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Dynamics of stress-induced domain wall motion
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Magnetic domain wall motion caused by nonuniform stress in a magnetostrictive nanowire was studied using a
semianalytical model. The study reveals that the axial stress gradient is responsible for domain wall motion, even
in the absence of an applied magnetic field or spin-polarized current, and agrees well with previous micromagnetic
calculations. Walls moving into a stress-induced energy well reach a maximum velocity that depends on the stress
gradient, before undergoing damped oscillatory motion. This model will inform the development of emerging
artificial multiferroic systems.
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Switching of magnetic nanowires often occurs via domain
wall propagation driven by an axial magnetic field,1 a spin-
polarized current,2 or a combination of the two.3,4 The
dynamic behavior of domain walls during field- and current-
driven motion has been well characterized analytically,5

micromagnetically,6 and experimentally.1–4 Wall motion is
sensitive to a wide variety of factors, including the nanowire
dimensions,7,8 anisotropy,9–11 and transverse components of
the magnetic field.12–16 Recently, studies of multiferroic
systems have shown that magnetic domain walls may be moved
without an applied magnetic field or current.17–19 Furthermore,
this may achieved with low switching energies,18 highlighting
the potential of multiferroics as low-power memory devices.
In intrinsic multiferroics, ferroelectric and magnetic domains
coexist in the same material with a collinear arrangement,
so electrical manipulation of ferroelectric domains directly
causes magnetic domain wall propagation.19 However, in
artificial multiferroics, where ferroelectric and magnetic prop-
erties occur in neighboring materials, electrical control over
magnetic domain wall motion must be driven by a different
mechanism. For example, stress generated by a piezoelectric
material may induce anisotropy in the magnetostrictive layer
of an artificial multiferroic to generate wall motion.18 Uniform
anisotropy is predicted9,11 and demonstrated10 to modify wall
dynamics, but cannot induce wall motion in the absence
of a driving field or current. Nonuniform stress-induced
anisotropy must be considered to understand the mechanism
behind the stress-induced wall motion. In this paper, we
derive general one-dimensional (1D) equations of motion for
domain walls moving through regions of nonuniform stress
and compare the solutions with the wall dynamics predicted
by micromagnetic modeling. The semianalytical solutions
provide a clear physical description of the system without
the computational effort required for micromagnetic models.

Before deriving the equations of motion, we first consider
the generation of a suitable stress profile for comparison with
the micromagnetic model. We use a 5-nm-thick, 100-nm-wide
magnetostrictive nanowire, sandwiched between a Si substrate
and a 200-nm-thick piezoelectric layer, shown in Fig. 1,
and assume perfect coupling of stress between the layers.
Above the piezoelectric are three 100-nm-wide contacts with
center-to-center separation s. The central contact (contact 2,
Fig. 1) is held at potential VC , while the outer contacts are held
at ground. To isolate the contribution of the stress-induced

anisotropy, and for comparison with previous work,18 we
model the nanowire with magnetic properties similar to those
of Permalloy (magnetocrystalline anisotropy K = 0 J m−3,
exchange constant A = 10 pJ m−1, saturation magnetization
MS = 800 kA m−1, and Gilbert damping constant α = 0.02),
but with magnetoelastic properties similar to those of bulk
Fe83Ga17 (Young’s modulus YFeGa = 100 GPa, Poisson’s ratio
νFeGa = 0.3, magnetostriction constants λs = λ100 = λ111 =
200 ppm).20,21 The piezoelectric layer is poled along the wire
length (the x axis) and has the properties of lead zirconate
titanate:22 Young’s modulus YPZT = 100 GPa, Poisson’s ratio
νPZT = 0.3, transverse strain constant d13 = − 265 × 10−12

m V−1, and extensional strain constant d33 = 585 × 10−12

m V−1. The stress tensor generated at every point in the
nanowire due to VC is calculated using the finite-element
package COMSOL.23,24 The stress tensor is composed of six
independent components σij , where i,j = x,y,z (coordinate
axes defined in Fig. 1). Components with i = j describe
the normal stresses acting along the nanowire axes, while
shear stresses are described when i �=j. Averaging each stress
component across the wire width and thickness enables the
generation of 1D stress profiles.

Figures 2(a)–2(f) summarize the change in stress with
the potential VC applied to the central contact for a fixed
contact spacing of s = 300 nm. Each stress component
has a unique spatial profile, with the relative strengths of
the different components being strongly position dependent.
Indeed, although the σxx component dominates in general
[Fig. 2(a)], the σxz component [Fig. 2(c)] dominates in the
region directly below the central contact. The σzz, σxy , and σyz

components [Figs. 2(d)–2(f)] are negligible across the wire
length. Modifications of VC generate proportional changes
in the magnitude of each stress component, but the general
form of each profile remains unchanged, reflecting the linear
response of the piezoelectric layer to an applied electric field.
On the other hand, increasing s results in stress profiles that
are broader but have lower amplitude (Fig. 3). In every case,
σxx dominates the energy landscape [Fig. 2(g)], such that the
lowest-energy magnetic domain wall position is coincident
with the minimum in σxx . For simplicity, we have considered
only the response of the piezoelectric lattice to VC and have
neglected “extrinsic” stress contributions from defects and
ferroelectric domain walls, although in a real system these
contributions can be significant.25 Stress from ferroelectric
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FIG. 1. (Color online) (a) Schematic diagram of the nanowire
(NW) sandwiched between a Si substrate and a piezoelectric layer
topped with three electrical contacts. (b) Top view of the schematic,
showing the potential configuration and contact spacing.

domain walls may be expected to superimpose additional
localized energy minima in the energy landscape, coupling
ferroelectric and magnetic domain walls and providing a
mechanism for the observed ferroelectric wall-like reversible
motion of electrically controlled magnetic domain walls in
artificial multiferroics.17

Contact
potential (V)

FIG. 2. (Color online) Effect of the potential on the central
contact, VC , on the 1D profile of each stress component σij , for ij =
(a) xx, (b) yy, (c) xz, (d) zz, (e) xy, and (f) yz. The shaded regions
in (a)–(c) indicate the positions of the three contacts (s = 300 nm).
(g) The effect of the wall position on the total energy, calculating the
stress-induced anisotropy energy using the full 3D stress map.
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FIG. 3. (Color online) The effect of the contact spacing s on the
stress profiles of (a) σxx , (b) σyy , and (c) σxz at VC = 0.5 V.

We now derive a 1D semianalytical model to help identify
the origin of stress-induced motion and then apply the stress
profiles calculated in Fig. 2 to compare the results with the
equivalent micromagnetic case.18 The structure of a domain
wall in a nanowire is defined by sin θ = (cosh u)−1, cos θ =
− tanh u, u = (x − q)/�, and dθ/dx = sin θ/�, where θ is
the polar magnetization angle (Fig. 1), q is the x position of
the domain wall center, and � is the wall width parameter.5

We define the width of the domain wall as π� such that at
the edge of the wall x = q ± π�/2 and θ ≈ 0 or π . Following
Slonczewski,26 we solve the Landau-Lifshitz-Gilbert equation
for a domain wall under the influence of an axial field Hx , but
include an additional generalized term to describe a spatially
varying energy density (see Appendix A for details):

ϕ̇ = 1

2(1 + α2)
[2γ0Hx + αγ0MS(Nz − Ny) sin 2ϕ + αf + g],

(1)

q̇ = �

2α
[2γ0Hx + g − 2ϕ̇], (2)

f =
∫ q+π�/2

q−π�/2

−γ0

μ0MS

δWk

δϕ

1

�
dx, (3)

g =
∫ q+π�/2

q−π�/2

γ0

μ0MS

δWk

δθ

sin θ

�
dx, (4)

where ϕ is the azimuthal angle of the magnetization in the
domain wall (Fig. 1), γ0 is the gyromagnetic ratio, μ0 is the
permeability of free space, Ny and Nz are demagnetization
factors in the y and z directions, δ indicates a functional
derivative, q̇ is the wall velocity, and ϕ̇ is the azimuthal
angular velocity. Although we shall use Wk to describe the
stress-induced energy density, the equations are general, so
Eqs. (3) and (4) could describe any energy term in addition
to the Zeeman and demagnetization energies. In particular,
the model described here may be readily adapted to describe
any spatially varying anisotropy. Equations (3) and (4) are
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integrated over the width of the domain wall, so spatial
variations of Wk beyond the wall boundaries have no effect
on the wall behavior.

In order to achieve a generalized solution for any stress
distribution, we make an assumption that on the length scale
of the wall width each stress component σij depends linearly
on the distance from the wall center. For any position x along
the wire, this gives σij = σ̃ij + σ̃ ′

ij (x − q), where σ̃ij is the
ij stress component at the center of the domain wall and
σ̃ ′

ij is the corresponding stress gradient. When integrating
this numerically, the values of σ̃ij and σ̃ ′

ij are recalculated
after each time step from known stress profiles (e.g., Fig. 2),
allowing the stress and gradient to evolve as the wall position
changes. Provided the stress changes are small over the length
scale of the wall width, this locally linear approximation
provides a reasonable first-order approximation of the effect
of nonuniform stress on a domain wall at any given position,
while allowing arbitrary stress profiles to be described.

The stress-induced energy density in a cubic magnetostric-
tive system is given by

Wk = − 3
2λs

(
σxxα

2
x + σyyα

2
y + σzzα

2
z + 2σxyαxαy

+ 2σyzαyαz + 2σxzαxαz

)
, (5)

where αx = cos θ , αy = sin θ sin ϕ, and αz = sin θ cos ϕ. Sub-
stituting Eq. (5) into Eqs. (3) and (4) and integrating by parts
(see Appendix B for details), we obtain

f = 3γ0λs

μ0MS

[π�(σ̃ ′
xz sin ϕ − σ̃ ′

xy cos ϕ)

+ (σ̃yy − σ̃zz) sin 2ϕ + 2σ̃yz cos 2ϕ], (6)

g = −3γ0λs

2μ0MS

π�σ̃ ′
xx, (7)

which are substituted into Eqs. (1) and (2) to describe
the equations of the wall motion. The domain wall width
parameter, derived in Appendix C, is given by

� =
√

A
1
2μ0M

2
S (Ny sin2 ϕ + Nz cos2 ϕ) − 3

2λs(σ̃yy sin2 ϕ + σ̃zz cos2 ϕ + σ̃yz sin 2ϕ)
. (8)

The stress components at the center of the wall (σ̃yy , σ̃zz, and
σ̃yz) introduce anisotropy terms into the equations of motion,
as in the case of uniform stress.11 On the other hand, the stress
gradients σ̃ ′

xx , σ̃ ′
xy, and σ̃ ′

xz result in terms that affect the wall
velocity and azimuthal angle in a similar fashion to applied
fields (Hx , Hy , and Hz, respectively). There are, however,
important differences between the stress gradient terms and
true fields: the stress gradients do not affect the wall width or
cause domain canting,12 so the magnetization always rotates
by 180◦ across the wall.

If ϕ̇ = 0, the stress-induced wall velocity, found from
Eq. (2) when Hx = 0, becomes constant at q̇ = �g/2α.
Using Eq. (1), the Walker breakdown field can be generalized
to Hw + 0.5gw = −0.5αMS(Nz − Ny) sin 2ϕw − 0.5αfw/γ0,
where the w subscripts indicate that the quantities are evaluated
at the cusp of Walker breakdown, when dϕ̇/dϕ = ϕ̇ = 0.
However, as f and g may change with wall position, the
conditions for these extreme cases may not necessarily be
satisfied for a significant period of the wall motion. Therefore
wall behavior under specific stress profiles must be considered.

Using the stress profiles when VC = 0.5 V and s = 300 nm
(Fig. 2), a semianalytical solution (SA1) to the equations of
motion can be found. Figure 4 shows a comparison between the
previous micromagnetically calculated wall velocity profile18

and the velocities found using SA1 and a modified version
of the semianalytical model SA2 (described below). All plots
show damped oscillations in the wall velocity as the wall moves
around the energy minimum [Fig. 4(a)]. The oscillations are
not due to Walker breakdown, but instead are due to opposite
σ̃ ′

xx occurring on either side of the energy minimum.
Close to the energy minimum the spatial dependence

of the wall velocity predicted by SA1 matches with the

micromagnetic model [Fig. 4(b)]. However, the peak velocity
predicted by SA1 is much smaller and the period of the
oscillations much longer than occurs in the micromagnetic
model. One reason for this discrepancy is that 1D models tend
to underpredict the wall velocity,8 as the analytical wall width

FIG. 4. (Color online) (a) Temporal and (b) spatial evolution of
the wall velocity calculated using the micromagnetic (μmag) and
semianalytical (SA1 and SA2) models when s = 300 nm and VC =
0.5 V. The shaded regions in (b) show the positions of the electrical
contacts.
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parameter is usually smaller than the average micromagnetic
equivalent. In this system, where the spatial position feeds back
to the factors affecting the wall dynamics, the underprediction
of wall velocity leads to large differences between the wall
oscillations predicted by the two models. Comparison between
the micromagnetic and analytical wall profiles in the absence
of stress suggests that the micromagnetic wall width parameter
is a factor of 1.78 larger than suggested by Eq. (8). If
this scaling factor to � is included in the semianalytical
model (SA2), there is excellent agreement between the wall
oscillations of the micromagnetic and semianalytical models
(Fig. 4). In addition, the magnetic fields needed to depin
the wall past the energy maximum, 3.1 kA m−1 in SA1
and 4.8 kA m−1 in SA2 (not shown), are close to the
3.2 kA m−1 calculated micromagnetically.18 This suggests that
the simplifications made in the semianalytical model capture
the essential physics of the system. Due to the close agreement
with the micromagnetic model, we will use the SA2 model to
examine the effects of nonuniform stress on the wall motion.

For all the s = 300 nm models, the final resting position
of the wall is around 165 nm from the center of contact 2
(x = − 165 nm). As the initial position of the wall was
165 nm from the center of contact 1 (x = − 465 nm), the
final position relative to contact 2 is exactly the same as the
initial position relative to contact 1. Therefore, initializing
the wall at x = − 465 nm ensures that the model describes
motion that could be sustained, using additional contacts to
propagate the wall down the wire in identical steps of distance
equal to s.18 Similarly, motion in models with s = 400 and
500 nm occurred in steps of s when the initial wall position
was respectively 215 nm (x = − 615 nm) and 265 nm (x =
− 765 nm) from the center of contact 1.

An increase in VC from 0.25 to 1 V progressively increases
the electric field and stress gradient (Fig. 2) between the
contacts on the piezoelectric, enhancing the amplitude and
the frequency of the oscillations in wall velocity [Fig. 5(a)].
At each VC , motion is composed of an initial phase, where
the wall moves a significant distance from the starting point to
the first turning point, and an oscillatory phase, during which
the wall settles to the energy minimum position [Fig. 5(b)]. As
VC increases, the walls travel further during the initial motion,
while the time in the initial phase, ti , decreases. The oscillatory
phase follows the equation of a damped oscillator. The time for
the oscillations to decay by a factor of e−1, τ , is determined by
the anisotropy of the system, in this case dominated by shape
rather than magnetostriction:

τ = 2(1 + α2)

αγ0MS(Nz − Ny)
. (9)

Figure 5(b) shows that while the frequency of the oscilla-
tions increases with VC , the envelope of the exponential decay
is similar for all VC , consistent with Eq. (9). However, as the
initial amplitude of the oscillations, defined by the stopping
position of the initial motion, increases with higher VC , the
time to damp the position oscillations to within ± 5 nm, td ,
increases proportionally. Due to the competing effect of VC

on ti and td , the total time of wall motion, tstep = ti +
td , is similar for VC = 0.25, 0.5, and 1 V (3.43, 3.19, and
3.48 ns, respectively). To compare the motion of walls moving

FIG. 5. (Color online) The temporal evolution of (a) the wall
velocity and (b) the wall position calculated using SA2 for VC =
0.25, 0.5, and 1 V when s = 300 nm. Also shown is the effect of (c)
VC and (d) s on the average velocity 〈v〉 for stepwise motion over a
distance equal to the contact spacing.

under different conditions, we use the propagation distance (s)
and tstep to define the average velocity, 〈v〉, of the stepwise
motion. 〈v〉 is approximately constant at ∼90 m/s for most
voltages applied [Fig. 5(c)]. A reduced average velocity is
seen only for the smallest VC (=0.05 V), where the initial
motion was so slow that the wall had not even reached the
minimum energy position by the time oscillations at higher
VC had damped down. On the other hand, decreasing the
electric field by increasing s results in slower initial motion,
but the ringing-down time remains constant at around 2 ns
(Fig. 6). The overall dependence of the average velocity on s

is nonlinear, with 〈v〉 increasing slightly from 94 to 103 m/s
between s = 300 and 400 nm, but then decreasing to 71 m/s at
s = 500 nm [Fig. 5(d)]. Different wall velocities occur when
VC = 0.5 V, s = 500 nm and VC = 0.25 V, s = 300 nm, even
though the magnitude of the electric field is the same in each
case,27 highlighting the effect of the electric field distribution
on the stress generated at the nanowire.

In conclusion, a semianalytical model was derived to
describe the motion of a domain wall in a magnetostrictive
wire under a nonuniform stress. Stress-induced motion is
driven by the stress gradient along the direction of propagation.
The model is valid for a general stress profile in which the
change in stress across the wall width is approximately linear,
under the condition that the stress-induced anisotropy never
overcomes the shape anisotropy of the wire. For comparisons
with previous micromagnetic modeling,18 we calculated the
stress generated by a piezoelectric material contacted by three
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FIG. 6. (Color online) The change in wall position over time
under VC = 0.5 V when s = (a) 300, (b) 400, and (c) 500 nm. The
initial position of each wall was chosen so that the wall moves a total
distance s during the stepwise motion.

electrodes, spaced a distance s along the wire length, with
the outer electrodes held at ground and the center electrode at
potential VC . The semianalytical and micromagnetic models
were in good agreement, showing that walls can be moved in
steps of s along the wire. Characteristically, the steps consist
of an initial wall motion toward the central electrode, followed
by damped oscillations about the energy minimum position
until the wall is stationary. Both the magnitude and spatial
distribution of the electric field applied to the piezoelectric,
controlled by VC and s, affect the velocity during the stepwise
motion. However, the average velocity of the step is limited
to around 100 m/s, due to interplay between the wall velocity
during the initial phase of motion and the ringing-down time.
As the wall velocity is determined primarily by the axial stress
gradient, faster wall velocities could be achieved by tailoring
the stress profile to enhance the gradient during the initial
motion, but ensure that the wall encounters smaller gradients
during the oscillatory phase. Alternatively, it may be possible
to change VC while the wall is still in motion, dynamically
switching the stress profile to suppress ringing, enhance the
wall velocity, and extend the distance traveled.

APPENDIX A: THE GENERAL SOLUTION TO THE
LANDAU-LIFSHITZ-GILBERT EQUATION

Following Slonczewski,26 the Landau-Lifshitz-Gilbert
equation may be written

	̇m = − γ0

μ0MS

	T + α( 	m × 	̇m), (A1)

where m is the normalized magnetization and T is the torque
due to the effective field. In spherical polar coordinates,

Eq. (A1) becomes

θ̇ = − γ0

μ0MS

1

sin θ

δW

δϕ
− α sin θϕ̇, (A2)

sin θϕ̇ = γ0

μ0MS

δW

δθ
+ αθ̇, (A3)

where W is the total energy density. The functional derivatives
operate as

δ

δθ
= ∂

∂θ
− ∇ · ∂

∂ (∇θ)
.

From the equations of the domain wall structure we have

θ̇ = − sin θ

�
q̇, (A4)

dθ

dx
= sin θ

�
. (A5)

Substituting Eq. (A4) into Eqs. (A2) and (A3) and integrating
over the domain wall with respect to θ ,we obtain

−2
q̇

�
=

∫ π

0
− γ0

μ0MS

1

sin θ

δW

δϕ
dθ − 2αϕ̇,

2ϕ̇ =
∫ π

0

γ0

μ0MS

δW

δθ
dθ − 2α

q̇

�
.

Rearrangement of these simultaneous equations gives

ϕ̇ = 1

2(1 + α2)

(∫ π

0

γ0

μ0MS

δW

δθ
dθ

− α

∫ π

0

γ0

μ0MS

1

sin θ

δW

δϕ
dθ

)
, (A6)

q̇ = �

2α

[∫ π

0

γ0

μ0MS

δW

δθ
dθ − 2ϕ̇

]
. (A7)

W is the summation of the exchange, demagnetization,
Zeeman, and Wk energy densities. The exchange, demagne-
tization, and Zeeman energy densities can be evaluated in
Eqs. (A6) and (A7) to derive the standard 1D model of domain
wall motion with an additional contribution from Wk that keeps
the solution general:

ϕ̇ = 1

2(1 + α2)

(
2γ0Hx + αγ0MS(Nz − Ny) sin 2ϕ

−α

∫ π

0

γ0

μ0MS

1

sin θ

δWk

δϕ
dθ +

∫ π

0

γ0

μ0MS

δWk

δθ
dθ

)
,

(A8)

q̇ = �

2α

[
2γ0Hx +

∫ π

0

γ0

μ0MS

δWk

δθ
dθ − 2ϕ̇

]
. (A9)

Since we wish to solve for a position-dependent Wk , it is
necessary to use Eq. (A5) to change the integration variables
to x. For a head-to-head wall, the wall boundary is defined by

θ = 0, x = q − π�/2,
(A10)

θ = π, x = q + π�/2,

where q is the position of the wall center and π� is the width
of the domain wall. Using Eq. (A10), Eqs. (A8) and (A9)
become Eqs. (1)–(4) in the main text.
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APPENDIX B: DEDUCING f AND g FOR Wk

GIVEN BY EQ. (5)

For brevity, Eq. (5) may be rewritten

Wk = −3

2
λsσxx + μ0MS

γ0
a sin2 θ − μ0MS

γ0
b sin 2θ, (B1)

where

a = 3

2

λsγ0

μ0MS

(σxx − σyy sin2 ϕ − σzz cos2 ϕ − σyz sin 2ϕ),

(B2)

b = 3

2

λsγ0

μ0MS

(σxy sin ϕ + σxz cos ϕ). (B3)

Note that a and b are x dependent, since σij = σ̃ij + σ̃ ′
ij (x −

q). As dϕ/dx = 0, we also have

a′ = da

dx
= 3

2

γ0

μ0MS

(σ̃ ′
xx − σ̃ ′

yy sin2 ϕ

− σ̃ ′
zz cos2 ϕ − σ̃ ′

yz sin 2ϕ), (B4)

b′ = db

dx
= 3

2

γ0

μ0MS

(σ̃ ′
xy sin ϕ + σ̃ ′

xz cos ϕ), (B5)

d

dx

(
∂a

∂ϕ

)
= da′

dϕ
,

d

dx

(
∂b

∂ϕ

)
= db′

dϕ
, (B6)

which are independent of x and θ . It is also useful to note that
by the chain rule

∂σij

∂θ
= σ̃ ′

ij

dx

dθ
,

∂a

∂θ
= a′ dx

dθ
= a′ �

sin θ
,

(B7)

and
∂b

∂θ
= b′ dx

dθ
= b′ �

sin θ
.

To find f , we substitute Eq. (B1) into Eq. (3) and integrate
by parts, making use of the relations in Eq. (B6):

f =
∫ q+π�/2

q−π�/2
− ∂a

∂ϕ

sin2 θ

�
+ ∂b

∂ϕ

sin 2θ

�
dx

=
[
− ∂a

∂ϕ

(∫
sin2 θ

�
dx

)
+ ∂b

∂ϕ

(∫
sin 2θ

�
dx

)]q+π�/2

q−π�/2

−
∫ q+π�/2

q−π�/2
−∂a′

∂ϕ

(∫
sin2 θ

�
dx

)
+ ∂b′

∂ϕ

(∫
sin 2θ

�
dx

)
dx.

Using Eq. (A5), the remaining integrals can be evaluated by a
change of variables:

f =
[
− ∂a

∂ϕ

(∫
sin θdθ

)
+ ∂b

∂ϕ

(∫
2 cos θdθ

)]q+π�/2

q−π�/2

−
∫ π

0
−∂a′

∂ϕ

(∫
sin θdθ

)
�

sin θ

+ ∂b′

∂ϕ

(∫
2 cos θdθ

)
�

sin θ
dθ

=
[

∂a

∂ϕ
cos θ + 2

∂b

∂ϕ
sin θ

]q+π�/2

q−π�/2

−
[

2�
∂b′

∂ϕ
θ

]π

0

.

Using Eq. (A10) to evaluate the trigonometric terms and
substituting in Eq. (B2), this gives Eq. (6) of the main text.
To find g, we substitute Eq. (B1) into Eq. (4). Using the
relations in Eqs. (A5) and (B7) we have

g =
∫ q+π�/2

q−π�/2
−3

2

λsγ0

μ0MS

σ̃ ′
xx + a′ sin2 θ − b′ sin 2θ

+
(

a
sin θ

�
sin 2θ − 2b

sin θ

�
cos 2θ

)
dx. (B8)

The term in parentheses in Eq. (B8) contains a mixture of
x- and θ -dependent variables, so must be integrated by parts:

∫ q+π�/2

q−π�/2
a

sin θ

�
sin 2θ − 2b

sin θ

�
cos 2θdx

=
[
a

(∫
sin θ

�
sin 2θdx

)
−2b

(∫
sin θ

�
cos 2θdx

)]q + π�/2

q − π�/2

−
∫ q+π�/2

q−π�/2
a′

(∫
sin θ

�
sin 2θdx

)
−2b′

(∫
sin θ

�
cos 2θdx

)
dx,

=
[
a

(∫
sin 2θdθ

)
− 2b

(∫
cos 2θdθ

)]q+π�/2

q−π�/2

−
∫ q+π�/2

q−π�/2
a′

(∫
sin 2θdθ

)
− 2b′

(∫
cos 2θdθ

)
dx

=
[
a

(
sin2 θ − 1

2

)
− b sin 2θ

]q+π�/2

q−π�/2

−
∫ q+π�/2

q−π�/2
a′

(
sin2 θ − 1

2

)
− 2b′ sin 2θ dx (B9)

where the integrals in parentheses have been solved using a change of variables. Inserting Eq. (B9) into Eq. (B8) and evaluating
the remaining integrals gives

g =
[
−3

2

λsγ0

μ0MS

σ̃ ′
xxx + a

(
sin2 θ − 1

2

)
− b sin 2θ + a′

2
x

]q+π�/2

q−π�/2

.

Hence using Eq. (A10), we find Eq. (7) of the main text.
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APPENDIX C: THE DOMAIN WALL WIDTH PARAMETER

The magnetostriction energy is defined by Eq. (5) in the
main text, and the exchange and demagnetization energies by

Wex = A(∇θ )2, (C1)

Wd = μ0M
2
S

2

(
Nyα

2
y + Nzα

2
z

)
, (C2)

where αx = cos θ , αy = sin θ sin ϕ, and αz = sin θ cos ϕ. Min-
imization of the energy density with respect to θ gives

δ(Wd + Wex + Wk)

δθ
= 0 = ∂

∂θ
(Wd + Wk) − ∇ · ∂Wex

∂(∇θ)
,

δ(Wd + Wex + Wk)

δθ
= ∂

∂θ
(Wd + Wk) − 2A∇2θ = 0.

(C3)

Using the identity d
dx

[(∇θ )2] = 2 dθ
dx

∇2θ , Eq. (C3) can be
multiplied by dθ/dx and integrated with respect to x to give

Wd + Wk − A

(
dθ

dx

)2

= 0. (C4)

Substituting in Eqs. (A5), (C2), and (5), evaluating at the wall
center (x = q, θ = π/2), and rearranging gives Eq. (8) in the
main text.
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