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Electrocaloric effects in the lead-free Ba(Zr,Ti)O3 relaxor ferroelectric from atomistic simulations
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Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free
Ba(Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectric. We find that the EC coefficient varies nonmonotonically with
the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT’s polar
nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a
function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that,
for low temperatures (i.e., in nonergodic conditions), the usual indirect approach to measure the EC response
provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.
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I. INTRODUCTION

The electrocaloric (EC) effect characterizes the change
in temperature induced by a change in electric field [1–6],
with the electrocaloric coefficient being defined as α = ∂T

∂E |
S
,

where T is the temperature, E is the electric field, and S

is the entropy. It has the potential to be an efficient solid-
state refrigeration method for a broad range of applications
[6–9]. Numerous studies have been recently conducted via
measurements, phenomenologies, and atomistic simulations
(see, e.g., Refs. [1,6,10–24], and references therein) and have
led to a better knowledge of the electrocaloric effects in typical
ferroelectrics, such as BaTiO3, LiNbO3, Pb(Zr0.4Ti0.6)O3,
(Ba0.5Sr0.5)TiO3, as well as antiferroelectrics such as La-
doped Pb(Zr,Ti)O3. On the other hand, fewer investigations
about EC effects have been performed in another class
of ferroelectrics, namely, the relaxor ferroelectrics [25–27].
These intriguing materials exhibit unusual features, such as
a frequency-dependent and broad dielectric response versus
temperature while remaining macroscopically paraelectric
down to 0 K [28]. They also display several characteristic
temperatures (i.e., the Tb Burns temperature, the T ∗ tempera-
ture, and the Tm temperature) that are associated with a subtle
change in some physical properties [29–34]. For instance, in
Ba(Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectrics, simulations [35]
indicate that the Burns temperature (below which the dielectric
response does not obey the Curie-Weiss law [36]) is Tb �
450 K, T ∗ � 240 K, and Tm � 130 K is the temperature at
which the dielectric response exhibits a peak, as also in line
with measurements in BZT compounds [33,34,37,38]. The
microscopic origin of these features is commonly believed to
be the existence of so-called polar nanoregions (PNRs) below
the Burns temperature [39]. Interestingly, studies devoted to
EC effects in relaxor ferroelectrics have resulted in original
findings. One example includes the failure of indirect methods
(which are based on thermodynamic equilibrium consider-
ations) in the relaxor ferroelectric poly(vinylidene fluoride-
trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)]
terpolymer to obtain the real change in temperature induced
by an electric field for temperatures below which the broad

dielectric constant peaks, because of nonergodicity [25].
Another example is the nonmonotonic behavior of the EC
coefficient with the magnitude of the electric field at the
fixed critical point temperature TCP in Pb(Mg,Nb)O3 (PMN),
(Pb,La)(Zr,Ti)O3, and Pb(Mg,Nb)O3-PbTiO3 relaxors [27];
especially intriguing is the existence of a maximum of this
coefficient at the specific field ECP for this TCP temperature,
with (TCP,ECP) corresponding to the critical point at which
the paraelectric-to-ferroelectric transition changes its nature
from first order to second order. It is worthwhile to realize
that these latter results were obtained for lead-based relaxor
ferroelectrics while there are also (environmentally friendly)
lead-free relaxor ferroelectrics, such as Ba(Zr1−xTix)O3, that
are fundamentally distinct. For instance, the difference in
polarizability between Ti and Zr ions in Ba(Zr0.5Ti0.5)O3

was found to be essential to reproduce relaxor behavior
via the formation of small Ti-rich PNRs embedded in a
paraelectric matrix [35], while the relaxor nature of lead-based
PMN was predicted to rather originate from a complex
interplay between random electric fields, and ferroelectric
and antiferroelectric interactions, yielding much larger PNRs
touching each other at low temperatures [40]. Another striking
difference between Ba(Zr0.5Ti0.5)O3 and PMN is that a recent
atomistic simulation did not find any trace of a first-order
paraelectric-to-ferroelectric phase transition when subjecting
Ba(Zr0.5Ti0.5)O3 to electric fields, that is, the polarization
seems to always continuously evolve with the magnitude of
the dc electric field in this lead-free compound [41].

One may therefore wonder about EC effects in lead-free
relaxor ferroelectrics, even more when realizing that a recent
study done in Ba(Zr1−xTix)O3 with x = 0.20 reported a giant
α electrocaloric coefficient [42,43] [note that this system is
different from Ba(Zr0.5Ti0.5)O3 in the sense that it possesses
a polar ground state in addition to some relaxor features].
For instance, many questions remain to be addressed in
Ba(Zr0.5Ti0.5)O3: Do indirect and direct methods also provide
different results below a specific temperature? How does α

behave with the dc electric field for the different temperature
ranges in BZT, i.e., above Tb, between Tb and T ∗, between T ∗
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and Tm, and below Tm? In particular, can α exhibit a maximum
for some intermediate field at any of these temperature ranges?
If such a maximum exists, what is its microscopic origin?
Other natural questions to ask are if and how α depends
on temperature for fixed electric fields, and if it is possible
to reproduce and understand such a (presently unknown)
dependency.

As we will see below, this article provides an answer to all
these open questions, by conducting and analyzing atomistic
simulations on Ba(Zr0.5Ti0.5)O3 ferroelectric relaxors. This
article is organized as follows. Section II provides details
about the methods used here. Results are given, analyzed, and
explained in Sec. III. Finally, Sec. IV concludes this work.

II. METHODS

We use here a first-principles-based effective Hamilto-
nian (Heff) approach that has been recently developed for
Ba(Zr0.5Ti0.5)O3 (BZT) solid solutions [35,41,44–46]. The to-
tal energy of the effective Hamiltonian used here contains two
main terms, Eint({ui},{vi},ηH ,{σj }) = Eave({ui},{vi},ηH ) +
Eloc({ui},{vi},{σj }), where {ui} is the local soft mode in unit
cell i (which is related to the electric dipole of that cell and that
is technically centered on the Zr or Ti ions), {vi} are variables
related to the inhomogeneous strain inside each cell, ηH is
the homogeneous strain tensor, and {σj } represents the atomic
configuration of the BZT solid solutions (i.e., how Zr and
Ti ions are distributed within the B sublattice of BZT). Eave

contains five energetic terms: (i) the local-mode self-energy;
(ii) the long-range dipole-dipole interaction; (iii) the energy
due to short-range interactions between local modes; (iv) the
elastic energy; and (v) the energy representing the interaction
between local modes and strains [47]. Eloc describes how the
actual distribution of Zr and Ti cations affects the energetics
involving the local soft modes ui and the local strain variables,
and therefore depends on the {σj } distribution [35,41,44]. One
can also add to Eint an energy that is proportional to the dot
product between polarization and electric field, in order to
mimic the effect of such a field on physical properties.

This effective Hamiltonian successfully predicted the exis-
tence of three characteristic temperatures in BZT, namely, the
Burns temperature (Tb � 450 K), below which the dielectric
response no longer follows the Curie-Weiss law [36], the
so-called T ∗ (that is close to �240 K), and the Tm temperature
at which the dielectric response can exhibit a peak (Tm �
130 K) [35], as consistent with experimental findings for BZT
systems [33,34,37,38]. This atomistic scheme also yields polar
nanoregions inside which the Ti-centered dipoles are aligned
parallel to each other, with these PNRs being dynamic in nature
between T ∗ and Tb, while, below Tm, they are static and all
have a polarization pointing along one of the eight 〈111〉 pseu-
docubic directions [35]. The polarizations of these different
PNRs cancel each other, as consistent with the fact that BZT
is macroscopically paraelectric down to 0 K [33–35,37,38].
This effective Hamiltonian was also successful in reproducing
the unusual dielectric relaxation known to occur in relaxor
ferroelectrics [46]. Here, we implement this Heff within Monte
Carlo (MC) and molecular dynamics (MD) simulations, in
order to determine and understand EC effects in BZT relaxors,
as modeled by 14 × 14 × 14 supercells (13 720 atoms) in the

FIG. 1. Physical properties associated with the MC-1 method.
(a) shows the temperature dependency of the polarization in BZT
systems subject to different dc electric fields, all applied along the
pseudocubic [001] direction but varying from 2.0 × 107 to 3.0 ×
108 V/m in magnitude in steps of 2.0 × 107 V/m. (b) shows the
resulting change in temperature as a function of �E = E2 − E1 for
four selected initial temperatures, as computed from Eq. (1) and
choosing E1 = 2.0 × 107 V/m. Note that (b) also further reports the
direct change in temperature at 100 K as a function of Ef .

MC computations and 32 × 32 × 32 (32 768 atoms) in the
MD simulations. Note that this different choice of supercells
between the MC and MD simulations originates from the
fact that the code we used for the MD computations can
handle larger supercells, and that the use of 32 × 32 × 32
supercells allows the temperature change in MD simulations
to be easily sorted out from the temperature fluctuations. Note
also that we numerically checked that the use of 12 × 12 × 12,
14 × 14 × 14, and 16 × 16 × 16 supercells provides similar
results, which suggests that our Monte Carlo simulations are
free from significant size effects. These supercells are periodic
along the three Cartesian directions, and Zr and Ti atoms
are randomly distributed inside them. We also average our
physical results over 20 random configurations for both MC
and MD simulations, in order to mimic well disordered BZT
solid solutions.

Let us now indicate how we practically compute, from
these simulations, the electrocaloric coefficient α = ∂T

∂E |
S
. One

approach we use here is based on the Maxwell thermodynamic
relationship ∂S

∂E |
T

= ∂P
∂T

|E leading to the adiabatic temperature
change,

�T = −
∫ E2

E1

T (E)

CE (T )

∂P

∂T

∣∣∣∣
E
dE, (1)

where P is the macroscopic polarization and CE is the heat
capacity per unit volume under constant dc electric field. Such
a latter equation therefore tells us that we can obtain α from
MC simulations by computing

α = − T

CE

∂P

∂T

∣∣∣∣
E
. (2)

This way of extracting α is coined MC-1 here.
For instance, Fig. 1(a) reports the polarization as a

function of temperature obtained from MC simulations on
Ba(Zr0.5Ti0.5)O3, for dc electric fields all applied along the
pseudocubic [001] direction and ranging between 2.0 × 107

and 3.0 × 108 V/m in magnitude. Values of ∂P
∂T

|E are then
obtained from cubic B-spline fits to these P (T ) curves,
which allow us to determine α via Eq. (2). Note that the
heat capacity at a given electric field E is calculated as

014114-2



ELECTROCALORIC EFFECTS IN THE LEAD-FREE . . . PHYSICAL REVIEW B 96, 014114 (2017)

CE = (N 〈Eint
2〉−〈Eint〉2

T 2kB
+ 15

2 kB)/V , where N is the number of
sites in the supercell, Eint is the total internal energy provided
by the effective Hamiltonian, 〈 〉 denotes the average over
the MC sweeps at every considered T temperature, kB is
the Boltzmann constant, and V is the volume of the primitive
unit cell. The factor 15

2 in that formula reflects that there
are five atoms in the unit cell of perovskites [16]. Moreover,
CE is computed for different temperatures and electric fields,
implying that it can, in principle, depend on T and E . However,
we numerically found that these dependencies are rather weak,
as consistent with measurements [42], and that CE is always
very close to 2.18 MJ/K m3.

Interestingly, there is another way to obtain the EC
coefficient from MC runs, that is, by taking advantage of the
cumulant formula given in Ref. [48],

α = −Z∗alatNT

{ 〈|u|Eint〉 − 〈|u|〉〈Eint〉
〈Eint

2〉 − 〈Eint〉2

}
, (3)

where Z∗ is the Born effective charge, alat is the five-atom
lattice constant, N is the number of sites in the supercell,
T is the considered temperature, u is the supercell average
of the local mode, Eint is the total energy of the effective
Hamiltonian, and 〈 〉 denotes the average over the MC sweeps
at every considered temperature. This method will be called
MC-2 here. Technically, the computation of α via Eq. (3) is
done for a chosen combination of temperature and magnitude
of a dc electric field applied along the pseudocubic [001]
direction, which therefore allows us to determine the effect
of temperature and applied electric field on the EC coefficient.
In the following, we will also be interested in comparing the
predictions of MC-1 and MC-2, mostly because the MC-2
method is less known than MC-1 while being computationally
more accurate (since, unlike MC-1, it does not rely on a fit of
∂P
∂T

|E ).
Regarding the direct approach, we determine the elec-

trocaloric coefficient by using the ramping method of Ref. [18]
within molecular dynamics. First, an Evans-Hoover ther-
mostat [49,50] is used in the MD simulations in order to
equilibrate the system at an initial temperature T when no
electric field is applied. The electric field is then applied along
the pseudocubic [001] direction and ramped up (with time)
from zero to a specific value, Ef , and then ramped down from
Ef to zero. Practically, we chose the time dependence of the
applied field E(t) amplitude to be

E(t) = Ef

2

[
tanh

(
t − tup

τ

)
− tanh

(
t − tdown

τ

)]
, (4)

where tup and tdown denote the times when the field magnitude
reaches Ef /2 during ramping up and down, respectively. The
ramping up/down time frames thus correspond to

tup/down − τ/2 � t � tup/down + τ/2, (5)

with τ representing the time interval during which the field
on/off switching happens. The “hyperbolic tangent” time
profile is commonly used in linear response calculations and
was chosen to obtain a smooth time dependence of the external
field. Notably, we observed no significant differences with test
calculations where the time dependence of the external field
was assumed linear, as described in Ref. [18]. To test the

convergence of results with respect to τ , and the integration
time step �t , the test runs were performed for values of τ

ranging from 20 to 200 ps and values of �t from 0.001 to
4 fs. All the simulations were performed using the Omelyan
second-order symplectic integration algorithm [51]. Based on
the convergence tests, the final chosen value of τ was of 188 ps
with �t equal to 0.1 fs, ensuring the energy conservation for
a constant field simulation up to a maximum relative error
of 10−6. The inverse rate of the change of the applied field
was thus close to 188 fs cm/kV for an applied field magnitude
of 1000 kV/cm. For the chosen simulation parameters, we
find that the calculated field-induced temperature change upon
ramping down �Tdown is equal in magnitude, but opposite
in sign, to the temperature change �Tup produced by the
switching on the external field for temperatures above Tm, a
result that is naturally expected for time-reversible processes.
However, for T < Tm, during the ramping down of the
applied field, the temperature first exhibited a drop, which
was subsequently followed by an increase (note that this result
was also tested for convergence with respect to τ and �t).
Such behavior, broadly speaking, can be attributed to the
loss of ergodicity below Tm. A detailed investigation of the
microscopic mechanism responsible for this unusual behavior
lies beyond the scope of the current study and, for the purposes
of the present work, the EC temperature change �T was
defined to be equal to �Tup, and the α EC coefficient associated
with a specific field’s magnitude can then be obtained by taking
the derivative of �Tup with respect to Ef at this specific field’s
magnitude. Such results will be denoted as “MD” here [52].

Note that data from MC-1 and MC-2 approaches can
be considered to be associated with the indirect method to
obtain EC effects, because they are based on thermodynamic
equilibrium. On the other hand, data obtained from MD
computations yield the direct EC effects, which may differ
from those obtained from the indirect way for systems adopting
nonergodic behavior, as the one that relaxors are known to
exhibit below some specific temperature Tm at which the
dielectric response peaks [53]. Comparisons between our MC
and MD results should thus tell us the difference between
the indirect and direct ways to extract EC effects in relaxors.
Since we are also interested in checking if and how this
difference (if any) depends on the investigated temperature
region, we decided to focus on four particular representative
temperatures. They are (1) 500 K, which is above the predicted
Burns temperature (Tb � 450 K) of BZT [35,37], (2) 300 K,
which is located in between our critical T ∗ � 240 K [33–35]
and Tb, (3) 200 K, that is now between the computed Tm

temperature of BZT (Tm � 130 K) [35,38] and T ∗, and (4)
100 K, which is thus below Tm (note that the Supplemental
Material [54] also shows our results for the EC coefficient in
BZT at 600 K).

III. RESULTS

A. EC coefficients

Figure 2 shows the electrocaloric coefficient as a function of
electric field E for these four different selected temperatures,
and as computed from the aforementioned MC-1, MC-2,
and MD methods. One can first clearly see that, for any of
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FIG. 2. Electrocaloric coefficient α as a function of the applied
dc electric field E , as predicted for the different indirect and direct
approaches at (a) 100, (b) 200, (c) 300, and (d) 500 K. The solid green
line represent the fit of the MC-1 and MC-2 results by the second line
of Eq. (9), i.e., α = βT ∂P 2

∂E |
T

, where β is a constant and ∂P 2

∂E |
T

is
obtained from the data of Fig. 3. Error bars (resulting from the use of
20 different disordered alloy configurations) are also shown for the
MC-2 data.

these temperatures, the (indirect) MC-1 and MC-2 approaches
provide nearly identical results. Similarly, α predicted by the
(direct) MD scheme agrees very well with those of MC-1 and
MC-2 for 200, 300, and 500 K at any field, which demonstrates
that indirect methods based on Maxwell’s thermodynamic
relation can be safely used to estimate α above the Tm

temperature of relaxors. On the other hand, Fig. 2(a) clearly
reveals that the EC coefficient of the MD method significantly
differs from that predicted by MC-1 and MC-2 at 100 K,
as a result of nonergodicity. In particular, at 100 K, the
α deduced from the indirect methods are smaller than that
those directly extracted, which is in agreement with previous
reports [25,53,60]. It is also interesting to realize that the
EC coefficient of the MD method gets closer to those of
MC-1 and MC-2 at 100 K for the highest considered electric
fields. This is because, under high electric fields, BZT relaxors
can be converted to a normal ferroelectric and thus become
ergodic [41].

Moreover, the results of Fig. 2(d) also indicate that α at
500 K is vanishing at small fields and then increases with
E , until it very slightly decreases for our highest investigated
fields. Interestingly, our values of α for high fields at 500 K
are of the order of 0.5 × 10−7 K m/V, which is similar to
the predicted one of 0.67 × 10−7 K m/V in a ferroelectric
phase of (Ba,Sr)TiO3 [15]. Figures 2(a)–2(c) also show that,
for temperatures below the Burns temperature, α adopts a
very clear maximum for an intermediate field (whose value
is dependent on temperature) within our investigated range
of electric fields. In other words, at temperatures of 300,
200, or 100 K, the EC coefficient first increases with field
before noticeably decreasing. Such nonmonotomic behavior
of α (starting with a vanishing value at small fields and

having a peak for an intermediate field before decreasing for
larger fields) was indeed measured, as well as reproduced
by the so-called phenomenological spherical random bond
random field model, in Pb(Mg,Nb)O3, (Pb,La)(Zr,Ti)O3, and
Pb(Mg,Nb)O3-PbTiO3 relaxors in Ref. [27], but only for
a specific temperature: namely, the critical temperature at
which the discontinuous electric-field-induced ferroelectric
transition of these systems becomes continuous (for the value
of the electric field associated with the maximum of α).
Our results displayed in Fig. 2 therefore generalize such
findings by indicating that, for any temperature, α of BZT
can also exhibit a maximum within the investigated field
range. Further, note also that BZT differs from the cases of
Pb(Mg,Nb)O3, (Pb,La)(Zr,Ti)O3, and Pb(Mg,Nb)O3-PbTiO3

in the sense that the temperature behavior of the polarization
displayed in Fig. 1(a) is always continuous for any investigated
field. It is worthwhile to know that the maximum of α at
a certain field was also predicted to occur in Ba0.5Sr0.5TiO3

[16] and defect-doped BaTiO3 [61], and that we also found
this nonmonotonic behavior of α in the paraelectric phase
of BaTiO3 (BTO) bulk, as evidenced in the Supplemental
Material [54].

B. Analysis of the results via a Landau-like model

Let us now try to understand the main results of Fig. 2. For
that, we start from a simplest Landau free-energy potential
describing the behavior of a nonlinear dielectric,

F = F0(T ) + �F (T ,P,E)

= F0(T ) + 1
2a(T )P 2 + 1

4bP 4 − EP, (6)

where F0(T ) captures the basic temperature dependence of the
free energy of the materials, and the other terms account for
the variations that involve the development of a polarization
or application of an electric field. Note that the temperature
dependence of the harmonic a(T ) parameter can be a complex
one in our BZT compound with various regimes, as inferred
from the temperature behavior of the dielectric response under
the dc field and discussed in Ref. [35]: For T > Tb we have
a(T ) ∝ (T − T0), while for T < Tm we have da(T )/dT ∼ 0,
and for Tm < T < Tb we have a smooth interpolation between
these two regimes [note that (i) T0 is extracted from the
Curie-Weiss behavior of the dielectric response above Tb

and can be negative in relaxor ferroelectrics, as predicted
and experimentally found in Refs. [35,37], and (ii) that the
aforementioned behaviors of a(T ) imply that it is increasing
with temperature above Tm]. In the following equations we
will work with a generic a(T ) > 0, noting that the final results
have to be interpreted depending on the T region we are in.
In particular, the phenomenological equations to be derived
here [namely, Eqs. (6)–(16)] can only be safely applied to
temperatures above Tm. This is because these equations rely on
thermodynamic equilibrium while BZT is nonergodic below
Tm. Finally, the positive parameter b > 0 accounts for the
saturation of the dielectric response of the material.

Let us now discuss the behavior of the EC coefficient as
predicted by this simple model. The entropy can be obtained
as

S = −dF

dT
= −dF0

dT
− ∂�F

∂T
− ∂�F

∂P

dP

dT
. (7)
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Noting that at equilibrium we have ∂�F/∂P = 0, we obtain

S = −dF0

dT
− a′(T )

2
P 2, (8)

where a′ = da/dT . It is then straightforward to derive the
following expression for α,

α = − T

CE

∂S

∂E

∣∣∣∣
T

= T a′(T )

2CE

∂P 2

∂E

∣∣∣∣
T

= T a′(T )

CE
Pχ, (9)

where χ is the dielectric susceptibility.
Interestingly, the behavior of a dielectric for small electric

fields can be readily discussed from this expression. Indeed,
if P = 0 for E = 0, then we have P = χE , which leads to
α ∝ E , assuming that the dependence of the specific heat CE
on the electric field can be neglected. This prediction is fully
consistent with the null value of α reported in Fig. 2 at zero field
for any temperature, and immediately implies that �T ∝ E2,
which shows that the EC effect is null in the limit of small E .

To discuss the behavior of α for arbitrary electric field
values, we recall the equilibrium condition ∂F/∂P = 0 to
obtain

a(T )P + bP 3 = E . (10)

Further, if we take the derivative with respect to the electric
field on both sides of this equation, we get

a(T )χ + 3bP 2χ = 1, (11)

which leads to

α = 2T

CE

a′(T )P

a(T ) + 3bP 2
. (12)

This interesting expression implies that, in the limit of large
polarizations (or, equivalently, large electric fields), we have
α → 0. Hence, since we also know that α = 0 for E = P = 0,
it immediately follows that the EC coefficient will present at
least one extremum (maximum or minimum) at intermediate
values of the electric field, as also consistent with our
numerical results of Fig. 2. Of course, whether or not such
an extremum is experimentally accessible will depend on the
breakdown field of a particular material or sample; yet, at least
one extremum has to exist in principle. Note also that α will
adopt a maximum if a′(T ) is positive (which is the case of
BZT) while it will possess a minimum if a′(T ) is negative.

To find the electric field that makes α maximum, we have
to solve

dα

dE = −2a′(T )

CE
(χ2 + Pmχ ′) = 0, (13)

where χ ′ = dχ/dE captures the nonlinear dielectric response
of the material, and Pm is the value of the polarization for
which α is maximum. The nonlinear response χ ′ is related to
P and χ by

a(T )χ ′ + 6bPχ2 + 3bP 2χ ′ = 0, (14)

which we obtain by taking the field derivative of both sides of
Eq. (11). From the last two relations, one can show that the
condition to have an extremum of α reduces to

P 2
m = a(T )

3b
, (15)

from which several conclusions can be immediately drawn.
First, for stiff materials, i.e., those with a(T ) 
 0, the
extremum of α will occur at relatively large value of the po-
larization and applied electric field. Similarly, if the dielectric
response is very linear, i.e., for small b > 0, the extremum of
α will also tend to occur for large values of P and E . Finally,
using a linear approximation for the polarization as a function
of field, P ∼ χE , we can write

E2
m ≈ a(T )

3bχ2
= 4a3(T )

3b
, (16)

which provides us with a useful (albeit approximate) expres-
sion for the electric field corresponding to α’s extremum. For
instance, it tells us that Em should increase with temperature
if a(T ) is enhanced with temperature (which is precisely the
case for BZT). This increase of Em with temperature is indeed
confirmed in Fig. 2 for temperatures above 200 K, and is
also consistent with the fact that, at 500 K, the maximum of α

occurs for electric fields being close to our highest investigated
values.

Moreover, the second line of Eq. (9) indicates that α =
βT ∂P 2

∂E |
T

, with β = a′(T )
2CE

. In other words, assuming that CE is
independent of temperature and electric field, and that a′(T )
is also a constant (which is, e.g., what Curie-Weiss law [36]
provides), this expression implies that the numerical data of the
MC-1 and MC-2 approaches for the EC coefficient should be
well fitted by the product of temperature and the derivative of
the square of the polarization with respect to electric field, once
rescaling this product by a constant [62,63]. Figure 2 indeed
tells us that this is the case for any temperature (especially
at and above 200 K, where we are in ergodic equilibrium
conditions), since these figures further display the results of
such fits by means of solid green curves. In other words,
one can safely use Eq. (9) to reproduce and understand the
EC coefficients numerically obtained by the indirect methods
for any temperature and field [note that the Supplemental
Material also shows that Eq. (9) can be accurately used for
the α coefficient of typical ferroelectrics, such as BaTiO3,
which further emphasizes its generality]. In particular, the
second line of Eq. (9) indicates that, for a given temperature,
the nonmonotonic and unusual behavior of α with fields
obtained by MC-1 and MC-2 should be directly related to the
dependence of ∂P 2

∂E |
T

with E . To check such an interesting
idea, Figs. 3(a)–3(d) report the square of the macroscopic
polarization as a function of electric field applied along the
[001] direction at 100, 200, 300, and 500 K, respectively. The
central inset of these figures displays the derivative of this
quantity with respect to the field, and reveals that, indeed,
∂P 2

∂E |
T

has the same trend as the indirect EC coefficient of
Fig. 2. In particular, Figs. 3(a)–3(d) reveal that α is very
small for low fields at any temperature, simply because the
square of the polarization is basically independent of electric
fields for small E [64]. Such a strong connection between α
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FIG. 3. The square of the macroscopic polarization as a function
of the applied dc electric field, at (a) 100, (b) 200, (c) 300, and
(d) 500 K. The red line represents a fit by seventh degree polynomials,
which were then used to calculate the derivative dP 2/dE that is
shown in the corresponding central inset of each panel. The other
insets of (a) show the dipolar configurations in a given (x,z) plane at
100 K, as obtained from MC simulations for different dc electric fields
(0, 1.2 × 108, and 3.0 × 108 V/m) applied along the pseudocubic
[001] direction. In these latter insets, the blue and green colors indicate
that the local dipoles are centered on Ti and Zr ions, respectively, and
the red solid lines delimit the PNRs.

and ∂P 2

∂E |
T

is reinforced when realizing that the field resulting
in a maximum of the α coefficient of the MC-1 and MC-2
methods at 100, 200, 300, and 500 K is very close to the
field at which ∂P 2

∂E |
T

is optimal at these temperatures. It is
also interesting to realize that the maximal value of the α of
the indirect methods increases by a factor of about 3 when
increasing the temperature from 100 to 300 K, while the
corresponding maximum of ∂P 2

∂E |
T

is quite similar between
100 and 300 K. Such a feature can, in fact, be understood
by the fact that the second line of Eq. (9) indicates that the
EC coefficient is directly proportional to the temperature. In
other words, increasing the temperature increases α in the
case of similar ∂P 2

∂E |
T

(note that Eq. (9) is also consistent
with the computational finding of the enhancement of α

with temperature in the ferroelectric phases of (Ba,Sr)TiO3

in Ref. [15]).

C. Microscopic insights

Let us now try to reveal the microscopic origins of the
maximum of ∂P 2

∂E |
T

at 200 and 300 K (which explains the
maximum of the indirect and direct α of these temperatures)
as well as the peak of the α obtained by the MD simulations
at 100 K [recall that, for temperatures below �130 K, BZT
is nonergodic and thus cannot be technically described by
Eq. (9)]. For that, we focus on the field evolution of the
microscopic configurations of BZT at 100 K. Some insets
of Fig. 3(a) show dipolar snapshots within a given (x,z) plane
obtained from MC simulations at 100 K for different electric

FIG. 4. The ratio of dipoles that are pointing along 〈111〉
directions having a positive z component, as a function of the
magnitude of the electric field applied along the pseudocubic [001]
direction at 100 K. Note that these 〈111〉 directions are thus away
from the [001] field’s direction.

fields. They reveal that the microscopic dipolar pattern is rather
complex and sensitive to electric fields. For instance, there are
different polar nanoregions inside which the dipoles centered
on Ti ions align along one of the eight 〈111〉 pseudocubic
directions (with this direction varying from one PNR to
another, e.g., from [111] to [111̄]), when no external field is
applied [see the left bottom inset of Fig. 3(a)]. Increasing the
electric field then leads to the local dipoles of the PNRs rotating
towards the field’s direction, as well as the formation of rather
large PNRs having local dipoles lying along the applied electric
field direction [see the bottom right inset of Fig. 3(a) for a
field of 1.2 × 108 V/m]. Finally, Fig. 3(a) further indicates
that increasing the field up to our considered maximum value
E = 3.0 × 108 V/m causes nearly all Ti-centered local dipoles
to align along the field’s direction, which can be seen as
indicative that BZT is converting from a relaxor behavior to a
normal ferroelectric [see the top right inset of Fig. 3(a)].

Interestingly, the aforementioned field-induced rearrange-
ment of the local dipoles for fields close to 1.2 × 108 V/m
generates a maximal change of the entropy, as evidenced by
the fact that Fig. 4 reveals that the fields associated with
maximal values of α obtained by the direct approach at
100 K [see Fig. 2(a)] are precisely the fields for which a
specific microscopic feature occurs: The number of dipoles
pointing along 〈111〉 pseudocubic directions for which the z

component is positive (i.e., which have a z component parallel
to the applied electric field) is maximal for these fields. This
microscopic feature was also numerically found (not shown
here) for the fields associated with the maximum values of α

at 200 and 300 K (note that BZT does not possess any PNR
at 500 K because this latter temperature is above the Burns
temperature).

D. Resulting change in temperature

Let us now concentrate on the �T change in temperature,
associated with the EC coefficient and as computed from
Eq. (1), for the four studied temperatures of 100, 200, 300,
and 500 K. Note that, unlike for 200, 300, and 500 K, this
change in temperature will not be the “direct” one for 100 K
because the system is nonergodic at this temperature, while
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Eq. (1) assumes thermodynamic equilibrium. We nevertheless
report in Fig. 1(b) the data for �T as a function of a change in
electric field �E at 100 K, along with those of 200, 300,
and 500 K, for the sake of comparison. Technically, the
�T of Eq. (1) is computed by integrating the α coefficient
calculated by the MC-1 indirect method [see Eq. (2)] from E1

to E2, with �E being the difference between the magnitude of
these two fields and always choosing E1 = 2.0 × 107 V/m
while varying E2 when changing �E . Two main features
can be seen from Fig. 1(b): (i) For any temperature, �T

is not linear with �E , as also observed near 310 K in the
Ba(Zr0.2Ti0.8)O3 material [42] exhibiting relaxor behavior and
which is in contrast with, e.g., the cases of the ferroelec-
tric Pb(Zr0.95Ti0.05)O3, Pb(Zr0.4Ti0.6)O3, (Ba0.5Sr0.5)TiO3, and
Pb(Mg,Nb)O3-PbTiO3 systems reported in Refs. [4,14,15,65];
and (ii) for any given electric field above �1.5 × 108 V/m, �T

is enhanced when the considered initial temperature increases.
Item (i) originates from the fact that α strongly depends on the
electric field and can even be nonmonotonic with E in relaxor
ferroelectrics (see Fig. 2). Item (ii) can be simply understood
by realizing that Eq. (9) provides a dependence of the EC
coefficient on temperature. Note that we also numerically
checked that our �T ’s are not directly proportional to the
power 2/3 of the electric field, except for fields above 108 V/m
at 500 K, which contrasts with the prediction of Ref. [23].
Furthermore, our MD predictions for �T at 100 K are also
given for comparison in Fig. 1(b), which demonstrates, once
again, that results from direct and indirect approaches differ
below Tm. One should also recall that atomic schemes, such
as effective Hamiltonians, typically provide an overestimation
by one order of magnitude with respect to experiments for
electric fields [66] while they tend to yield correct values for
the EC coefficient (as shown in the Supplemental Material).
Experiments are thus called for to determine by which factors
the temperatures and fields of Fig. 1(b) would have to be
rescaled in BZT (if any).

IV. SUMMARY

In summary, we combined an atomistic effective Hamil-
tonian scheme with Monte Carlo and molecular dynamics
techniques to investigate the electrocaloric effects in lead-free
BZT systems subject to electric fields of different magnitudes
and all oriented along the pseudocubic [001] direction. It is

found that, for any temperature, α exhibits a nonmonotonic
behavior with field that consists of small values at low fields,
followed by an increase up to a maximum before decreasing
for larger fields. Below the Burns temperature, this maximum
of α is demonstrated to be correlated to a very specific
microscopic feature, namely, to the largest number of dipoles
being oriented along 〈111〉 directions having a positive z

component. Finally, equalities that are derived from a simple
Landau model (including one relating α with the product
of temperature and the partial derivative of the square of
polarization) reproduce and further help to understand the
anomalous behavior of α with field and temperature in BZT,
for any temperature above Tm (note that we also found that
this model can predict EC effects in typical ferroelectrics,
such as BaTiO3, as shown in the Supplemental Material). Our
simulations also confirm that indirect and direct approaches
yield similar results of the α EC coefficient for any temperature
above the Tm temperature but differ from each other for
temperature below Tm, because of the nonergodicity adopted
by BZT at these low temperatures [7,25].

We therefore hope that our study leads to a broader
knowledge of EC effects and relaxor ferroelectrics.
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