PDR represents an interesting new nuclear
phenomenon itself, the connection of the (low-lying) E1
strength to the neutron skin of atomic nuclei [3–11] and
to isovector parameters in the equation of state of nuclear
matter [8,12–14] as well as its possible importance for reaction
rates in astrophysical scenarios [15,16] has further increased
the interest in the PDR region. Different microscopic models
predict the presence of the low-lying PDR states below
the well-know (isovector) electric giant dipole resonance
(IVGDR); see Refs. [1,2] and references therein. Most cal-
culations show similar results for the transition densities of
the low-lying E1 strength, which often is used to “define”
the PDR states: The neutron and proton transition densities
are in phase inside the nucleus and, at the surface, only the
neutron part contributes considerably. The investigation of the
PDR by means of isovector (IV) as well as isoscalar (IS) probes
provides information on the structure of the transition densities
involved, which show a strong mixing of isospin character.
While for isovector probes (i.e., photons) data exist for various
nuclei obtained mainly in nuclear resonance fluorescence
(NRF) and Coulomb excitation (for a recent overview see
Ref. [2]), only recently data on the PDR using an isoscalar
probe became available [17–21]. Applying the (α,α′γ ) co-
incidence method in combination with high-resolution γ -ray
spectroscopy [22] allowed the study of the PDR for several
semimagic stable nuclei in α-scattering experiments. The
comparison with results from NRF revealed a surprising
splitting of the PDR strength below the particle threshold into

*lanza@ct.infn.it

two groups [17,19]: the lower-lying group of states is excited
by both isoscalar and isovector probes while the states at higher
energy are excited by photons only. A first qualitative compar-
ison to calculations within the relativistic quasiparticle time-
blocking approximation (RQTBA) as well as the quasiparticle
phonon model (QPM) has shown good agreement with the
experimental observation [19]: While the low-lying part of the
E1 strength shows the described pattern of transition densities,
which lead to an enhancement in the isoscalar E1 response,
the higher-lying states are of transition character towards
the GDR and, thus, are suppressed in the isoscalar channel.
Meanwhile, similar IS- or IV-energy behavior of the low-lying
E1 strength has been reported experimentally in inelastic
scattering of 17O off 208Pb at low bombarding energies [23] as
well as in other microscopic-model calculations for different
nuclei; see, e.g., Refs. [9,24]. However, the comparison to
the experimental data lacks on the isoscalar part, since the
calculated IS B(E1) strength cannot be directly compared
to the measured α-scattering cross sections. The comparison
thus remained on the “qualitative level.” In this manuscript
we present calculation of α-scattering cross sections, based on
the microscopic transition densities obtained in the RQTBA,
within the framework of a semiclassical model to overcome
this drawback in the comparison of experiment and calculation.

The relationship between the inelastic cross section and the
reduced transition probabilities B(E1) is clear for the Coulomb
excitation or NRF (they are proportional) while it is not so
evident in the relation between the isoscalar response and the
inelastic excitation cross section due to an isoscalar probe. In
this case it is better to calculate explicitly the inelastic cross
section due to the nuclear interaction in order to establish its
connection with the isoscalar transition probability. Recently,
calculations along these lines have been performed [25–28]
within a semiclassical model. Here we present the result
for the system α + 124Sn at Eα = 136 MeV which has been
experimentally studied in Refs. [19,20].
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The calculation of the inelastic cross sections are performed
within a semiclassical model. The basic assumption is that
the colliding nuclei move on a classical trajectory determined
by the real part of the optical potential, while the internal
degrees of freedom are described quantum mechanically. This
model is known to hold for heavy-ion grazing collisions. In our
specific case we consider the alpha-particle projectile scattered
off by 124Sn at Eα = 136 MeV and analyze the excitation
process of the target. Under these conditions, we can write
the Hamiltonian as HT = H 0

T + W (t)where H 0
T is the internal

Hamiltonian of the target and the external field Wdescribes
the excitation of T by the mean field of the projectile nucleus,
whose matrix elements depend on time through the relative
coordinate R(t). By solving the Schrödinger equation in the
space spanned by the eigenstates of the internal Hamiltonian
|�α〉 one can calculate, nonperturbatively, the final population
for each of the |�α〉 states. Then the time-dependent state
|�(t)〉 of the target nucleus can be expressed as

|�(t)〉 =
∑

α

Aα(t)e−iEαt |�α〉, (1)

where the ground state is also included in the sum as the term
α = 0. The Schrödinger equation can be cast into a set of linear
differential equations for the amplitudes Aα(t):

Ȧα(t) = −i
∑
α′

ei(Eα−Eα′ )t 〈�α|W (t)|�α′ 〉Aα′(t). (2)

Their solutions are then used to construct the probability of
exciting the internal state |�α〉 as

Pα(b) = |Aα(t = +∞)|2 (3)

for each impact parameter b. Finally, the total cross section is

σα = 2π

∫ +∞

0
Pα(b)T (b)bdb (4)

by integrating Pα over the whole range of the impact parame-
ters. The integral is modulated by the transmission coefficient
T (b) which takes into account processes not explicitly included
in the model space and that take flux away from the elastic
channel. A standard practice is to construct it by integrating
the imaginary part of the optical potential associated to the
studied reaction. When the imaginary part is not available
from the experimental data we use the simple assumption of
taking it as half of the real part.

The internal structure of the nucleus 124Sn is provided by the
relativistic quasiparticle time-blocking approximation devel-
oped in Refs. [29,30] and based on the covariant density func-
tional with NL3 parametrization [31]. This approach is a self-
consistent extension of the relativistic quasiparticle random-
phase approximation [32] accounting for the quasiparticle-
vibration coupling. The details of the calculations for 124Sn are
given in Ref. [20]. The RQTBA calculation scheme has been
approved in various applications and justified by the full self-
consistency and renormalization technique. The phonon space
is truncated by the angular momentum of the phonons at Jπ =
6+ and by their frequencies at 15 MeV. The two-quasiparticle
space is sufficiently large to provide decoupling of the transla-
tional spurious mode from the physical ones. Coupling to vi-
brations within the RQTBA does not affect this mode due to the

(a)

(b)

(c)

FIG. 1. (Color online) (a) Bunching procedure for the strength
distribution calculated within RQTBA, and (b) the obtained isoscalar
and (c) electromagnetic reduced transition probabilities of the
bunched states.

subtraction of the static contribution of the particle-vibration
coupling (PVC) amplitude. This subtraction also removes dou-
ble counting of the PVC effects from the residual interaction,
guarantees the stability of the solutions for the response func-
tion, and provides fast convergence of the renormalized PVC
amplitude [33]. Here we perform a so-called bunching proce-
dure which is illustrated in Fig. 1(a) for the isoscalar dipole
strength distribution. The strength obtained with the smearing
parameter � = 20 keV is transformed into the reduced tran-
sition probabilities via the relation: Bν = π�S(ων,�), where
S(ων,�) is the value of the strength at the νth maximum. The
bunched states obtained in this way accumulate the transition
probabilities of all the states in ∼40 keV bins. The distributions
of the probabilities obtained by this procedure are displayed
in Figs. 1(b) and 1(c) for the isoscalar and electromagnetic
transitions, respectively. The transition densities of these
bunched states are determined as described in Ref. [34] and
will be used in the subsequent cross-section calculations.

The real part of the optical potential, which together with
the Coulomb interaction determines the classical trajectory,
is constructed with the double-folding procedure [35], as
well as the nuclear form factors by double folding the
RQTBA transition densities. In both cases the nucleon-nucleon
interaction has been chosen to be the M3Y-Reid type [36].
Since the excitation is produced by a probe which is essentially
isoscalar and with N = Z, only the isoscalar part of the
nucleon-nucleon interaction and the isoscalar densities and
transition densities contribute to the potential and to the form
factors. More details are given in Ref. [28].

For the given conditions the important part of the inelastic
excitation at Eα = 136 MeV is due to the nuclear interaction.
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σ

FIG. 2. (Color online) Inelastic cross sections as function of
the excitation energy for the systems α + 124Sn at Eα = 136 MeV.
The calculations are performed when only (a) the nuclear and
(b) the Coulomb interaction is switched on. (c) The results when
both interactions are working.

Nevertheless, the small contribution due to the Coulomb
interaction is important because of interference effects. A
comparison of pure nuclear and Coulomb cross section as well
as total cross section including the interference for the RQTBA
bunched states is given in Fig. 2. The contribution of the
Coulomb interaction [Fig. 2(b)] is small as compared with the
cross section generated by the nuclear interaction [Fig. 2(a)].
When both interactions are switched on, an interference effect
is produced, which results in the cross section presented in
Fig. 2(c). The interference is destructive at small radii and
constructive at large radii and this depends on the different
structure of the nuclear and Coulomb form factor, which in turn
are compelled by the fact that the isoscalar dipole transition
density displays nodes. This is discussed in a more detailed
way in Refs. [28,37].

The gross features of the strength distributions (see Fig. 1)
are retrieved in the cross-section calculation both for the
isoscalar and isovector cases. Indeed, while we know that this
is mathematically true for the Coulomb case, it is not clear that
the same is actually correct for the nuclear interaction. One can
verify it by performing a calculation by putting the energies
of the states to zero. This eliminates the contributions due to
the dynamics of the reaction, such as the Q-value effect, and,
at least for the Coulomb case, should produce a cross section
which is proportional to the Bem(EL) values.

Indeed, in Fig. 3(b), this is shown by plotting for each
state the ratio between the Coulomb inelastic cross section and
the Bem(EL) value, calculated by putting to zero the energy of
the corresponding state. As it is expected, the ratio is constant
for all the states. Conversely, in the case of nuclear excitation
the ratios do not have a constant value, as presented in Fig. 3(a).
This corroborates the fact that, for the nuclear excitation,
the individual cross section depends on the characteristics of

σ
σ

FIG. 3. (Color online) Ratios between the inelastic cross sec-
tions, calculated by putting to zero the energies of the states, to
their corresponding B(EL). The two panels show the results for
(a) the nuclear and (b) the Coulomb excitations. The four black
lines correspond to the four dipole states in Fig. 1(a) with the bigger
response to the isoscalar probe.

the transition densities and one has to make calculations of the
sort presented here in order to gain useful information on the
excitation process.

So far the presented cross sections are implicitly integrated
over the full solid angle. However, the experimental data
of Refs. [19,20] were taken at the angle range from about
1.5◦ to 5.5◦ corresponding to about 1.53◦ to 5.94◦ in the
c.m. system. From the deflection function shown in Fig. 4
one can deduce the ranges of impact parameters whose
corresponding trajectories will end up to the experimental
α-scattering-angle range. As given in Fig. 4, only the impact
parameters between 8.2 to 9.0 fm and between 13.3 to 52.0 fm
give contributions within the experimental angular range.
Therefore, in order to be consistent with the experiment,
the calculations have been repeated taking into account only
the above given impact-parameter ranges. The results are
shown in Fig. 5. Apart from the scale and a small variation,
the general features of the three considered cross sections
distributions are maintained and the decrease of the cross
section for energies above 8 MeV is retrieved both for the
nuclear as well as for the total cross sections.

FIG. 4. (Color online) Deflection function for the system α +
124Sn at Eα = 136 MeV. The horizontal dashed lines delimit the ex-
perimental α-scattering-angle range. The vertical solid line determine
the corresponding impact-parameter ranges.
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σ

FIG. 5. (Color online) Same as Fig. 2, in this case only the impact
parameters intervals whose corresponding trajectories terminate to
the measured scattering-angle range are taken into account.

A comparison of the final calculated cross section based
on the RQTBA and the experimental results for 124Sn is
presented in Fig. 6. In order to compare to the differential
cross section measured in the experiment the calculations have
been normalized to the corresponding solid angle. Also given
are the corresponding Bem(E1) distributions. In both cases the
strongest states are about a factor of ten stronger in the RQTBA
compared with experiment. This difference has the following
reason: By construction, the fragmentation in the conventional
RQTBA is not sufficient for a state-by-state description of the
dipole strength in this energy region and coupling to higher
configurations has to be included. The overall 800 keV shift
of the RQTBA strength distributions has the same origin: all
the strength in this energy region consists of fragments of the
RQRPA pygmy mode located at about 9 MeV, and higher-order
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FIG. 6. (Color online) Comparison of experimental and
RQTBA-based cross section for the (upper row) (α,α′γ ) reaction
and (lower row) Bem(E1) values for 124Sn. Experimental values are
taken from Refs. [20,38].
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FIG. 7. (Color online) Comparison of experimental and RQTBA
(α,α′γ ) cross sections for 124Sn in terms of their cumulative sums.

correlations are expected to reinforce the fragmentation to
lower energies. In addition, the bunching procedure described
above results in the strength distribution of 40 keV bins rather
than of the single states. However, the similar enhanced factor
of about ten that we have for the cross sections and the Bem(E1)
values for the individual states show that the calculations for
the cross sections are consistent and the underprediction of the
fragmentation has no influence on the gross features of the two
distributions. Integrating the total cross section up to 8.7 MeV
results in 43.6 mb/sr for the RQTBA and 44.1 (5) mb/sr
for the experiment when including also the contribution of the
continuum (see Ref. [19], Fig. 3). The cumulative sums of these
quantities are displayed in Fig. 7 showing that the experimental
and theoretical total cross section, aside from the global energy
shift, are in excellent agreement, which further supports the
validity of our calculation on the absolute scale. However, one
has to keep in mind that some details of the calculations may
depend on the uncertainties that are connected with the use of
the semiclassical model and the associated parameters as well
as of the M3Y-Reid potential.

Looking at the dependence of the strength distribution on
excitation energy, a good agreement of data and calculation
is observed, i.e., in both cases the α-scattering cross section
is strongly reduced at higher excitation energies compared
to the isovector channel. This is in agreement with the
qualitative comparison previously given in Ref. [19]. The
proper calculation of the α-scattering excitation cross section,
thus, confirms the good agreement between the experimentally
observed splitting of the low-lying E1 strength and the results
of the RQTBA calculation. However, we are aware of the
fact that the NL3 interaction used in the microscopic-structure
calculations produce a neutron skin which is bigger with
respect to the experimental data. How this fact can affect the
calculated cross section is not easy to find out and it is out
of the scope of this work. Further work has to be dedicated
to this delicate problem. However, our calculations show,
beyond any doubt, that the same separation is found in the
cross-section calculations making in this way the comparison
between experiment and theory straightforward.

In summary, we have presented the calculation of
α-scattering excitation cross sections for Jπ = 1− states
based on the results of microscopic calculations in the RQTBA
model using a semiclassical framework for the reaction. The
aim of this work is to verify that the excitation cross section due
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to an isoscalar probe reproduces the structure of the theoretical
isoscalar B(E1), whose comparison with the experimental data
was done in a previous work [19] only on a qualitative level.
We have shown that the comparison between experimental
and theoretical cross sections confirms the different behavior
of the population of the low-lying dipole states with different
probes. In the calculations nuclear-Coulomb interference
is included and the resulting cross sections are sensitive to
the character of the transition densities as expected. The
calculations allow for a direct comparison of the RQTBA
model with experimental results obtained for inelastic α
scattering on an absolute scale. The good agreement with the
data confirms the accurate description of the corresponding

transition densities of the low-lying E1 strength in the RQTBA
model, which shows for the low-lying group of E1 excitations
enhanced neutron contribution on the surface of the nucleus
and an isoscalar behavior in the interior. The combination of
the calculations presented and the experimental data, thus,
provides a first clear identification of this signature often
associated with the pygmy dipole resonance.
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