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Spin-fermion model for skyrmions in MnGe derived from strong correlations
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MnGe has been reported as a candidate for a three-dimensional (3D) skyrmion crystal in comparison to the
two-dimensional (2D) skyrmion observed in most other B20 compounds like MnSi. In addition, the small-sized
skyrmions in MnGe are desired properties for information storage. By performing the density functional theory
(DFT) calculations and model simulations based on the DFT-informed tight-binding Hamiltonian, we explore
the nature of the 3D skyrmion in MnGe. By invoking the dual nature of d electrons on Mn atoms, we propose
a strong-correlation-derived spin-fermion model with an antiferromagnetic coupling between the localized and
itinerant moments. This model could explain the drastic difference in magnetic moments between MnGe and
MnSi compounds. In addition, we find that the 3D or 2D nature of skyrmions is dependent on the coupling
strength.

DOI: 10.1103/PhysRevB.99.134437

I. INTRODUCTION

Mathematically, a skyrmion is a topological soliton solu-
tion known to occur in a nonlinear field theory of hadrons in
nuclear physics, originally proposed by Skyrme [1]. Nowa-
days, skyrmions are found to be relevant in condensed-matter
systems, including quantum Hall systems [2], liquid crystals
[3], and Bose condensates [4]. A magnetic skyrmion makes
up a topological configuration of noncoplanar spin swirls. The
local magnetic moments of the skyrmion domain could cover
the surface of a sphere, giving the topological winding number
of the skyrmion index. The magnetic skyrmions were theoret-
ically predicted in chiral magnets without inversion symmetry
[5]. Their existence was later established experimentally in the
bulk phases and thin films of noncentrosymmetric B20-type
helimagnets [6–15].

Skyrmions observed in most of these magnetic systems
have a two-dimensional (2D) nature with the constant spin
texture along the c axis as stabilized on the thin film. Recently,
three-dimensional (3D) spin-density-dependent topological
transport phenomena in MnGe indicated a noncoplanar spin
structure [16], while the real-space measurement on MnGe
demonstrated the stacking of hedgehog and antihedgehog spin
textures [17]. The hedgehog and antihedgehog configurations
indicate all-out and all-in spin textures with different signs
of the skyrmion index. Therefore, although the other cubic
B20 crystals display the 2D skyrmion, MnGe is the unique
compound showing the 3D skyrmion, in addition to high mag-
netic ordering temperature [18–20] and small skyrmion size
[17,19]. Understanding the complicated nature of magnetism
in MnGe will be a fundamental challenge in condensed-matter
physics. Computationally, even in the smallest skyrmion of
MnGe among B20 compounds, the simulation of the 3D
skyrmion needs more than 1500 atoms in a supercell built
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with 6 × 6 × 6 primitive cells, which is beyond the current
simulation capability within the ab initio density functional
theory (DFT). Theoretically, the DFT cannot capture the
magnetic state of some B20 compounds. For example, the
DFT calculation overestimates the magnetic moment of MnSi
[21,22]. Furthermore, the non-Fermi-liquid behavior in MnSi
[23] suggests that strong correlation is important for explain-
ing the electronic structure of B20 compounds.

In this paper, we explore the origin of 2D and 3D
skyrmions and the variation of local moments in B20 com-
pounds. We start with the DFT calculations to understand
the electronic structure in MnGe. We then construct an ef-
fective low-energy Hamiltonian based on the DFT inputs.
Since MnSi and MnGe have the same number of valence
states, they can be investigated systematically. We proceed
to answer why MnSi and MnGe show different natures of
the skyrmion within a strong-correlation-driven spin-fermion
model. We find the origins of 2D and 3D skyrmions, and the
local moments are controlled by the strength of the coupling
between localized and itinerant magnetic moments.

This paper is organized as follows: Sec. II introduces the
methodology. Section III introduces and explains the con-
struction of the spin-fermion model. In Sec. IV we describe
computational results. Section V presents a summary and
concluding remarks. Additional information is provided in the
Appendixes.

II. METHODS

We perform the DFT calculations by employing the pro-
jector augmented wave method implemented in the Vienna
Ab initio Simulation Package (VASP) [24,25] and the full-
potential linearized augmented plane wave (LAPW) method
implemented in the WIEN2K package [26]. We use the general-
ized gradient approximation of Perdew, Burke, and Ernzerhof
for the exchange-correlation functional [27]. The WIEN2K

(VASP) package is employed for the primitive (supercell)
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calculations. We use the experimental lattice parameters and
internal atomic positions for MnGe [20]. Through the max-
imally localized Wannier function method (MLWF) [28,29]
implemented in WANNIER90 [30], the tight-binding Hamilto-
nian is constructed. The LAPW results are used as input for
WANNIER90 [31]. The effective model Hamiltonian is solved
with the Tight-Binding Modeling for Materials at Mesoscale
(TBM3) package [32].

III. SPIN-FERMION MODEL

The DFT calculations give a magnetic moment of 2μB and
1.0μB per Mn ion in MnGe (4.795 Å) and MnSi (4.551 Å),
respectively. Although the DFT gives a result consistent with
the experiment [20,33] for the size of magnetic moment
in MnGe, it significantly overestimates the moment size in
MnSi, which is found to be only 0.4μB/Mn [34]. To under-
stand this difference, we carried out the DFT calculations for
MnGe with the lattice constants of the MnSi crystal [35] and
obtained a value of 1.0μB/Mn, which is close to that for MnSi.
This observation excludes the role of the ligand atom species
in causing the drastic moment change. Instead, it suggests that
the systematic magnetic properties go beyond by DFT and
electronic correlation effects must be incorporated into the
study of skyrmion properties in these compounds.

It is known that the electronic correlation could produce
the dual nature of electrons, showing the coexistence of the
localized and delocalized states. Although the dual nature
is intensively discussed in f -electron heavy-fermion systems
[36], the concept as represented by the spin-fermion model
was also applied to address the quantum critical phenomena in
high-temperature cuprates [37]. More recently, this correlated
electron model was also applied to understand the quantum
criticality in Fe pnictides [38]. It is noteworthy that this
spin-fermion model has no explicit interaction terms between
the local moments after the integration over the incoherent
electrons. This interaction term between incoherent states was
reported to play an important role in reproducing the high-
energy excited state [39]. Therefore, this derived spin-fermion
model will be appropriate to study the low-energy skyrmion
state very close to the magnetic ground state. Within the cor-
related electron picture, the electronic excitations encompass
an incoherent part far away from the Fermi energy and a
coherent part in its vicinity. The incoherent part corresponds
to the lower and upper Hubbard bands in connection with the
Mott insulator when the electron on-site repulsion is larger
than the Mott localization threshold and is described in terms
of localized magnetic moments, while the coherent part is
adiabatically connected to its noninteracting counterpart. It
has been shown [40] that this division of the electron spectrum
is a successful and convenient way of analyzing the complex
behavior of bad metals near the Mott transition. Here we adopt
the same type of spin-fermion model to describe 3d electrons
in MnGe and MnSi compounds.

We construct the tight-binding model through the MLWF
from the DFT result without the spin-orbit coupling (SOC).
Figure 1 shows the MLWFs with Mn d and Ge p well re-
produce the DFT band structure between −6 and 6 eV. (More
information on the electron structure with the DFT calculation
is given in Appendices A–C.) Upon renormalization, this

FIG. 1. Overlay of the band structure calculated by the DFT
eigenvalues (green lines) and tight-binding model (red dots) in
MnGe. The Fermi level is set as 0 eV, which is indicated by the thick
black line.

DFT-based tight-binding Hamiltonian represents the coherent
part of interacting electrons, which are antiferromagnetically
coupled to the localized moments. The system Hamiltonian is
written as

H = α
(
Hhopping

T B + Honsite
T B − μ

) + g
∑

i

�Si · �si + hB

∑
i

Sz
i ,

(1)

with

Honsite
T B = Honsite

DFT +
∑
m∈d

λd
�lm · �sm. (2)

Here the renormalization parameter is denoted by α. The
variables �S, �s, and g denote the localized and itinerant mo-
ments and the coupling strength between them. The index
i denotes the site, and m, �lm, and �sm indicate the d-orbital
index, its angular momentum quantum number, and its spin
quantum number, respectively. The quantities μ and hB are
the chemical potential and the external magnetic field. λd is
the SOC strength and is chosen to fit with the DFT + SOC
band structure. Here λd = 0.07 eV and hB = 0 eV were used.
Since the Hamiltonian has a scaling property with α, g, and
the magnitude of �S (|�S|), α = 1 and |�S| = 2 were used for
convenience.

IV. RESULTS

Figure 2(b) shows the itinerant magnetic moment as a
function of the coupling strength g. The coupling-driven spin
polarization of the itinerant band produces an itinerant mag-
netic moment. For example, the itinerant magnetic moment
shows 2.0μB (0.3μB) at g = 0.4 (0.05) eV. Because the itiner-
ant magnetic moment is antiparallel to the classical spin (|�S| =
2μB), the total moment at g = 0.4 (0.05) eV estimates ∼0μB

(1.7μB). Therefore, the reduced (large) magnetic moment
observed in MnSi (MnGe) could correspond to the case of
large (small) g. This is because g is proportional to the electron
hopping, which is enhanced with volume collapse (14.5%
from MnGe to MnSi). In addition, our results also explain
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FIG. 2. (a) Total energy for the FM, A-AFM, C-AFM, and G-
AFM configurations in the 8 × 8 × 2 supercell and (b) the itinerant
magnetic moment as a function of g in the primitive unit cell. In (b),
the phase transformation with varying g is schematically denoted by
dashed lines.

the observation of a significant moment suppression in MnGe
under a 6-GPa pressure [33,41].

We now examine the total energies for the ferromag-
netism (FM), the A-type antiferromagnetism (A-AFM), the
C-type AFM (C-AFM), and the G-type AFM (G-AFM; see
Appendix D for the detail of the magnetic configurations)
as a function of g in an 8 × 8 × 2 supercell. Since the B20
structure has four different transition-metal layers stacked
along the c axis, the shortest periodicity of c/4 along the
c axis can be defined. The possible AFM periodicity along
the c-axis is the multiple of c/4 such as c/2, c, and 2c (see
Fig. 9 in Appendix E). We found that 2c of the magnetic
periodicity along the c axis is suitable to describe the phase
transition between C-AFM and G-AFM states (see Fig. 10 in
Appendix E), and 2c was used to make an AFM along the c
axis in our study. The magnetic phase diagram as a function of
g between 0.05 and 0.4 eV is summarized in Fig. 2(a). When
g is between 0.4 and 0.3 eV, the ground state is the C-AFM
phase. The crossover between G-AFM and C-AFM phases
occurs at g = 0.3 eV. Therefore, G-AFM becomes the ground
state at g < 0.3 eV. The energy of the FM is higher than other
configurations at large (>0.35 eV) and small (<0.1 eV) g. For
g between 0.1 and 0.35 eV, the A-AFM shows the highest
state among them. As g approaches 0.05 eV, the difference
in the total energies of four magnetic states becomes very
tiny because the magnitude of itinerant moments becomes
negligible at small g.

The phase transition between C-AFM and G-AFM could
provide useful insight into the 2D and 3D skyrmions. The cen-
ter and boundary of the skyrmion show the antiferromagnetic
relation. If the distance between the center and border be-
comes as short as possible, the skyrmion would be comparable
to an antiferromagnet. Since the G-AFM state has alternating
spin directions layer by layer, it might be associated with the

FIG. 3. (a) Total energy difference between G-AFM and C-AFM
states as a function of the coupling strength g. The total energy of
the (b) and (c) 3D and (d) 2D skyrmions, relative to the FM state,
as a function of r0. The color of the circles indicates whether a local
minimum of the 3D (red) or 2D (blue) skyrmion exists or not (green).
Here values of (b) g = 0.05, (c) 0.1, and (d) 0.35 eV were used in the
calculations. The local minima were obtained for (b) and (c) 3D and
(d) 2D skyrmions.

3D skyrmion at the extremely small size. Therefore, as shown
in Figs. 2(a) and 3(a), one expects that a 3D (2D) skyrmion
can emerge when g is smaller (larger) than 0.3 eV. It is
noteworthy to mention that the three orthogonal helices could
also describe a three-dimensional spin texture. As the G-AFM
and C-AFM could be defined in terms of orthogonal helices,
the low-energy spin-wave theory of skyrmion crystal based
on the orthogonal helices [42] might shed light on the relation
between the conventional AFM and the skyrmion crystal.

Based on the above insight, we now investigate 2D and
3D skyrmion properties in real space. A skyrmion lattice is
constructed in the 8 × 8 × 2 supercell shown in Fig. 4(a).
A single skyrmion is manipulated inside each rectangle with
(cos(φ) sin(θ ), sin(φ) sin(θ ), cos(θ )). The distance r and the
azimuthal angle φ are computed with respect to the center
of each rectangle as depicted in Fig. 4(b). θ is a function
of r for a given parameter r0, characterizing the size of the
skyrmion texture. Every classical spin at the center (r = 0)
of the rectangle points downward. Outside each rectangle,
all classical spins are aligned upward to satisfy the boundary
condition of the skyrmion. For example, for r0 = 0.5, only
the spin at the center points downward, while the others point
almost upward. The different sizable skyrmions are shown in
Figs. 4(e)–4(h) as a function of r0. The skyrmion index is the
summation of the solid angle � over the spin texture. We used
the following formula to calculate the solid angle:

�i = 2 arctan

[
Si · (S j × Sk )

1 + Si · S j + S j · Sk + Sk · Si

]
, (3)

subtended by three neighboring spins Si in the 2D plane.
The skyrmion index is given by

∑
i �i/4π in each Mn

layer. The skyrmion index of each layer needs to be +4
or −4 due to the four skyrmions in each layer. Practically,
the skyrmion indices are −4.0, −3.93, −3.76, −3.56,
for r0 = 0.5, 1.0, 1.5, 2.0, respectively. The nonintegral
topological index suggests a finite-size effect in which the
rectangles as marked in Fig. 4(a) cannot fully accommodate
a larger-sized skyrmion. However, because the tiny skyrmion
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FIG. 4. Schematic spin structure of the skyrmion. (a) The skyrmion spin structure was placed within the red rectangles
in the 8 × 8 × 2 supercell. (b) Skyrmion spin formula. (c) Skyrmion-skyrmion lattice. (d) Skyrmion-antiskyrmion lattice. (e)–(h)
Different sizes of skyrmions in the 8 × 8 × 2 supercell. The four neighboring red circles represent the top view of Mn atoms in the primitive
unit cell of MnGe at the center of a given red rectangle in (a). The skyrmion means the positive skyrmion index, and the antiskyrmion means
the negative skyrmion index.

would be stabilized in MnGe, this finite-size effect does not
occur in MnGe. The 2D skyrmion could be easily placed
using the equivalent skyrmion formula as a function of a
layer. The sign of the skyrmion index was determined by the
sign of the numerator of Eq. (3). Due to the multiplication
of three spins in the numerator, the whole sign change of the
classical spins layer by layer drives the sign change of the
skyrmion index along the c axis. Here the positive skyrmion
index means a skyrmion, and the negative one implies an
antiskyrmion. Although the observed 3D skyrmion has the
alternating stack of the hedgehog (all-out) and antihedgehog
(all-in) textures, we build the 3D skyrmion structures by
stacking 2D skyrmion or antiskyrmion planes along c axis.
There is another way to generate an anitskyrmion by the
inverted vorticity [43,44]. To show an analogy between the
3D skyrmion and the G-AFM spin texture, we inverted spin
directions to generate an antiskrymion.

We searched the local minimum of the total energy of the
2D or 3D skyrmion as a function of g and r0 in reference
to the FM energy. Figures 3(b)–3(d) present the relative total
energy of 2D or 3D skyrmions as a function of r0 at g = 0.05,
0.1, and 0.35 eV. We find a stabilized 2D skyrmion at g =
0.35 eV and stabilized 3D skyrmions at g = 0.05 and 0.1 eV.
Figures 3(b) and 3(c) demonstrate that the 3D skyrmion with
r0 = 0.5 is stabilized at g < 0.3 eV. Figure 3(d) shows the
2D skyrmion with r0 = 0.5 is stabilized at g > 0.3 eV. With
other parameters, we could not find a stabilized skyrmion in

comparison to the FM energy. Our model shows the very tiny
skyrmion in both the stabilized 2D and 3D skyrmions. Since
our tight-binding model is constructed from the DFT inputs of
MnGe, large-sized skyrmions as observed in MnSi could not
be stabilized with the current parameters.

It is noteworthy that, while the DFT calculations always
indicate that the FM state has a lower energy than any
skyrmion configuration in MnGe, the spin-fermion model
indeed predicts several important results: (1) the stabilized
skyrmion state in comparison to the FM state, (2) the phase
transition from 2D to 3D skyrmions with reduced g, and (3)
the skyrmion lattice in the 8 × 8 × 2 supercell. To test the
stability of the skyrmion state, the local minima of the 2D
(g = 0.35 eV and r0 = 0.5) and 3D (g = 0.1 eV and r0 =
0.5) skyrmions are iterated by Langevin-Landau-Gilbert spin
dynamics, implemented in the TBM3 package [32]:

d�Si

dt
= �Si × �Fi + η(�Si × �Fi ) × �Si, (4)

where �Fi is the effective field from the Hellmann-Feynman
theorem. In Eq. (4), η is a positive value for the damping
term, and we set dt = 0.1 and 0.02 to update the local
spin orientation for g = 0.05 and 0.35 eV, respectively. The
time-dependent evolutions of the local minima would con-
firm these skyrmions are indeed stable. The same skyrmion
index was maintained until the magnetic state was converged.
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With the slight modification of the magnetic structure, the
initially imposed skyrmions were stabilized within the cri-
terion of 0.000001μB for the difference of each magnetic
moment.

V. SUMMARY

We have demonstrated that the spin-fermion model
with antiferromagnetic coupling between the itinerant and
localized electrons can capture the magnetic properties of
MnGe and MnSi at the same time. The model is based on the
tight-binding model from the DFT result in MnGe. At large
values of the coupling strength g, the compensation of the
localized and itinerant moment leads to a reduced moment
state (MnSi) and gives rise to a 2D skyrmion. At small values
of g, the reduction of itinerant moment gives a large moment
state (MnGe) and a 3D skyrmion. The compensation-induced
small magnetic moment state at large g could be comparable
to the compensated magnetic moment of the majority- and
minority-spin parts at the large on-site Coulomb interaction in
MnSi [45,46]. We have found the itinerant moment controlled
by g plays an important role in determining whether a 2D
or 3D skyrmion should be stabilized. Our spin-fermion
model has given a consistent picture of the understanding
of the 2D and 3D skyrmions in B20 compounds. Since
the three-dimensional spin configurations are shown to be
associated with the magnetic state of MnGe, we might need
to reconsider multimagnetic periodicity (the multi-Q state)
beyond the single magnetic periodicity that occurs in the
helical ground state [47].
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APPENDIX A: BULK DFT CALCULATION

We performed the DFT calculation in the nonmagnetic
MnGe. Figure 5 shows the density of states (DOS) in nonmag-
netic MnGe. With the threefold rotation symmetry along the
(1,1,1) direction, 3d orbital states in Mn ions can be split into
dzx + dyz, dx2−y2 + dxy, and dz2 , whose DOS are presented in
Fig. 5(b). All d states are mainly distributed between [−2 eV,
2 eV]. Also, there is the strong hybridization between Mn 3d
and Ge 4p states, as shown in Fig. 5(a). The Ge 4p partial
DOS intensity at EF is too small compared with that of Mn
3d . Therefore, Mn 3d states should have a major role in the
magnetism.

FIG. 5. (a) Total density of states for Mn (red) and Ge (blue)
atoms and (b) partial density of states for 3d electrons in Mn atoms.
The local symmetry of Mn atoms induces 3d orbital states to split
into dz2 (red), dx+y (green), and dxy+yz (blue). Here 0 eV is set as the
Fermi level.

APPENDIX B: BAND STRUCTURES WITH AND
WITHOUT SPIN-ORBIT COUPLING

We investigated the spin-orbit coupling (SOC) effect on
MnGe. Figure 6 shows the band structure with and without
SOC. The energy splitting due to SOC is about 1 meV. This
strength of the SOC is well fitted with λd = 0.07 eV in
λd

�lm · �sm.

APPENDIX C: TOTAL ENERGIES AS A FUNCTION
OF SKYRMION SIZE

We performed the fully relativistic noncollinear DFT cal-
culation of the skyrmion spin texture in MnGe. The spin-orbit
coupling was taken into account in the calculations. Using
the skyrmion definition in Fig. 4(b), we put the 2D skyrmion
texture in n × n × 1 supercells (n is an integer). Figure 7
shows the total energy as a function of skyrmion size in
different supercells. Only 5 × 5 × 1 and 7 × 7 × 1 supercells

FIG. 6. Band structure of nonmagnetic MnGe (a) without and
(b) with spin-orbit coupling.
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FIG. 7. Relative total energy of a skyrmion as a function of the
initial skyrmion size r0 in the n × n × 1 supercell (n = 5, 7). Here
we take the energy of the skyrmion phase with r0 = 0.5 as an energy
reference.

could have a stabilized skyrmion with r0 = 1. The calculated
size of the skyrmion is smaller than r0 = 2 in MnSi [22]. DFT
calculations for both MnGe and MnSi show the energy of
the skyrmion with respect to the ferromagnetic state would
be larger by about 1–2 meV/f.u. (specifically, 1.67 meV/f.u.
in MnGe and 0.84 meV/f.u. in MnSi). This energy scale in
MnSi was discussed to show a comparable estimate to the
experimental observation [22].

APPENDIX D: MAGNETIC CONFIGURATIONS

FM, A-AFM, C-AFM, and G-AFM configurations have
the conventional magnetic configurations with q = (0, 0, 0),

FIG. 8. Schematic magnetic structures. (a) The ferromagnetism
(FM), (b) A-type antiferromagnetism (A-AFM), (c) C-type antiferro-
magnetism (C-AFM), and (d) G-type antiferromagnetism (G-AFM).
All four Mn atoms have identical moments in the unit cell of MnSi.

FIG. 9. Schematic spin structure of G-type antiferromagnetism
with different periodic boundary conditions. The magnetic unit
cell doubles along the c axis with the spin-flip along the c axis.
(a)–(c) The different periodic boundary conditions along the c axis.
(d)–(f) After the spin-flip along the c axis, the doubled periodic
boundary conditions.

(0, 0, π ), (π, pi, 0), and (π, π, π ), respectively. The typical
structures are given in Fig. 8.

APPENDIX E: PERIODIC BOUNDARY CONDITIONS

There are several choices to make a G-AFM in the B20
structure. The primitive unit cell of MnGe has four Mn-Ge
layers stacked along the c axis. We could define the shortest
periodicity of c/4 along the c axis. The AFM periodicity along
the c axis could be a multiple of c/4 such as c/2, c, and
2c. Here we used the spin arrangement shown in Fig. 9(f)
to achieve 3D skyrmions. The reason for our choice will be
presented below.

We performed the total energy calculation of G-AFM and
C-AFM states in the 8 × 8 × 2 supercell with the 1 × 1 × 1
momentum mesh. Figure 10 shows that the periodicity of
2c along the c axis produces the clear phase transition be-
tween G-AFM and C-AFM states. Therefore, a 2c length was
used for the antiferromagnetic periodicity along the c axis
throughout this work. We used a 4 × 4 × 2 momentum mesh
to simulate the skyrmion properties in the spin-fermion model
in this work due to the convergence requirement.

FIG. 10. The difference between G-AFM and C-AFM as a func-
tion of g for different magnetic periodicities (c/2, c, 2c) along the c
axis within the 1 × 1 × 1 momentum mesh.
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