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Proton-nucleus total and reaction cross sections are computed for a number of target nuclei at energies

ranging from 100 to 2200 MeV using the Kermari, McManus, and Thaler optical potential formalism-3nd

the impulse approximation. Corrections due to Pauli, short-range dynamical, and center-of-mass correlations

are included in the calculations. In, addition, the electric form factor of the neutron and the nucleon

magnetic moments are included in deriving the necessary proton densities from available empirical charge

distributions. The proton-nucleon scattering amplitudes are obtained from phase shift solutions or directly

from the published N-X data. The proton and neutron point densities are deduced where possible from

analyses of electron and proton scattering or from Hartree-Fock predictions if the appropriate elastic angular

distribution data are unavailable. An estimate of the uncertainty in the calculated total cross sections is

given. The total and reaction cross sections computed in this way are shown to be in very good agreement

with the data above 400 MeV but overestimate the data by 15-25% at lower energies, indicating that the

approximate multiple scattering calculations generally performed near 1 GeV are inadequate when applied at
energies below 400 MeV. Several theoretical improvements are suggested for this lower energy range and

some numerical estimates are given. Analysis of total cross section data is also shown to be an unsuitable

method for obtaining accurate measurements of neutron matter densities.

NUCLEAR REACTIONS proton-nucleus scattering; total and reaction cross
sections Ep=100 to 2200 MeV targets i C 160 27A1, 56Fe, 6 ' SCu, ~ ' Ge,

~I, and Pb; Kerman, McManus, and Thaler optical potential; target nucleon
correlations.

I. INTRODUCTION

The recent literature in nuclear physics contains
many analyses of intermediate energy proton-nu-
cleus elastic scattering data. ' ' One of the prim-
ary goals of these studies is the extraction of neu-
tron density distributions and root-mean-square
radii' "' with attention mainly being given to nu-
clei with A ) 12. Correlation effects, 4 '0 electro-
magnetic corrections, and spin dependence'~
have been studied in detail and their effects on the
deduced nuclear matter radii assessed. Model-
independent analyses' have shown which regions
of the nuclear density are most sensitively probed
by -1 Gev' protons and exhaustive studies of the
numerous systematic sources of uncertainty which
enter into the numerical analysis of the data have
assigned realistic errors to the neutron radii and
distributions. ' What is, of necessity, assumed in
all these analyses is that the multiple scattering
theories of Kerman, McManns, and Thaler" (KMT}
or Glauber' are correct. More importantly, these
analyses assume that the impulse approximation, "
which is inevitably employed in numerical calcu-
lations, is reasonably valid at 800 and 1000 Mev'

where all studies of nuclei with A ) 12 have been
performed to date. ' " Clearly, there is a need
to test these approximate applications of multiple
scattering theory in order to determine the applic-

able energy range for such numerical analyses and
to obtain some estimate of the accuracy of the the-
oretical calculations.

In a sense, absolute tests of the accuracy of pro-
ton-nucleus elastic scattering calculations have
been carried out already by comparing the extrac-
ted neutron density distributions and radii with
Hartree- Pock predictions. The results of many
analyses of proton elastic scattering data on nu-
clei ranging in mass from 12 to 208 and at ener-
gies of 800 and 1000 MeV demonstrate that the
overall agreement with the theoretical predictions
is very good. ' ""Obviously, it is quite impor-
tant to impose energy dependent tests which do not
depend on theoretical models for their comparison.

Five possible tests of multiple scattering calcu-
lations have previously been proposed. ' Each test
requires a complete knowledge of the two-nucleon
amplitudes and involves exhaustive energy depen-
dent studies and error analyses. In three of these
tests the theoretical model is required to repro-
duce the experimental proton-nucleus polarization,
the successive maxima-to-minima ratios in the
angular distributions, and the proton-nucleus total
cross sections. In the fourth test the deduced neu-
tron radii are required to be energy independent.
The fifth test demands agr'cement between neutron
densities deduced with protons and that inferred
with other strongly interacting probes such as the
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pion and the alpha particle.
In this work the ability of the approximate sec-

ond-order KMT optical potential to reproduce the
experimental proton-nucleus total and reaction
cross sections from 100 to 2200 MeV is tested.
The potential model employed here makes use of
the impulse approximation and neglects nonlocal-
ity. This total cross section test will be carried
out here since: (1) total and reaction cross sec-
tion data" ' offer the only existent proton-nucleus
energy dependent data and (2) the prediction of the
total and reaction cross sections is not terribly
dependent on the assumed matter densities or on
details of the N-N amplitudes but depends primar-
ily on the proton-nucleon total cross sections which
are quite well known throughout this energy range.
Thus, fairly accurate (+2-4%) predictions of pro-
ton-nucleus total cross sections can be made in
this energy range, even for nuclei or at energies .

for which no elastic angular distribution data ex-
ist. Specifically, total and reaction cross sec-
tions for 100-2200 MeV proton scattering from
12C 160 27Al 56Fe 63 65cu 72 74Ge 127I

7

'"Pb will be calculated using the second-order
KMT optical potential. "" The work presented
here compliments the high energy Glauber calcu-
lations of neutron-nucleus total cross sections
performed by Franco." The recent Glauber mo-
del calculations of proton-nucleus total reaction
cross sections from 100 MeV to 1 GeV by Ernst"
will be discussed and compared with the present
results.

Based on the good fits obtained to the 800 (Refs.
1-5) and 1000 MeV (Refs. 5-10) proton elastic
scattering using either the KMT or Glauber mo-
dels and the impulse approximation, one would

expect that the experimental total cross sections
would be well reproduced at these two energies
and indeed they are. By calculating total and
reaction cross sections over a wide energy range
one can examine the possibility that the success
of the 800 and 1000 MeV analyses are merely ac-
cidental and can also estimate at what other en-
ergies one can expect to obtain high quality fits
similar to those near 1 GeV.

In Sec. II the details of the second-order KMT
optical potential will be given as well as the meth-
od used for calculating the uncertainties in the to-
tal and reaction cross sections. In Sec. III, the
results of the calculations will be given and com-
pared with the data."-" Further theoretical im-
provements are suggested and some rough numer-
ical estimates of the effects at low energies of
two of these additional corrections will be given.
A discussion of the value of total cross sections
as direct determinants of neutron matter radii
will also be given in this section. Finally in Sec.

IV the main results will be summarized and con-
clusions given.

II. SECOND-ORDER KMT CALCULATIONS OF THE
TOTAL AND REACTION CROSS SECTIONS

The theoretical model assumed here to describe
the proton-nucleus elastic scattering is the optical
potential formalism given by Kerman, McManus,
and Thaler" and by Feshbach et al.2' The optical
potential is expressed in a multiple excitation ser-
ies,2' the first term of which is proportional to the
free N Nsca-ttering amplitude"'" (impulse ap-
proximation) and the ground state density form
factor. The second-order term is proportional
to the two-body target nucleon correlation func-
tions, the third-order term is proportional to
products of two- and three-body correlatiori func-
tions, etc."'". The input necessary for second-
order calculations are (1) the spin-dependent, nu-
cleon-nucleon amplitudes, (2) the one-body ground
state proton and neutron point densities, and (3)
two-body target nucleon correlation functions.
Each of these ingredients will be discussed below.
Following this the calculational details which are
needed to compute total and reaction cross sections
and the techniques used to estimate the uncertain-
ties in the predicted total cross section values will
be discussed.

A. The two-nucleon amplitudes

Unique, nucleon-nucleon phase shift solutions
exist for proton incident energies up to about 500
MeV. Assuming the phase shifts of Amdt, Hack-
man, and Roper" (AHR) the Wolfenstein ampli-
tudes' ' were generated using the formalism of
Stapp et al." For spin zero target nuclei only
the spin-independent and the spin-orbit amplitudes
[i.e., that proportional to (o~+ o&) n] contribute
to the first-order KMT potential term. " For the
odd mass nuclei considered here the spin-spin and
tensor ter'ms of the proton-nucleus opticalpotential
which result from the double-spin-flip nucleon-nu-
cleon amplitudes are neglected. These terms
would be weighted by 1/A (i.e., 1/27, 1/63, 1/65,
and 1/127) relative to the spin-orbit interaction
which itself has only a very minute (see below) ef-
fect on the predicted total and reaction cross sec-
tions. Thus the N-N amplitudes that are used here
are'4

t~~(q') = t~&,(q2)+ it~~(q')((r, + (r,) n (1)

where n = (k,. x kz)/
~
k,. x kz

~

and j =p or n denotes
the targ t nucleon.

For numerical convenience the amplitudes which
were generated directly from the AHR phase shifts
were approximated by simple parametrized forms
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which are often used at higher energies. ' "'"'"'"
These forms are

i ~,(q') = (ik,o„/4v)(l —ia~, ) exp(-B„q')

and (2)

f '„(q') = (ik,9»/4m)(1 —io,~,)(q'/4M')'" exp(-B„,q'),

where k0 is the nucleon momentum in the two-nu-
cleon center-of-momentum system and M is the
nucleon mass. These simple forms reproduce the
actual amplitudes reasonably well at momentum
transfers less than 1.5-2.0 fm '. Perfect repro-
duction could result if n» and B» were allowed
to be somewhat momentum transfer dependent.
In estimating the uncertainty in the predicted total
cross sections, allowances for errors in this

, Gaussian fitting. procedure have been included
(see Sec. IIE). At energies below 500 MeV the
real part of t » is dominant and the parameters
0», z,», and B,» were selected to give the best
fit to this part of the complex t» amplitude at
small momentum transfer ((2 fm '). Accurate
reproduction of the actual spin-orbit amplitude
with parametrizations similar to that in Eq. (2)
would require a generalization, namely, consid-
erable momentum transfer dependence of 0» and

n,». The simple form in Ec[. (2) is not adequate
if one is interested in calculating proton-nucleus
polarization4 but is adequate for totaI cross sec-
tion predictions (see Sec. IIE). The most impor-
tant quantities for proton-nucleus total cross
section calculations are o~~~ and o~~„, the N-N total
cross sections, which are well known (+1-4'//&)

over the energy range considered here."" The
uncertainties in the other parameters, originating
from the error in the AHR phase shifts themselves
and due to imprecision in the Gaussian fitting pro-
cedure, have been included in the error analysis
below, but are not very important for total cross
section predictions. Finally for &»(q'), only the
nuclear part of the amplitude is considered 2' The

Coulomb potential will be added to the final KMT
optical potential. "

At energies greater than 500 MeV insufficient
N-N data exist to permit the determination of un-
ique phase shift solutions. At these energies N-N
total cross section measurements, ""very for-
ward angle P-P differential cross section data, ""
and dispersion relations" "are used to fix 0~& and

n» in Eci. (2). The remaining four parameters are
determined by fitting the available N-X angular
distribution and polarization data from 500 to 2200
Mey 28, 29,36-40

Finally, because the spin-orbit part of the optical
potential is of such minute importance in relation
to total cross section predictions, the t» and t ~„
amplitudes have been averaged to yield an N-N
spin-orbit amplitude i ~(q2) with parameters 8~,
n„, and B„analogous to those in Eq. (2). The
averaging is carried out by assuming 8~
=(9»+B,„)/2, n, p=(0»a, ,p+gp„n, ,„)/(2F,), and

B,~=(B,»+B,~„)/2. The values of the N Npara--
meters used in these calculations are given in
Table I at the specific energies considered here.

B. The ground state, one-body densities

The proton and neutron ground state, one-body
densities have, where possible, been taken from
electron" ~' and proton scattering analyses, 2~' '
respectively. For several of the nuclei for which
proton total cross section data exist, no electron
or proton elastic scattering angular distributions
have been measured and for these cases the pre-
dictions of Negele's density matrix expansion '
(DME) code have been used. One should of course
be cognizant that the DME calculation assumes the
mean field approximation and therefore is most
applicable only to closed shell nuclei. 4' The use
of these theoretical densities for nuclei with par-
tially filled shells, which is necessitated by the
lack of empirical results, is in general question-
able. For instance, detailed reproduction of the

TABLE I. The parameters of the N-N amplitudes in Eq. (2) of the text that are assumed in
the calculations reported here.

Elab
Mev

T

mb fm2

T
~Pn
mb

&Pn
fm

Bs
fDl

100 33.2
150 26.7
200 23.6
325 24.5
425 27.4
550 36.9
650 42.3
800 47.3

1000 47.2
2200 44.7

1.87
1.'53
1.15
0.45
0.47
0.32
0.16
0.06

-0.09
-0.17

0.66 72.7
0.57 50.2
0.56 42.0
0.26 36.1
0.21 33.2
0.04 35.5
0.07 37.7
0.09 37.9
0.09 39.2
0.12 42.0

1.'00

0.96
0.71
0.16
0.25

-0.24
-0.35
-0.20
-0.46
-0.50

0.36
0.58
0.68
0.36
0.27
0.085
0.09
0.12
0.12
0.14

-35.8
-19.3
-28.0
-34.6
-27.3

96.8
6.6
4 4

11.2
7.25

-8.6
-13.0
-7.8
-4.4

4 0
0.76

10.5
15.9
5.1
3.9

0.33
0.23
0.20
0.15
0.11
0.35
0.30
0.23
0.20
0.13
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isotopic dependence of the rms charge radii for
nonclosed shell nuclei is inadequate. ' However,
-comparisons of the DME and the empirical charge
radii pf 17 nuclei frpm 0 tp Pb including bpth
those with closed shells and those with partially
filled shells, demonstrate that the absolute mag-
nitudes of the theoretical and experimental charge
radii typically differ by only -0.03 fm with the
largest difference being 0.06 fm. Uncertainties
of this magnitude will be considered in estimating

the errors in the predicted total cross sections.
While the DME densities may not be completely
satisfactory, this is the only readily available
model for several of the nuclei for which total
cross section data exist.

For ' C "0 'Al ' '"Cu "Fe and '0 Pb em-
pirical charge densities are given in the liter-
ature. ' Following Bertozzi et al. the point
proton matter density is given by

1

(„)
1 I' " .

( „)[b„(q')- p!"(q' - p.".'(q')1
Pp x — ~ „~ Jp qx

G~ (q')

where

(3)

pc„(qP) =4m t x'jp(qx)pc„(x)dx,
0

))"'(q') =4vG~(q') It x'j, (qx)p„(x)dx,
~o

p oo

p,",'(q') = -(vq'/M ') g (2G„'(q*) G~(q'))( j,' —l,' —s,.') I ','
p „(X,.)x,.'dx, .

i= unf illed Qp qx~)
l shells

(6)

Thus, in general, the experimental charge density
is contributed to not only by the proton electric
form factor but also by the neutron's electric form
factor and by the magnetic moments of both the
protons and neutrons. The empirical charge den-
sity is denoted by p«(x), the point neutron density
by p„(x}, and p, ~(x, ) is the single nucleon density
for the (nlj) shell model level for the ith nucleon.
The sum in Eq. (6} includes all protons and neu-
trons in partially filled l shells since in j-j coup-
ling those nucleons in filled l shells do not make
a net contribution to the spin-orbit correction, at
leastinfirstorder. " The quantities j, l, and
s,.' are the eigenvalues of the squares of the total,
orbital, and spin angular momentum operators for
the ith nucleon. The empirical nucleon magnetic
form factors are given by G„' (i =p or n),~' and the
G~ are related to the empirical nucleon electric
form factors, G~i, ' by

G,*(q'}= (1 —q'/8M'-)G, *' (q'), (7)

where both here and in Eq. (6) M is the nucleon
mass. The bound state densities, p„,~(x,), are as-
sumed to be the squares of Woods-Saxon eigen-
states. ~p The integration cutoff, q, in Eq. (3)
is set equal to the maximum momentum transfer
of the best available electron scattering data for
a given nucleus.

Polarized proton scattering data of superb qual-
ity exist at 800 MeV for '~Q "0, and ' 'Pb
Second-order KMT analyses4 of these data yield the

neutron densities which have been used here.
These densities for "C and "'Pb are very similar
to those which result from first-order KMT anal-
yses.' The neutron density parameters used
herefor "Oarem)„=0.12, 8„=2.44 fm, and Z„=0.47
fm, where

p„(x) =p,„(1+w„p /R„')/[1+ exp((r —R„)!Z„)]. (8)

The point neutron density distributions for
2'Al, "*"Cu, and "Fe were determinedfrom the
calculated DME densities in the following way.
First, the empirical proton densities obtained
from Eq. (3) were approximated by two-parameter
Fermi (2pF) densities [Eq. (8}with w =Oj which
have the same half-density and root-mean-square
radii as the proton density derived from the em-
pirical charge distribution, resulting in the para-
meters R~ and Z~ analogous to those in Eq. (8).
Next the DME proton and neutron densities were
similarly fit with 2PF forms producing the para-
meters BD'"E ZDME B™and ZD'"~. The para-
meter values of the neutron densities for "Al,
""Cu, and ' Fe used in the present calculations

were then obtained by setting R =R~(RDME/R~DME)

and Z„=Z~(Zng /Z~n"E}. Thus the DME proton
density is scaled to agree with the empirical pro-
ton distribution and the relative neutron-proton
DME difference is used to obtain the needed neu-
tron density. Such a procedure is motivated by the
excellent agreement between the neutron-proton
radii differences predicted by the DME code" and
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TABLE II. The proton and neutron point density ra-
dius and diffuseness parameters obtained from DME
predictions as explained in the text.

Nucleus
Zp
fm

R„
fm

fl

fm

27Al
56pe
63Cu
6'Cu
72Ge

'4Ge
127I

4.35
4.36
5.58

0.58
0.58
0.50

3.15
4.13
4.20
4.32
4.51
4.59
5.61

0.46
0.49
0.57
0.56
0.56
0.56
0.58

that deduced from proton scattering analyses. '~
.

This general theoretical and experimental con-
cordance occurs for both closed and nonclosed
shell nuclei. ' Finally the proton and neutron
densities for "'Ge and "'I have relied solely on

2PF fits to the DME predictions, since no electron
or proton elastic cross sections are available for
these nuclei. Such usage of the DME predictions
for nonclosed shell nuclei relies heavily on the
-0.03 fm accuracy discussed above. Table II dis-
plays the radius and diffuseness parameters as-
sumed in these calculations for "Al, ""Cu, "Fe,

Ge, and

C. The second-order KMT optical potential

A great deal of effort has been expended in the
last several years in an effort to calculate ap-
proximations to the second-order KMT optical
potential. ' ' ~' '2 ' Applications to nuclei with
A ~ 12 have been given by Harrington and karma, '
Layly and Schaeffer, ' and Boridy and Feshbach. '
In the KMT formulation the second-order optical
potential terms are proportional to the two-body
correlation functions. The general effect that
these second-order terms have is to increase the
diffractive maxima in the elastic angular distribu-
tion by 10-30%. All of these calculations demon-
strate that Pauli correlations dominate the second-
order corrections and that short-range dynamical
correlations and the center-of-mass correlation
correction" are of lesser importance. . Since all
of these effects are fairly small, , Harrington and
Varma' and Layly and Schaeffer' have derived lo-
cal -o' forms for these corrections, the former
within the Glauber formalism and the latter using
KMT. Both make use of the eikonal approxi-
mation. " In this and in a previous work' the
Glauber derivation of Harrington and Varma' is
used to obtain an approximate p2 form for the sec-
ond-order optical potential, which when added to
the usual first-order optical potential" and in-

h'c'b, 1 d t" „„,b bdb
dr (b2 r2)j ~2

Relativistic kinematics are assumed here, where
k„ is the relativistic momentum in the proton-nu-
cleus center-of-momentum system and p, c'
=E,e, /(e, +e,), e, being the total relativistic en-
ergy of either the incident proton or target nu-
cleus in the proton-nucleus center-of-momentum
system. '~ The optical phase shift is expanded as
y „,=y, +y, + ~ ~ ~, where

and

iX,(b) = 2 (A —1)'((yO'2& —(y) )
and where

(y& =
l~

d r~p~(r~)y(b —5~)

d'r, d'r, C,(r„r,)
4

x y(b b,)y(5 b, ) .
In these expressions p, is the one-body density,
C,(r„r,) is the two-body correlation function, and

y(b) is

(14)

(15)

f(q') being. the spin-independent part of the N-N
scattering amplitude.

serted into the Schrodinger equation, yields the
proton-nucleus scattering amplitude.

The purpose of the calculations presented here
is to test the accuracy of the total cross section
predictions of the approximate KMT calculations
which have been applied at -1 GeV and to deter-
mine a low energy limit to such analyses. If one
were interested in improving the predictions at
lower energies than a number of the simplifications
assumed here would become invalid. For instance,
the assumption here of local potentials is probably
not very good for low energies (-100 MeV) accord-
ing to the work of Mulligan" and Johnson and Mar-
tin" for the first- and second-order optical poten-
tials, respectively. Many other corrections could
also become important at energies near 100 MeV
and some of these will be mentioned in Sec. III.

The derivation of Harrington and Varma' ex-
ploits the eikonal relation between the phase shift
and the optical potential. This relataonship is
given by the integrals"

C2 OO

0 Pt @2c2$
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Equations (10), (11), (13), and (15) can be used
to generate the usual first-order KMT optical po-
tential. To obtain an approximation for the sec-
ond-order KMT optical potential one needs a mo-
del for the two-body correlation functions. Fol-
lowing Boridy and Feshbach, C,(r, , r, ) is exliressed
as

C2(rl r.}
=p|(r|}pi(r, }(fP,„l; ( i r, —r, i) +f,„D(p, —r, i)

In these equations 0 and B are defined by,

o =or(1 —icy),

S ~ N
(7 = —0'PP +

A
0'P„~

Zo'~~ n~~+Nv~„o. ~„
r

C= 7 7Zo'p +No'p„

(24)

(25}

(26)

+fP-h (irx-r2i}f».(I"-r2i}} «6)

For a noninteracting Fermi gas the Pauli correl-
ation function for a nucleus with A nucleons is'"

ZB=—8 + —BPP A Pn' (27)

9 A —4 ji(krx) i2
4A —1 (0 x)

where k~ is the local Fermi momentum, here as-
sumed to be position dependent according to'

kr(r) =11.5w'A p, (r)P i'. (16)

The short-range dynamical correlation is assumed
to be'

The density p,(r} is the total matter density nor-
malized such that J d 'r p, (r) = 1.
- Layly and Schaeffer' have shown that the second-
order optical potential can in general be reduced
to a simple local form by making the eikonal ap-
proximation in the propagator and also the local
density approximation. The result is

f»o(x) = -exp(- w'/tl') (19) U&2i(q) -=t(A —1)' " t 2(q/2)t
(ac)mu„ C

with b =0.4 fm. To enable the six-dimensional in-
tegration in Eq. (14) to be carried out analytically,

f P,„„(x)must be approximated by a Gaussian. The
best such approximation to Eq. (1V} is given by '

f,„„(x)= -0.3(w/5)' "
x((A —4)/(A —1))exp(-&P'&'/5) . (20)

Using Eqs. (10), (12), (14), (15), (2), (16), (18),
(19), and (20) and replacing p, (r,)p, (r2) with

p,'((r, + ra)/2) and assuming that the ranges of the
interaction and correlation functions are small
compared to the nuclear size, one obtains a sim-
ple expression for the second-order optical poten-
tial. Three terms arise, corresponding to the
three terms in Eq. (16). They are4

U"""(.) -=- ." (A —1)(A -4)(./2)'p '(r)
Pauli 2 tl c

x [3w/(10k'(r))](1+ 8BkP'(r)/5) ', (21)

(26)

where t is the N-N t matrix and l, is an effective
"correlation length. " Setting l, =-R, /A and R,
=(wRZ)'i', Eq. (28) can be used to estimate the
center-of-mass correction. ' In these relations
8 and Z are the radius and diffuseness of a Fermi
matter density. Using Eq. (2)

t'(q/2) =-(o/2)', ~ exp(-Bq'/2), (29)
p, c

and if one further assumes that the range of the
interaction is small compared to the nuclear rad-
ius, the second-order optical potential correction
due to the center-of-mass correlation is "

Q3
U~"„iD"(r) =——

2 w

" (A —1)'(o/2)'Mmp, '(r)
2p, c b'+88 '

(22)

Ul~wiR", (r) -=, (A, —l)(A —4)(o/2)'(3w/10)p, '(r)

x [& 2(r)+5&-2]- tm(1+ SB[P 2(r)/5+h-']}

(23)

(30)

As in Ref. 4 the Pauli correlation correction to
the spin-orbit part of the optical potential can be
estimated by generalizing the f(q2) in Eq. (15) to
f»(q') =t»(q')+it;, (q')(oP+o,.) n as in Eq. .(1).
Invoking the same approximations and assump-
tions as above the resulting correction to the
spin-orbit potential is~
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(y) =—-i(A —1)(A —4)(3w/1280)
(he}'Oo

SP

1 d p, (r)1, & 1
5 (r) 5--+k '(r)/5

~ 5
— +5 '(r)/5) —k (r)/254g ~ 4g

(o I), (31)

where 8 =8~(1 —in, ~).
To reiterate, the approximations or assumptions

made in obtaining these local -p' estimates of con-
tributions to the second-order optical potential
are: (1}the eikonal approximation, (2) the local-
density approximation, (3) further approximation
of the two-nucleon scattering amplitudes and cor-
relation functions with Gaussian forms, and (4) the
assumption that the ranges of the N-N interaction
and correlation lengths are small compared to the
nuclear radius.

Thus, the final complete optical potential used
in the calculations reported here is
U(lk 2)oPt(+) U(1 )(+)+ U(2)0555(+) + U(2 jokt(+) + U(2)0&t(+)

Pauli SRD @SR-I

an extended nuclear charge density, p«(r). The
full potential, U&" 25'"(r) is then inserted into the
Schrodinger equation with relativistic kinematics'
from which the proton-nucleus scattering amplitude
is obtained. The radial forms of each term in Eq.
(32) are given in Figs. 1 and 2 for the first- and
second-order terms, respectively, in relation to
the nuclear matter density, o (x) = p~(r) + p„(r)
The typical case shown is for P+ "Fe at 1 GeV.

D. Calculation of total and reaction cross sections for
charged particles

The calculation and measurement of total and
reaction cross sections for charged particles are
complicated by the fact that Coulomb total cross
sections are infinite and therefore careful sub-
tractions must be made in order to extract useful

where U"'(y) is the usual first-order, spin-de-
pendent KMT optical potential given in detail in
Ref. 50, and is basically of the (A —1)&(q')p(q')
form" and Uo, „,(r) is the Coulomb potential for
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FIG. 1. The radial distributions of the first-order KMT
optical potential terms for P+ Fe at 1 GeV. The real
and imaginary parts of the central, spin-independent term
are given by the positive and negative solid curves, re-
spectively. The real and imaginary parts of the spin-
orbit potential are displayed by the short dashed and
dash-dot curves, respectively, where the full spin-orbit
term in the Schrodinger equation is written as U„(&)0 I.
Note that the spin-orbit potential has been multiplied by
100 and that no adjustment has been made to fit proton-
nucleus analyzing power data. The long dashed curve
denotes the Coulomb potential and the dotted line indi-
cates the assumed Fe point matter density.
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FIG. 2. The radial distributions of the second-order
terms of the 1 GeV, P + Fe KMT optical potential l. see
Eq. (32)). The forms of Eqs. (21), (22), (23), (30), and
(31) of the text are indicated by the solid, long dashed,
short dashed, dash-dot, and dash-double-dot curves,
respectively. The assumed ~6Fe point matter density is
displayed by the dotted lines. The spin-orbit correction
shown here has been multiplied by 100 and does not in-
clude the (0' & ) factor in Eq. (31).
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quantities. "" The expression for the total and
reaction cross sections for spin 0 charged par-
ticles has been given by Cooper and Johnson. "
The equations given below follow directly from
Ref. 54 with suitable generalization for spin —,

projectiles having been made.
The elastic differential cross section for the

scattering of a spin —,
' charged projectile from a

spin 0 target is"

d~«~~ =IA I'+IB I'

where

A(8) =f,(8)+f,(8)

(33)

(34)

and where f,(8) is the Rutherford amplitude" and

f„(8)=(i/k„)(A/(A —1)) Q exp(2io, ){(l+1)p, „,), +lp, g, (,jP,(cos8) . (35)

The spin-dependent amplitude is given by

B(8)=(i/k„)(A/(A —1))g exp(2io, ){p, „,&, —p«», j P'( cos 8). (36)

The Coulomb phase shift is denoted by 0, and P, , ,'y/2 are obtained from the asymptotic phase shifts which
result from the usual matching conditions for the distorted waves generated with the Schrodinger equation
and the KMT optical potential in Eq. (32). The A/(A —1) factor in Eqs. (35) and (36) is required by the
KMT formalism. " Hence the elastic differential cross section is

««& = lf. I'+
I f.I'+»e{f.*f.j+ lB I' ~

The total proton-nucleus scattering amplitude is"
f(8) =f,(8)+f„(8)+zB(8)o ~,

and from the optical theorem"

=(4w/k„) Imf, (0)+ (4w/k„) Imf„(0)

because B(0)=0. From the definition o»T« =—
oELAS+ a„«c one gets

o„z„c=(4w/k )Imf (0)+(4w/k„)Imf„(0) —2w (do/dQ) sin8d8
4p

=(4w/k„)Imf (0)+(4w/k„)Imf (0)-2w I If. l'sin8 8 — w " {("o/ II)-lf. l'jsin8 "8
4p &o

o„„c=(4w/k„) Imf„(0) —2w t {(«/dQ) —
lf, l'jsin8 d8 .

4p

The last step follows from the optical theorem for potential scattering. "'" From Eqs. (37) and (41)

a„z„c=(4w/k„) Imf„(0) —2w
J {lfNI'+ 2 Re{f.*f.j+ lB I'j»n«8 .

p

As in Ref. 54, one defines

f„(8) = (i/k „)(A/(A —1))g {(l+ 1)p, , „»+lp, , »,jP, (cos8 ),

(37)

(36)

(40)

(41)

(42)

(43)

and it easily follows that"

4w Re{ff„jsin8 d8 =(4w/k„) Im{f„(0)-f„(0)j.
Jp

(44)

o„E„c=(4w/k ) Imf„(0)

2w Jt {I f, I'+ IB l'j sm8 «
p

and the total cross section is given by

(45)

The total reaction cross section is finally written
as

O'To T Ag (4w/k &) Imf» (0) (46)

The expressions in Eqs. (45) and (46) are the quan-
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tities which are calculated here and correspond
physically to the measurements made in Refs.
13-18.

E. Error analysis

The goal of the calculations presented here is to
determine how accurately the total and reaction
cross sections are predicted by the optical poten-
tial in Eg. (32), which is commonly used in the an-
alysis of -1 GeV proton elastic scattering data. If
discrepancies between the theoretical predictions
and the data occur one must know the uncertainty
not only in the experimental quantities but also in
the theoretical predictions in order to assess the
significance of such discrepancies. Since experi-
mental N-N amplitudes and densities are input
into the calculations and because they have associ-
ated errors, ' some uncertainty in the predicted
total and reaction cross sections arises. The
change in o'»»L and O'„E„c due to the separate
variation of each specific input parameter is the
basis for the error analysis presented here.

A detailed study of the accuracy of an analysis
requires that the correlations between the various
input parameters be considered and that the full
error matrix" be computed. In the error analysis
presented here, all uncertainties in the input
parameters are assumed to be independent and the
individual contributions to the error in the com-
puted total cross sections are added incoherently.
Thus the error analyses given here and in Ref. 3
provide a qualitative estimate of the total error
and probably overestimate somewhat the total
error which would be computed by considering the
correlations between parameters.

The uncertainties in the N-N total cross sections
and in the real-to-imaginary ratios, n», have

been taken from the literature. "" The uncertain-
ties in B», 8~, n, ~, and B,~ arise from the vari-
ation allowed in fitting the Gaussian forms in Eq.
(2) to the N Nd-ata or the scattering amplitudes
generated from the AHR N-N phase shifts." The
uncertainties in the proton densities are assumed
to be the same as that in the charge densities which
are taken from the literature. '~' The error in
the neutron densities deduced from- polarized pro-
ton scattering analyses at -1 GeV is estimated in
Ref. 3. The total uncertainties in (0)"~' and
(r )'~', the second and fourth moments of the neu-
tron distributions, are +0.07, 0.10 fm, respec-
tively. ' The neutron radius and diffuseness para-
meters have been simultaneously varied (typically
hR —= +0.02 fm while b.Z„=-+0.03 fm) such that
(r )'~' and (t )'~~ change by these amounts. The
resulting changes in the total cross sections are
taken to be the error in O'To~A~ and o'~EAc owing
to the uncertainty in the neutron densities. For
nuclei other than "C, "0, and ' Pb this same pro-
cedure is assumed since the moments of the DME
and the empirically deduced neutron densities
usually agree to within these amounts. ' '

The reader will notice in Refs. 3 and 57 that in
a few cases ("'".Ca, "4Sn, and "'Pb) the KMT
calculations fail to fit the very forward angle elas-
tic cross section data. For the worst of these
cases, "Ca, the cross section data have recently
been retaken, with the new forward angle data
being completely consistent with the calculation. "
For the remaining three cases, no KMT or pheno-
menological optical model calculation can be found
which will simultaneously fit the very forward
angle data as well as the remaining diffractive
structure. Since these forward angle discrepan-
cies are nat a general feature at 800 MeV (good

TABLE III. Total cross section uncertainties. '

Error
source

i8p

~+tot

208Pb

+reac

F60

~+tot

1000 MeV

83QU

++reac

208pb

++reac

GPSS

Acrpp

Ao'~

happ
&&p

En'
&&Pn

6(8p, n )
E9~
&&n

ECorr

0.10
1.4
1.2
0.30
0.38
1.0
2.2
0.13
0.05
0.36
0.55

0.18
0.63
0.73
0.61
0.73
0.13
0.29
0.13
0.00
1.15
0.19

0.05
0.31
0.57
0.41
0.64
0.13
0.43
0.07
0.00
1.48
0.11

0.31
0.73
0.79
0.04
0.15
0.61
0.65
0.04
0.00
0.60
0.90

0.29
0.32
0.39
0.08
0.30
0.18
0.31
0.01
0.00
1.33
0.18

0.07
0.15
0.35
0.05
0.25
0.12
0.29
0.01
0.00
1.62
0.10

Total 1.92.0

~AI1 uncertainties given here are + values in percent.

1.7 1.8
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fits at forward angles are obtained at 800 MeV for
12 other nuclei' '57' "}and owing to the experi-
mental difficulties which are present in this angu-
lar range, as in the "Ca case,"the forward angle
data for these few exceptional cases have been
omitted from the error analysis of Ref. 3 and are
not included in the present error analysis.

In Table III some typical results of this error
analysis are presented. The cases shown are
for "Q, "Cu, and '"Pb at 325 and 1000 MeV.
The values given in this table are the percentage
change in vTDTAL o'REAc due to the separate
variation of each input parameter listed. The un-
certainty in the estimate of the correlation cor-
rection is assumed to be +20% of the full correl-
ation effect. This value is arrived at by compar-
ing the correlation size effects calculated in Refs.
4, 6, 7, and 9, each of which agree to within -20/c.
This correlation error estimate is added linearly
to the first ten errors in Table III which are added
quadratically to give the total uncertainty in the
predicted values f p'TQTAL a d o'REAc The aver-
age uncertainty in oToT« is +3.0%% and in o„«c
it is about +2.0%%uo. The largest sources of uncer-
tainty are o~&, n», B~„and the neutron densities.
In general the total percentage uncertainties de-
crease slightly with increasing energy and with in-
creasing target mass. Explicit calculations were
carried out for "0, "Cu, and "'Pb at 100, 325,
650, and 1000 MeV. 'The total uncertainties at the
remaining energies and for the remaining nuclei
were estimated by interpolating the explicitly cal-
culated errors.

The actual estimated error in the total reaction
cross section decreases only moderately with in-
creasing proton energy, the uncertainty at 1 GeV
being about 30%% less than that at 100 MeV. The
principal contributors to the error in 0„«c are
O~~„B», and the neutron densities. As the energy
increases from 100 MeV to 1 GeV the uncertainty
in 0~,. and B~,- decreases by a factor of 2 or greater
and this is reflected in reduced contributions to the
uncertainty in oR«c. The error due to uncertain-
ties in the neutron densities is relatively energy
independent, hence the total error in OR«c de-
creases by only -30%%uo as the proton energy is in-
creased to 1 GeV.

III. DISCUSSION OF THE RESULTS

Predictions of o'ToT« for ' C and "0 and of
o for~ C 0 'Al ' Cu 'Fe ' GRE AC 7"'I, and "Pb are shown in Figs. 3-5 in compar-
ison with the published data."" The Cu and Ge
targets used in the measurements of Ref. 14 are
of natural composition and 0„«c for "'"Cu and
for "'"Ge have been appropriately weighted to
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FIG. 3. Proton-nucleus total cross sections for C
and 0 computed using the. second-order KMT optical
potential, Eq. (32j, and the errors discussed in the text
(shaded band). Note that both proton-nucleus (circular
points) and neutron-nucleus (triangular points) experi-
mental data are shown here.

give atomic masses equal to that quoted for the
Cu and Ge targets in Ref. 14. The shaded-bands
are the results of the second-order KMT optical
potential predictions, the widths of the bands be-
ing determined by the error analysis in the pre-
ceding section. The calculations were performed
at energies of 100, 150, 200, 325, 425, 550, 650,
800, 1000, and 2200 MeV. The results shown by
the crosshatched regions are qualitatively similar
to the Glauber model estimates in Ref. 13. How-
ever, the general description of the data in the
high energy region (400—2200 MeV) is more satis-
factory here than in Ref. 13.. Note that oToT«and
oREAc are plotted on an expanded and shifted ordin-
ate so that the data, the theoretical predictions,
and the discrepancies between the two are magni-
fied.

The most striking result to be seen in Fig. 3 is
the excellent agreement with the data at energies
above 400 MeV and the overestimate of the total
cross sections below this energy. The overestim-
ate of o»T« is -25% at 200 MeV. In Figs. 4 and
5 it is seen that general agreement with the data
occurs at energies above 350 to 400 MeV and below
this the overestimate of o„«c is -15%at 200 MeV.
The errors and the scatter in the a«T«data"
for "C and "0 are about the same size as the un-
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FIG. 4. Proton-nucleus total reaction cross sections
for C () ~Al, ~Fe, and {.u predicted by second-
order KMT (shaded band) and compared edith experiment.

certainty in the theoretical predictions. Generally
the size of the error bars and the magnitude of the
scatter of the data displayed in Figs. 4 and 5 are
much larger than the uncertainty in the corres-
ponding theoretical predictions and improved data,
especially in the 700 to 2200 MeV region, would
be quite useful.

The overestimate by the impulse approximation
prediction at low energies is not unexpected, based
on several theoretical arguments. Nonlocal cor-
rections by Mulligan" and Johnson and Martin, "
off-shell effects as studied by Scheerbaum et al. ,

"

FIG. 5. Same as Fig. 4 except for Ge, ~2~I, and ~osPb.

Pauli reduction of the free N-N scattering ampli-
tude as estimated by Clementel and Villi,"and
avoiding the closure approximation in the first-
order potential as discussed by Tandy et al."are
some of the additional corrections to be found in
the literature. All of these theoretical improve-
ments tend to reduce the impulse approximation
result for total cross sections, particularly at
lower energies.

Recently, Ernst' has calculated proton-nucleus
total reaction cross sections from 100 MeV to 1
Ge V using the impulse approximation and the op-
tical limit of Glauber theory" and has obtained
fairly good reproduction of the data over this en-



1868 L. RAY 20

tire range, in disagreement with the results given
here. In calculating a~~„c, Ernst makes two ser-
ious oversimplifications. First, in using the op-
tical limit of Glauber theory, the dependence of

o„E„con the real part of the optical potential is
omitted, thus causi. ng the computed values to be
about 8% too low at low energies. Second, the
range of the spin-independent N-X scattering am-
plitude, 8», is assumed to be constant from 100
to 1000 MeV, although Table I demonstrates that
an order of magnitude variation occurs throughout
this energy range. Ernst's assumption of a con-
stant B~„which he evaluates at -1 GeV, results
in another -10%underestimate of the reaction cross
section at low energies. Thus the total reaction
cross sections computed in Ref. 20 are quite in-
accurate at low energies (-100 to 400 MeV) and
the results given here, although being in worse
agreement with experiment, much better repre-
sent the impulse approximation prediction than
the calculations of Ref. 20.

In the energy range above 400 MeV the agree-
ment with the data is very good (except with the
860 MeV o„x„cdata from Ref. 18). In this energy
regime the ratio of a~or„„,„«c& (theory) to

o»T«, „«~&
(exp) has been computed for each

data point (except for the 860 MeV data of Ref.
18) and the average of all these values computed.
The resulting average ratio is 1.025. A, iso at each-
data point the theoretical and experimental errors
have been quadratically added and the average of
all these errors computed. The average combined
theoretical and experimental error is a3.8% in the
400 to 2200 MeV range. ' Hence, on the average
above 400 MeV, the predicted and the experimental
total and reaction cross sections differ by less
than one standard deviation in the average of the
combined experimental and theoretical uncertain-
ties. Considering that most of the predictions
shown in Figs. 3-5 do not rely on complementary
elastic angular distribution data, the predictive
ability of the optical potential in Eq. (32) is quite
impressive, at least above 400 MeV. What this
means is that one should expect to obtain excell-
ent quality fits to elastic scattering data using Eq.
(32) at energies greater than 400 MeV. The fit
quality should be comparable to that seen already
at 800 and 1000 MeV. ' " Below 400 Me V the abil-
ity to accurately describe elastic scattering with
Eg. (32) should begin to deteriorate if one is al-
lowed to vary only the geometry of the neutron
density. This statement has been partially con-
firmed by recent calculations using the first-order
KMT optical potential and the impulse approxi-
mation for proton elastic scattering at 135 and
182 MeV on Zr and '"Pb." These calculations
use the same proton and neutron densities as em-
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FIG. 6. Proton-nucleus total cross sections for 0
and total reaction cross sections for Pb computed
with (solid curves) and without (dashed curves) the cor-
relation corrections discussed in the text.

ployed at 800 MeV,"and although the positions of
the diffractive maxima and minima are correctly
reproduced as is the overall slope of the angular
distribution, the fits are not of comparable quality
to that obtained at -1 GeV.' " The -150 MeV pre-
dicted cross sections tend to have minima which
are too deep and fail to carefully reproduce de-
tails of the back angle diffractive structure. Such
discrepancies should be symptomatic of any im-
pulse calculation below 400 MeV based on the re-
sults seen here for a „and o„„.

In Fig. 6 the effects of the second-order optical po-
tential terms on oT0»„for "0and gREAc for '"Pb are
indicated. Calculations which include correlations
are indicated by the solid lines and those omitting
correlation corrections are shown as the dashed
curves. The general effect of the correlation
terms is to increase the absorption, thus raising
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o~o»„and o~«by about 4% in "0 and 1% in "'Pb.
The reader is reminded of the fact that the local
approximations used here for the second-order
terms of the optical potential probably do not ac-
curately, represent the full, nonlocal second-order
potential at low energies as is pointed out by John-
son and Martin. " The calculations of Ref. 52 dem-
onstrate that below 300 MeV the addition of non-
local second-order terms causes the total reaction
cross sections to decrease.

The obvious conclusion to be drawn from Figs.
3-6 is that the kind of second-order KMT calcu-
lation embodied in Eq. (32) and as applied to pro-
ton elastic scattering at 800 and 1000 MeV will
not be adequate below 400 MeV. Whether this
breakdown is due to some inadequacy of the KMT
formalism or of the impulse approximation or if
it is due to some omitted correction which becomes
significant below 400 MeV will need to be resolved
before attempting KMT analyses of proton-nucleus
scattering at these lower ener'gies. Some possible,
additional corrections not included here which one
would expect to become more significant at lower
energies are listed here. Projectile-target anti-
symmetrization, "'"virtual charge exchange, '
Fermi motion averaging, "'"binding energy cor-
rections, " and other nonlocality or off-shell ef-
fects"' ' ' '6 can be expected to become more
significant at these lower energies.

As an example of the kind of effect that two of
these corrections could have at energies below
300 MeV, the Pauli reduction of o~~& as estimated
by Clementel and Villi"'" and the first-order
KMT optical potential nonlocality correction es-
timate of Mulligan" have been applied to the cases
of ' 0, Cu, and Pb. The results are shown in
Fig. 7. The solid curves are the impulse approxi-
mation results (without error bands) as given pre-
viously in Figs. 3-5 while the dashed curves in-
clude only the Mulligan" nonlocality correction and
the dash-dot curves include both the Mulligan cor-
rection as well as the Clementel and Villi" Pauli
reduction effect. Both estimates provide overall
reduction factors for the well depths of the real
and imaginary parts of the first-order, t(q)jb(q)
optical potential. In the latter calculation both of
the reduction factors were multiplied together to
give the combined result shown in Fig. 7. The
Clementel and Villi correction was assumed to
reduce only the imaginary part of the optical po-
tential as in Ref. 60. Clearly, this simple method
of combining these two corrections is very crude,
as are the correction estimates in Refs. 51 and
61 themselves. The curves in Fig. 7 are merely
intended to qualitatively indicate the direction and
order of magnitude that these two higher order
corrections have at low energies. The results

TOTAL CROSS SECTION
I I I I I I I I

I 000

950

PROX.

ORRECT ION

ND PAULI
S

900

850

800

X
& 750 —o

O
UJ

b
t 700—

2000

I 900

I 800

I 700—
e

~O

I 600—

6so Q

600 —
g

sso -g

soo—
E

~ oso—
OI-
b ~00—

— $ PS e'
~k

I I I I I I I

IOO 200 400 600 800 IOOO.

LABORATORY KINET IC ENERGY (MeV)

350—

shown in Fig. 7 should encourage a careful attempt
to extend KMT calculations to these lower ener-
gies, below 400 MeV, and should warn analysts
against making unjustifiable assumptions in this
energy range P

Glauber model calculations of 0~«„L for "C
and "Q by Sehwaller et al."and by Ahmad and
Khan" in which an o.-cluster model for "C and
"Q are assumed and in which proton-alpha scat-
tering amplitudes constitute the fundamental in-

FIG. 7. Theoretical KMT predictions of OqoqAq and
0 RE~~ for p +"0, "Cu, and Pb using the impulse ap-
proximation {solid curves), the nonlocality correction of
Mulligan (Ref. 51) (dashed curves), and both the Mulligan
correction and the Pauli reduction factor of Clementel
and VQli (Ref. 61) (dash-dot curves). The dashed and
dash-dot curves do not extend above 325 MeV because of
the limited energy range assumed in Ref. 51.
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teraction give good overall agreement with the

o»TAL data for these nuclei from 150-1000 MeV.
These calculations suggest that the multiple scat-
tering formalism is sufficient but that some ad-
ditional many-body corrections, including those
discussed above, which the P-o. amplitude empir-
ically contains is needed in the standard multiple
scattering calculation which relies on free N-N
scattering amplitudes.

To close this section a discussion of the useful-
riess of O'TpTAI and vREAc s a direct measure of
neutron radii will be given. Such an analysis is
presented in the recent work of Ernst." To begin,
consider the following hypothetical example. Sup-
pose one were to perform the above second-order
KMT calculation of +TOTAL and O'REAC and fit the
corresponding data by varying the neutron matter
distribution. From Figs. 3-5 and Table IQ one
can immediately see that differences of about 1-2
fm in (x2)'t' would result from fitting the available
data from 100-2200 MeV. The recent -150 MeV
impulse approximation calculations mentioned ear-
lier" use the same proton and neutron densities
as obtained from analyses of the 0.8 GeV proton
scattering data" and as stated before are'in fairly
good agreement with the -150 MeV data with re-
spect to maxima-minima positions and the overall
slope of the diffractive pattern. Clearly the de-
duced neutron densities which result in optimal
fits to the elastic differential cross section will
not vary nearly so radically with energy as would

those which result from direct fits to the total or
reaction cross section data. variations in(r'„)'t' of
about ~0.1 fm between fits to dv/dQ at -150 and
-1000 MeV should result compared to variations
of 1-2 fm for the direct fitting of cr A„and o„A .

If one now attempts to fit a A and o„„at
higher energies, say 1 GeV, where the predicted
and experimental total cross sections agree to
within 2.5%, one finds that a change in (r„)'t' of
about 0.2 fm is required in order to remove this
2.5% discrepancy for any nucleus with 12 &A & 208.
Suppose however that some additional theoretical
'correction was found which would remove this
2.5% discrepancy. Applying this same hypothetical
correction to the oTo T«eaLeulation would change
the result for (H)'ta by 0.2 fm. Suppose also that
after including this new correction term the fit to
the elastic angular distribution was recovered by
varying p„(r) and for simplicity assume that this
hypothetical correction had the effect of altering
the overall strength of the imaginary potential
(i.e., change the effective value of o'~~& as in the
correction estimates of Refs. 51 and 61). From
the error analyses of Refs. 3 and 44 it is known

that a change in cr„. which is sufficient to produce
a 2.5'%%up change in oTo T«will result in a 0.015 to

0.07 fm change in (r„)' for "0 and 'P'Pb, respec-
tively, when the fit to the elastic angular distribu-
tion is recovered.

The point of these examples is to demonstrate
that using CYTOTAL and O'REAC to determine neutron
radii is roughly pn order of magnitude worse
technique than determinations based on analyses
of differential cross sections. As has been ex-
plained, the deduced neutron radii resulting from
analyses of angular distributions at widely variant
energies are remarkably stable. However, deter-
minations of neutron radii by fitting total cross
sections directly would result in a large and very
erratic energy dependence. Furthermore, angu-
lar distribution determinations of (r )'t' in the
-1 GeV region should be stable with respect to
theoretical improvements, as seen explicitly
for example when correlation terms are added
to the calculations. "On the other hand, total
cross section determinations of (r'„)'t' would be
very sensitive to theoretical improvements.
Clearly one should not consider proton-nucleus
total cross sections as accurate measures of neu-
tron matter radii. Furthermore, analysts cannot
require the deduced neutron densities to fit both
the total cross sections and angular distributions
in their analyses since, in general, totally differ-
ent densities would be required by the optical po-
tential formalism embodied in Etl. (32). From the
above discussion it is clear that the angular dis-
tribution determined densities are more reliable.
Only if one were to have available a physically
"exact" theory could such a dual requirement be
properly imposed on the analysis.

IV. SUMMARY AND CONCLUSIONS

The primary results of the calculations presented
here are: (1) that the standard application of the Ker-
man, McManus, and Thaler optical potential
formalism contained in Etl. (32) of Sec. H satis-
factorily predicts the total and reaction cross
sections for a wide range of nuclei at energies
greater than -400 MeV (to within about 3%), and

(2) the same calculation (Etl. 32) fails to correctly
predict O'ToTAL and crREAc below 400 MeV, the de-
gree of failure being about a 15-25%%up overestimate
of the total and reaction cross section strengths.
Since these theoretical gToT«and o„EAc are ab-
solute predictions (. within the given error band),
the test imposed on the KMT calculation here is
in lowest order an absolute accuracy measure of
the theory and its application. The test is con-
sidered lowest order since o'ToTAL and +REAc
primarily determined by o~~,. and are not too strong-
ly dependent on the other N-N amplitudes or to
details of the momentum transfer dependence of
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the spin- independent N-N amplitude.
The application of KMT theory to proton scatter-

ing at energies below 400 MeV will require care-
ful investigation of a number of additional correc-
tions which could become important as the incident
energy is reduced. Projectile-target antisym-
metrization, virtual charge exchange, Fermi mo-
tion averaging, binding energy corrections, and
nonlocal or off-shell effects were suggested as
possible additional corrections to consider at
these lower energies. Simple estimates of two
of these corrections were taken from the liter-
ature"'" and applied to several of the cases stud-
ied here.

The usefulness of total and reaction cross sec-
tions in determining neutron densities was dis-
cussed. It was explained that erratic energy de-
pendence and extreme sensitivity to experimental
errors and theoretical improvements would be an
inevitable feature of neutron densities which have
been determined in this way. The conclusion is
that neutron densities are best investigated by
analyses of elastic differential cross section data.
Because of the approximate nature of any numer-
ical application of a many-body scattering theory

in which theoretical uncertainties will always per-
sist, one should study matter distributions by an-
alyzing the angular distribution data independently
from and not in conjunction with ovoTAL and O'Rape

data.
This test of KMT theory's ability to accurately

predict vToTAL and cr~«~ is not a final, definitive
test of the absolute accuracy of the KMT theory,
nor is the apparent success above 400 MeV an
indication that no problems with the theory or its
application exist in this energy region. The suc-
cess in this energy regime indicates that at least
no serious, lowest order problems with the stan-
dard application of KMT theory exist above 400
Me V.
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