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Bose-Hubbard model on a triangular lattice with diamond ring exchange
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Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero
temperature, a phase that is compressible with no superfluidity. Using the stochastic Green function algorithm
(SGF), we study the effect of these interactions for bosons on a two-dimensional triangular lattice. We show that
the supersolid phase that is known to exist in the ground state for a wide range of densities is rapidly destroyed as
the ring-exchange interactions are turned on. We establish the ground-state phase diagram of the system, which
is characterized by the absence of the expected Bose-liquid phase.

DOI: 10.1103/PhysRevB.94.144514

I. INTRODUCTION

A prominent direction in atomic physics is to use opti-
cally trapped quantum gases to gain insight into many-body
interacting problems. Over the last decade or so, the physics
of superfluids, Bose-Einstein condensates, and Mott insulators
have been demonstrated with 87Rb in optical traps. The physics
of frustrated systems is among the most active areas in the field
of many-body interacting systems. Ring-exchange models,
originally proposed for studies of magnetism in helium-3, have
surged recently because of the interest in the study of frustrated
spin systems and their relation with gauge theory [1,2].
In particular, the competition between ring-exchange and
conventional hopping terms has been studied intensively [3–8].
These studies were motivated by the various exotic phases that
were expected to be observed under the influence of ring-
exchange terms. Most notably the hunt for spin liquids, and
Bose-liquids—a compressible critical phase without boson
condensation—in a numerically tractable model has been a
reigning theme in the simulation of boson and spin models.

Besides the theoretical interest in possible exotic phases, the
potential of an experimental realization of boson systems with
high order ring-exchange coupling is tantalizing. Recently,
triangular lattices have been realized experimentally by using
three intersecting laser beams in a plane [9], and kagome lattice
has also been proposed [10]. Thus, this opens the avenue for the
study of ultracold atoms in frustrated lattices. In addition, the
realization of ring-exchange coupling has also been proposed
theoretically based on the resonant coupling between bosons
and a two-particle molecular state for the square lattice [11],
and the strong coupling limit of the Bose-Hubbard model for
the kagome lattice [12]. The first mechanism proposed for the
square lattice should be generalizable to the triangular lattice
provided that the molecular state can be set to reside on each
bond of the triangular lattice.

In order to elucidate the effect of ring-exchange processes
in a triangular lattice, we perform quantum Monte Carlo
simulations for the Bose-Hubbard model with a four-site
ring-exchange term with a diamond configuration, as opposed
to the bow tie configuration in a prior study [13]. The model
contains a rich phase diagram by tuning the four parameters
which adjust the hopping, the nearest neighbor repulsion, the
ring exchange, and the chemical potential. In the classical

limit, the model has a massively degenerate ground state.
Each ground-state configuration has one unsatisfied bond at
each triangular plaquette. Quantum fluctuations introduced by
the hopping destroy this degeneracy, and depending upon the
filling, either a supersolid or a superfluid phase is formed. On
the other hand, one can introduce quantum fluctuations via the
ring exchange. It has been suggested that the model in this
limit could become a spin liquid such as that of the ν = 1/2
fractional quantum Hall liquid [14]. We will demonstrate that
the spin liquid phase is preempted by the nonzero superfluid
for a very small value of hopping. The main effect of the
ring-exchange term is the suppression of the diagonal ordering
in the supersolid.

The paper is organized as follows. In Sec. II we discuss
the details of the model and the numerical method we used.
In contrast to the simulation of the standard Bose-Hubbard
model, the higher order ring exchange leads to a complicated
Hamiltonian which is particularly well suited to be solved with
the method we used—stochastic Green function. In Sec. III
we discuss the quantities we measure by identifying different
phase transitions of the model. We pay particular attention
to the calculation of the superfluid density on the triangular
lattice, which does not have orthonormal basis vectors. In
Sec. IV we provide the numerical results and the phase
diagram. Section V is the conclusion of the paper.

II. MODEL AND NUMERICAL METHOD

The model we consider consists of hard-core bosons on a
two-dimensional triangular lattice (Fig. 1). The Bravais lattice
is spanned by the basis vectors (�a1,�a2) with lengths chosen
as unity, and the reciprocal lattice is spanned by the vectors
(�b1,�b2) with lengths 4π/

√
3. The Hamiltonian takes the form

(we use periodic boundary conditions)

Ĥ = − t
∑

〈p,q〉
(a†

paq + H.c.) + V
∑

〈p,q〉
n̂pn̂q

−K
∑

�
(a†

�1a
†
�3a�2a�4 + H.c.), (1)

where a
†
p and ap are the creation and annihilation operators

of a hard-core boson on site p, and n̂p = a
†
pap is the number

operator on site p. The creation and annihilation operators
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FIG. 1. The triangular lattice and the effect of different terms of
the Hamiltonian. The usual kinetic term t allows the particles to hop
between near-neighboring sites. The ring-exchange term K performs
a correlated hopping of two particles within the same diamond. This
process is possible only if the diamond contains exactly two particles
that are either opposite first neighbors (green diamond) or second
neighbors (blue and red diamonds). The presence of a pair of first-
neighboring particles is penalized by the potential V (yellow). For
a given diamond � we label the sites in a counterclockwise fashion,
�1, �2, �3, �4, starting from one of the opposite first neighbors
(cyan diamond).

of hard-core bosons satisfy fermionic anticommutation rules
when acting on the same site, a2

p = 0, a
†2
p = 0, {ap,a

†
p} = 1,

and bosonic commutation rules when acting on different sites,
[ap,aq] = 0, [a†

p,a
†
q] = 0, [ap,a

†
q] = 0. The sums

∑
〈p,q〉 are

over all distinct pairs of neighboring sites p and q, and the sum∑
� is over all diamonds with all possible orientations (Fig. 1,

blue, green, and red). The parameter t controls the kinetic
energy, and K controls the intensity of the ring-exchange
term. Because ring-exchange processes are possible only
if the particles are nearby each other, the ring-exchange
term acts as an effective attractive potential and can lead to
instabilities [4,6]. The system is stabilized by the presence of
the repulsive potential V between first neighbors.

In order to solve the model (1) we perform quantum Monte
Carlo simulations by using the stochastic Green function
(SGF) algorithm [15] with directed updates [16]. The SGF
method allows us to perform simulations in the canonical
ensemble as well as in the grand-canonical ensemble [17].
In the following we take advantage of this flexibility. For
simulations in the grand-canonical ensemble we add the usual
term −μN̂ to the Hamiltonian (1) with N̂ = ∑

p n̂p, where the
chemical potential μ allows us to control the average number of
particles. In order to study the different phases of the system,
we measure the dimensionless superfluid density ρs . It was
recently shown [18] that the well-known formulas that express
the superfluid density as a function of the response of the free
energy to a boundary phase twist [19] or to the fluctuations
of the winding number [20] are valid only for a particular
class of Hamiltonians. In the case of the Hamiltonian (1),
it is easy to see that the ring-exchange term conserves the
center-of-mass of the system, and therefore commutes with the
second-quantized position operator. As a result, the condition
(34) of Ref. [18] is satisfied, allowing the superfluid density to

be expressed as a function of the winding number as

ρs =
〈
W2

1 + W2
2 + W1W2

〉

6tβ
, (2)

where W1 and W2 are the winding numbers measured along
�a1 and �a2, and β is the inverse temperature (see Eq. (A12)
of Ref. [18]). It is worthwhile to emphasize here that (2)
is different from the expression [20] that is sometimes
improperly applied to lattices with nonorthonormal primitive
vectors. This is due to the fact that the expression of the
Laplacian in nonorthonormal coordinates is associated with
a change of the energy scale that must be reflected in the
expression of the superfluid density, and that the nondiagonal
metric tensor results in correlations between the winding
numbers in the two primitive directions [18]. We also measure
the static structure factor S(�k) = 〈ñ(�k)†ñ(�k)〉, with

ñ(�k) = 1

L2

∑

p

(n̂p − ρ)e−i�k·�rp , (3)

where L is the linear size of the lattice and ρ = 〈N̂ 〉/L2 is the
dimensionless density of particles. The subtraction of ρ in the
above expression is meant to get rid of the Bragg peaks, that
is to say S( �K) = 0 for �K = n1 �b1 + n2 �b2 with n1,n2 integers,
and does not affect the value of S(�k �= �K). In order to capture
the ground-state properties, we use an inverse temperature
β = L/t .

III. ANALYTICAL PRELIMINARIES

We note that model (1) is particle-hole symmetric, which
allows us to restrict our study to densities ρ ∈ [0; 1

2 ]. By
substituting into (1) the creation and annihilation operators
of holes, h

†
p = ap and hp = a

†
p, it is straightforward to show

that the energy E(ρ) as a function of the density ρ satisfies

E(1 − ρ) = E(ρ) + 3V L2(1 − 2ρ). (4)

By definition, at zero temperature, we have μ(ρ) = ∂E(ρ)
L2∂ρ

, from
which we deduce

μ(1 − ρ) = 6V − μ(ρ). (5)

In particular, at half-filling, we have the exact result μ( 1
2 ) =

3V , which is independent of t and K . Since the energy of the
system with a single particle is −6t , it follows that the system
is empty for μ < −6t and completely filled for μ > 6(t + V ),
independent of the value of K .

IV. NUMERICAL RESULTS

Simulations of (1) are made difficult by (i) the high number
of nondiagonal Hamiltonian terms (six kinetic terms and
six ring-exchange terms per site), (ii) the quartic nature of
the ring-exchange term that couples four sites and affects
two worldlines at a time, and (iii) the geometry of the
ring-exchange term that introduces a competition between
the formation of pairs of first neighbors and pairs of second
neighbors. Nevertheless, we are able to simulate the model
with sizes up to 42 × 42.

Our first main result is that the ring-exchange term does
not have the expected effect. It does not destroy superfluidity,
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FIG. 2. The superfluid density ρs as a function of K/t for
V/t = 0,10 and ρ = 1

3 , 1
2 .

at least not for reasonable values of K . On the contrary,
starting from a solid phase with zero superfluid density,
the ring-exchange term breaks the solid order and restores
superfluidity as its magnitude is increased. This can be seen
in Fig. 2 which shows the superfluid density ρs as a function
of K/t in the canonical ensemble for different values of the
density ρ and the potential V/t . On the one hand, for V/t = 0,
the superfluid density decreases slightly as K increases, as well
for ρ = 1

3 as for ρ = 1
2 . On the other hand, for V/t = 10, the

superfluid density increases as the ring-exchange interactions
are turned on. We conclude that the system is always superfluid
when K is dominant, and that only a competition with V can
produce other phases. Therefore, in the remainder of this paper,
we work with the fixed potential value V/t = 10.

It is convenient to start our analysis of the competition
between V and K in the grand-canonical ensemble by looking
at the density ρ as a function of the chemical potential μ

and different values of K/t (Fig. 3). The slope of these
curves ∂ρ

∂μ
is proportional to the isothermal compressibility

κT . Thus incompressible (solid) phases are detected by the

FIG. 3. The density as a function of the chemical potential for
V/t = 10 and different values of K/t . The error bars are about the
size of the purple symbols.

FIG. 4. The solid and the supersolid phases. The solid phase
(ρ = 1

3 ) is formed by distributing a maximum number of particles
without creating pairs of first neighbors. Any attempt to dislocate
one particle (white → cyan) has an energy cost of 2V , since two
sites would have occupied first neighbors which we term links. The
supersolid phase is obtained by adding extra particles to the solid
phase (ρ > 1

3 ). The presence of an extra particle (red) is associated
with the formation of three links with a total energy of 3V . This extra
particle is unable to break the underlying solid structure, because
moving one of the extra particle’s neighbors (white → cyan) away
would destroy only one link while creating two new extra links,
resulting in an energy increase of V . However, the extra particle is
able to move freely across the solid structure, and can thus generate
winding associated with superfluidity.

presence of horizontal plateaus. The case with no ring-
exchange interactions K/t = 0 has been extensively studied
previously [21–26]. We reproduce here some results (blue
symbols) from Wessel and Troyer [26] as a starting point
of our study. In agreement with our analytical analysis,
particles appear for μ/V > −0.6 and their density increases
continuously as the chemical potential is raised. Around
μ/V 
 0.5 the density suddenly jumps and remains constant
at ρ = 1

3 , up to μ/V 
 2.4. Increasing the chemical potential
further, the density increases continuously and reaches the
value ρ = 1

2 for μ/V = 3. This is in agreement with the
previous study [26] that showed that the system undergoes
a first-order phase transition from a superfluid (μ/V � 0.5)
to a solid phase (0.5 � μ � 2.4), then a second-order phase
transition to a supersolid phase (μ/V � 2.4). The features of
the solid phase at ρ = 1

3 can be characterized as a uniform
distribution of the particles, thereby avoiding the formation
of first-neighboring pairs (Fig. 4, left). The supersolid phase
is a phase in which a fraction of the particles can evolve
freely across an underlying solid structure formed by the other
particles (Fig. 4, right). Further considerations on the structure
factor (see below) confirm this.

Before discussing the case K/t �= 0, we extend here the
previous study [26] by considering intensity plots of the
structure factor S(�k) (Fig. 5) for K/t = 0 and different values
of the chemical potential, which allow us to directly “see”
the (dis)continuous nature of the transitions. For μ/V = 0.4
the highest intensity (yellow) is small and vanishes in the
thermodynamic limit, while the regions with exactly zero
intensity (black) correspond to the locations of the Bragg
peaks. Therefore, there is no particular structure, as expected
for a superfluid phase. By increasing the chemical potential to
μ/V = 0.5, the symmetry of the structure factor suddenly
changes and peaks, which survive in the thermodynamic
limit, appear at �k = 2

3
�b1 + 1

3
�b2 = 4π

3 �a1 and symmetry related
momenta forming a honeycomb lattice, in agreement with
the expected solid phase (Fig. 4). This sudden change is
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FIG. 5. Intensity plots of the structure factor for K/t = 0 for a
24 × 24 lattice. The nature of the phase transitions can be directly
seen. The sudden change in the symmetry of S(�k) from μ/V = 0.4
to μ/V = 0.5 is the signature of a first-order transition, while the
continuous change of the intensity from μ/V = 2.4 to μ/V = 3
reveals a second-order transition.

the signature of a first-order transition. The structure factor
remains unchanged as the chemical potential is increased up to
μ/V = 2.4. Raising the chemical potential further, the density
starts to increase again but the symmetry of the structure factor
remains unchanged, with a continuous change of the intensity
that results in the peaks becoming smoothly “linked” to each
other. This continuous change of the structure factor from the
solid phase to the supersolid phase illustrates the second-order
nature of the phase transition.

We now turn on the ring-exchange interactions and consider
again the density ρ as a function of the chemical potential
μ (Fig. 3) for the case K/t = 2 (red symbols). We notice
that the width of the plateau at ρ = 1

3 , where the phase is
incompressible, decreases and extends now from μ/V 
 0.7
to μ/V 
 1.5. Also, raising the chemical potential further to
μ/V = 1.6 leads to a sudden jump of the density, suggesting

FIG. 6. Structure factor for K/t = 2 for a 24 × 24 lattice. The
sudden change in the intensity of S(�k) from μ/V = 0.6 to μ/V = 0.7
and from μ/V = 1.5 to μ/V = 1.6 is the signature of a first-order
transition.

FIG. 7. Structure factor for K/t = 4 for a 24 × 24 lattice. The
symmetry of S(�k) remains the same for all fillings, with a slight
dependence in μ of the intensity.

that the previously observed second-order phase transition
is now replaced by a first-order phase transition. Taking a
look at the structure factor confirms this scenario (Fig. 6).
Starting from the incompressible phase, 0.7 � μ/V � 1.5,
decreasing the chemical potential to μ/V = 0.6 or increasing
it to μ/V = 1.6 leads to a sudden change of the intensity
and the appearance of “links” between the peaks. Thus,
the discontinuity associated with the first-order transition is
again directly reflected in the structure factor. The finite
compressibility and the peaks in the structure factor for
densities ρ �= 1

3 suggest that the phase might be supersolid.
A finite-size scaling below shows that, at half-filling, the
supersolid phase survives only at small K/t .

Going back to Fig. 3, we analyze now the case K/t = 4
(purple symbols) for which the previously observed plateau
at ρ = 1

3 is absent. The compressibility remains finite for all
fillings, with no discontinuity in the density. A consequence
is that the width of the plateau observed at K/t < 4 can be

FIG. 8. The superfluid density and the structure factor as func-
tions of the inverse system size, for sizes up to 42 × 42 and K/t = 0.1
at half-filling. Both quantities extrapolate to a finite value in the
thermodynamic limit, which is the signature of the supersolid phase.
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FIG. 9. The superfluid density and the structure factor as func-
tions of the inverse system size, for sizes up to 42 × 42 and K/t =
0.5 at half-filling. While the superfluid density extrapolates to a finite
value in the thermodynamic limit, the structure factor decays as a
power law yielding a superfluid phase.

continuously decreased to zero by increasing K up to K/t = 4.
This suggests that the symmetry of the phase should remain the
same at all fillings, and identical to the phase present K/t = 2
and ρ > 1

3 . This is confirmed by looking at the structure factor
which shows a slow dependence of the intensity as a function of
the chemical potential, but no change in the symmetry (Fig. 7).

In order to confirm that the supersolid phase survives for
nonzero K values, it is necessary to analyze the scaling of the
superfluid density and the structure factor as the size of the
system increases. This is conveniently done in the canonical
ensemble, where we can set the density ρ constant and vary
the size of the system. Figure 8 shows ρs and S(4π/3,0) as
functions of 1/L for sizes up to 42 × 42 and K/t = 0.1 at
half-filling. The data clearly show that both the superfluid
density and the structure factor converge to finite values, which
is the signature of the supersolid phase (Fig. 4). However, for

FIG. 10. The zero-temperature phase diagram for V/t = 10. The
border (dashed line) between the supersolid and superfluid regions
is symbolic, only the point Kc on this border is obtained from QMC
simulations. The exact shape will be determined in further work.

K/t = 0.5 (Fig. 9), a log-log plot of the structure factor (inset)
reveals a power-law decay in the thermodynamic limit, where
only the superfluid density remains finite. As a result, at half-
filling, there exists a critical value Kc for the ring-exchange
parameter above which the underlying solid structure of the
supersolid phase is destroyed, leading to a phase transition to
a superfluid. By performing plots similar to Figs. 8 and 9 (not
shown), we find that Kc/t = 0.35 ± 0.05.

Finally, by performing simulations in the canonical ensem-
ble, we are able to easily determine the boundaries of the solid
phase and draw the zero-temperature phase diagram, Fig. 10.
Note that the border (dashed line) between the supersolid and
superfluid regions is symbolic, only the point Kc on this border
is obtained from QMC simulations. The exact shape will be
determined in further work.

V. CONCLUSION

We study the hard-core Bose Hubbard model on a triangular
lattice with four-site ring-exchange terms using the stochastic
Green function algorithm. We revise the results from the
simulation of the model without the ring exchange using a
corrected formula for the superfluid density on a triangular
lattice. We then explore a large range of parameters to map
out the ground-state phase diagram, and find that the system
contains three phases, superfluid, solid, and supersolid.

In the limit of zero hopping, the model has been proposed
as a candidate of a spin liquid phase with the character
of interacting bosons in the lowest Landau level. While
both the ring-exchange and hopping terms provide different
quantum fluctuations, without hopping not all configurations
are possible so the system is not ergodic at zero temperature.
So quantum Monte Carlo will not lead into a truly equilibrium
phase by the ring-exchange and the diagonal interaction terms
alone. The result depends on the initial condition of the system.
Specifically, the superfluid density or equivalently the winding
number can be shown to be zero, thus ruling out the superfluid
phase with long range off-diagonal ordering. We believe this
is not a physically admissible state at zero temperature due to
the lack of ergodicity.

We thus study the model with a finite hopping. We find that
the supersolid phase, which is known to exist in the ground
state of the K = 0 model for a wide range of densities, is
rapidly destroyed as the ring-exchange interactions are turned
on. The solid backbone of the supersolid phase contains two
particles and one particle at each triangular plaquette for 2/3
and 1/3 filling, respectively, due to the diagonal density-
density repulsion. These configurations are not compatible
with the off-diagonal ring-exchange term. The ring-exchange
term favors the oscillations between the two particles and
one particle configuration in a triangular plaquette. The off-
diagonal ring-exchange interaction disrupts the configuration
favored by the diagonal density-density interaction and thus
suppresses the solid ordering.

We establish the ground-state phase diagram of the system,
which is characterized by the absence of the Bose-liquid phase
when the hopping is nonzero. All the phases possess either
diagonal solid ordering, off-diagonal ordering with boson
condensation, or both of them.
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