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An approach is presented for theoretical calculations of the Debye-Waller factors in x-ray absorption and
related spectra. These damping factors are represented in terms of the cumulant expansion up to third order.
They account respectively for the net thermal expansion ��1��T�, the mean-square relative displacements �2�T�,
and the asymmetry of the pair distribution function ��3��T�. Similarly, we obtain Debye-Waller factors for x-ray
and neutron scattering in terms of the mean-square vibrational amplitudes u2�T�. Our method is based on
density functional theory calculations of the dynamical matrix, together with an efficient Lanczos algorithm for
projected phonon spectra within the quasiharmonic approximation. Because of the anharmonicity in the inter-
atomic forces, the results are highly sensitive to variations in the equilibrium lattice constants, and hence to the
choice of exchange-correlation potential. In order to treat this sensitivity, we introduce two prescriptions: one
based on the local density approximation, and a second based on a modified generalized gradient approxima-
tion. Illustrative results for the leading cumulants are presented for several materials and compared with
experiment and with correlated Einstein and Debye models. We also obtain Born-von Karman parameters and
corrections due to perpendicular vibrations.
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I. INTRODUCTION

Thermal vibrations and disorder in x-ray absorption spec-
tra �XAS� and related spectroscopies give rise to Debye-
Waller �DW� factors varying as exp�−W�T��, where W�T�
�2k2�2�T� and �2�T� is the mean square relative displace-
ment �MSRD� of a given multiple-scattering �MS� path.1

These Debye-Waller factors damp the spectra with respect to
increasing temperature T and wave number k �or energy�,
and account for the observation that the x-ray absorption fine
structure �XAFS�, “melts” with increasing temperature.2

Identical DW factors apply to related spectroscopies which
can be described by a multiple-scattering path expansion,
such as extended electron energy loss fine structure �EX-
ELFS�. The XAFS DW factor is analogous to that for x-ray
and neutron diffraction or the Mößbauer effect, where
W�T�= �1/2�k2u2�T�. The difference is that the XAFS DW
factor refers to correlated averages over relative displace-

ments, e.g., �2= ���uR−u0� · R̂�2� for the MSRD, while that
for x-ray and neutron diffraction refers to the mean-square

displacements u2�T�= ��u · R̂�2� of a given atom. Due to their
exponential damping, accurate DW factors are crucial to a
quantitative treatment of x-ray absorption spectra. Conse-
quently, the lack of precise DW factors has been one of the
biggest limitations to accurate structure determinations �e.g.,
coordination number and interatomic distances� from XAFS
experiment.

Because of the difficulty of calculating the vibrational dis-
tribution function from first principles, XAFS DW factors
have, heretofore, been fitted to experimental data or esti-
mated semiempirically, e.g., from correlated Einstein and
Debye models.3,4 However, these approaches are unsatisfac-
tory for several reasons. First, there are typically many more
independent DW factors in the XAFS MS path expansion

than can be fit reliably to the available data. Second, the
semiempirical models require separate fits to appropriate De-
bye or Einstein temperatures for each multiple-scattering
path. And third, these models typically ignore anisotropic
contributions, and hence do not capture the detailed structure
of the phonon spectra and associated DW factors.

To address these problems, we introduce here first prin-
ciples procedures for calculations of the Debye-Waller fac-
tors in XAS and related spectra. Our approach is based on
density functional theory �DFT� calculations of the dynami-
cal matrix, together with an efficient Lanczos algorithm for
the projected phonon spectra.5,6 DFT calculations of crystal-
lographic Debye-Waller factors and other thermodynamic
quantities have been carried out previously using modern
electronic structure codes,7–9 and our work here builds on
these developments, with particular emphasis on applications
to XAS.

Due to intrinsic anharmonicity in the interatomic forces,
the behavior of the DW factors is extremely sensitive to the
equilibrium lattice constant a. For example, we find that �2

varies roughly as a6�, where �=−d ln �̄ /d ln V is the mean
Grüneisen parameter which is typically about 2 for fcc met-
als, and �̄ refers to the mean phonon frequency. Conse-
quently �2 is also very sensitive to the choice of the
exchange-correlation potential in the DFT, since a 1% error
in lattice constant yields an error of 6��12% in �2. As a
result, relatively small errors in the lattice constant predicted
by the local density approximation �LDA� which tends to
overbind, or the generalized gradient approximation �GGA�
which tends to underbind, become greatly magnified10 in
DW calculations.

In order to treat this sensitivity and stabilize the calcula-
tions we have developed two prescriptions for ab initio cal-
culations of DW factors based on DFT calculations with �I�
the conventional LDA and �II� a modified-GGA �termed
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hGGA� described below. For comparison we also present
selected results with a conventional GGA, with the corre-
lated Einstein and Debye models, and with an empirical
model based on the Born–von Karman parameters obtained
from fits to phonon spectra. Detailed results are presented for
a number of fcc and diamond structures.

II. FORMALISM

A. Cumulants

In this section we outline the formalism used in our ap-
proach. Physically, the DW factors in XAS and related spec-
tra �EXELFS, x-ray Raman spectra, etc.� arise from a ther-
mal and configurational average of the spectra ���E�� over
the pair �or MS path length� distribution function, where
��E� is the x-ray absorption coefficient in the absence of
disorder. The effects of disorder and vibrations are additive,
but since the factors due to configurational disorder are de-
pendent on sample history and preparation, in this paper we
focus only on the thermal contribution. The effect of the
vibrations on the normalized x-ray absorption fine structure
��k�= ��−�0� /�0 is dominated by the average over the os-
cillatory behavior �R�k��sin�2kR+�� of each path in the
multiple-scattering �MS� path expansion. Thus these DW
factors depend only on the path-length distribution function,
and hence are the same for any spectroscopy which can be
described by the MS path expansion. If the disorder is not
too large the average can be expressed in terms of the cumu-
lant expansion1,11

�ei2kr� � e2ikR0e−W�T�, �1�

W�T� = − 	
n=1

�
�2ik�n

n!
��n��T� , �2�

where r is the instantaneous bond length or relative displace-
ment, R0 the equilibrium length in the absence of vibrations,
and ��n��T� the nth cumulant average. For multiple-scattering
paths, this length refers to half the total MS path length. The
dominant effect on XAFS amplitudes comes from the lead-
ing exponential decay factor W�T��2k2�2�T�. The expres-
sions for the cumulants simplify when expressed with re-
spect to the mean,1 and hence �2 is given by the MSRD

��2� = ��r − r̄�2� � �2�T� . �3�

The imaginary terms in W�T� contributes to the XAFS phase.
The leading contribution is the thermal expansion which
comes from the first cumulant ��1��T�

��1� = �r − R0� . �4�

Thus, the mean bond length between atoms at the origin and
site R is �r�� r̄=R0+��1��T�. Following the analysis of For-
nasini et al.12 it is convenient to express the instantaneous
relative displacement vector in terms of displacements paral-
lel and perpendicular to the bond 0−R, i.e., 	u=uR−u0
=	u
 +	u�. Then the first cumulant up to terms quadratic in
the relative displacements is given by

��1� = �	u
 +
	u�

2

2R
� � �


�1� + ��
�1�. �5�

The first term �

�1� corresponds to the lattice expansion as

measured in x-ray and neutron diffraction. Thus vibrations
perpendicular to a given bond lead to an increase in the mean
expansion observed in XAFS compared to that in crystallog-
raphy

��
�1� =

�
	u�
2�
2R0

�
��

2

2R0
. �6�

We have found �see Appendix� that the mean square perpen-
dicular displacement �MSPD� ��

2 and the MSRD �2 are are
closely related and that ��

2 can be estimated from �2 using
lattice dynamical models.

Next, the skew of the distribution, which is defined by the
third cumulant ��3��T�, contributes a negative phase shift,
and hence the mean distance obtained in fits to XAFS ex-
periment is typically shorter than that obtained from the first
cumulant alone.1 Here

��3� = ��r − r̄�3� . �7�

As emphasized above, an accurate account of the effects of
anharmonicity is key to a quantitative treatment of these DW
factors over a broad range of temperatures. The effects of
anharmonicity are illustrated in Fig. 1, which shows the
strong variation in the mean phonon frequency 
̄= �̄ /2� vs
small variations in lattice constant as calculated using vari-
ous models described below.

The thermal averages involved in the calculation of the
cumulants can be expressed in terms of the projected vibra-
tional density of states �VDOS� �R���.5,6,14 For example, the
MSRD �2 for a given path R is given by the Debye integral
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FIG. 1. Mean frequency 
̄ of the VDOS projected along the
nearest-neighbor single scattering path of Cu, obtained from the
first Lanczos iteration. The vertical line indicates the experimental
lattice constant at 298 K while the horizontal line shows the Ein-
stein frequency obtained from the experimentally determined DW
factor. The Born-von Karman parameters for Cu at 298 K were
taken from Ref. 13.
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�R
2�T� =




2�R
�

0

� 1

�
coth��
�

2
��R���d� , �8�

where �R is the reduced mass associated with the path, �
=1/kBT, and �R��� is the vibrational density of states pro-
jected on R. In the following, the path index subscript R is
suppressed unless needed for clarity.

The first cumulant ��1� is generally path dependent and
reflects the anharmonic behavior of a system. For mono-
atomic systems, this quantity is closely related to the net
thermal expansion 	a=a�T�−a0, which can be obtained by
minimizing the vibrational free energy F�a ,T�. Within the
quasiharmonic approximation, F�a ,T� is given by a sum
over the internal energy E�a� and the vibrational free energy
per atom

F�a,T� = E�a� + 3kBT�
0

�

d� ln�2 sinh��
�

2
���a��� ,

�9�

where T is the temperature, �a��� is the total VDOS, and we
have assumed cubic symmetry for simplicity.

Finally in comparisons with experiment, it is important to
recognize that the the position-dependent XAFS amplitude
factors exp�−2R /�� /R2, where � is the EXAFS mean-free-
path, give rise to an effective radial distribution function12

g̃�R�=g�R�exp�−2R /�� /R2 for the cumulant expansion
which is slightly modified from the real radial distribution
function g�R�. As a result the apparent thermal expansion
observed in XAFS is slightly shifted from ��1� by the quan-
tity

	��1� = −
2

R
�1 +

R

�
��2. �10�

This correction is often taken into account in XAFS analysis
routines, and is included in the experimental results dis-
cussed here.12 Note also that the contributions �

�

�1� in Eq. �6�
and 	��1� in Eq. �10� are both of the same order of magni-
tude and partially cancel.

B. Lanczos algorithm

The VDOS �R��� has often been approximated using Ein-
stein or Debye models with empirical Einstein or Debye tem-
peratures. Although these models are quite useful, especially
for isotropic systems such as metals without highly direc-
tional bonds, their limitations are well known.14,15 To over-
come some of these limitations Poiarkova and Rehr5,14 pro-
posed a method in which the VDOS is calculated from the
imaginary part of the lattice dynamical Green’s function

�R��� = −
2�

�
Im�0� 1

�2 − D + i�
�0� . �11�

Here 
0� is a Lanczos seed vector representing a normalized,
mass-weighted initial displacement of the atoms along the
multiple-scattering path R, and D is the dynamical matrix of
force constants

Djl�,j�l�� = �MjMj��
−1/2 �2E�a�

�ujl��uj�l��

, �12�

where ujl� is the �= �x ,y ,z� Cartesian displacement of atom
j in unit cell l and Mj is the mass of atom j, and where E�a�
is the internal energy of the system evaluated at the lattice
constant a�T�. Thus, our approach takes into account the
main effects of anharmonicity in terms of force constants
that depend parametrically on temperature.

Efficient calculations of the lattice dynamical Green’s
function can be accomplished using a continued fraction rep-
resentation, with parameters obtained with the iterative
Lanczos algorithm.16 This yields a many-pole representation
for the VDOS which is well suited for accurate spectral in-
tegrations. The first step in the Lanczos algorithm corre-
sponds to a correlated Einstein model

�R = ��� − �̄� , �13�

with frequency �̄ corresponding to the rms average over the
projected phonon spectra ���� in Eq. �11�,

�̄2 = �0
D�R�
0� . �14�

However, the most appropriate choice for an Einstein fre-
quency depends on the physical quantity being calculated.
For example, for the MSRD the Einstein frequency is deter-
mined by the inverse second moment of the VDOS rather
than �̄, as discussed below. Poiarkova et al. truncated the
continued fraction at the second tier �i.e., second Lanczos
iteration�, which is usually adequate to converge the results
to about 10%. Subsequently Krappe and Rossner6 showed
that at least six Lanczos iterations are required to achieve
convergence to within 1%. Thus the Lanczos algorithm pro-
vides an efficient and accurate procedure for calculating MS
path-dependent DW factors from Eq. �8�.

The main difficulty in implementing the Lanczos algo-
rithm lies in obtaining an accurate model for the dynamical
matrix �or force constants� D for a given system. Although
semiempirical estimates of interatomic force constants or
Born–von Karman parameters are sometimes available, their
temperature dependence limits their accuracy and generality.
Similarly, simple models for the vibrational distribution
function �e.g., Einstein and Debye� generally ignore aniso-
tropic behavior. One of the main aims in this paper is to
develop a first principles approach that allows us to calculate
the force constants for various systems using DFT. In addi-
tion, we have extended the Lanczos algorithm described
above to several other cases by generalizing the Lanczos
seed state 
0�. This allows us to calculate the total vibrational
density of states, the vibrational free energy, thermal expan-
sion, the mean square atomic displacements u2�T� in crystal-
lographic Debye-Waller factors.17 In addition, we calculate
��

2 , which yields the perpendicular motion contribution to
the DW factor of Eq. �8�, and estimates of the third cumu-
lant. Representative results for the VDOS calculated by this
method are illustrated in Fig. 2.
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C. Correlated Einstein model

Although the cumulants other than the second are often
negligible for small anharmonicity, their calculation using
the apparatus of anharmonic lattice dynamics18 is computa-
tionally demanding. On the other hand, it has been shown
that these cumulants can be approximated to reasonable ac-
curacy using a correlated anharmonic Einstein model for
each MS path,4,19 and this is the method adopted here. In this
approach a correlated Einstein model is constructed for each
MS path keeping only cubic anharmonicity, yielding an ef-
fective one-dimensional potential

V�x� =
1

2
k0x2 + k3x3, �15�

where x is the net stretch in a given bond. The Einstein
frequency �E within the quasi-harmonic approximation is
then obtained from the relation �A4�, i.e., ��E

2 =k=k0+6k3x̄.
The construction of this Einstein model from the dynamical
matrix D along with explicit examples is given in the Appen-
dix. The relations between the cumulants for the Einstein
model can then be used to obtain estimates for ��1� and ��3�.
For example, for the first cumulant one has

��1��T� = −
3k3

k
�2��̄,T� = − �

3k3

k
�2��E,T� , �16�

where �2��̄ ,T� is the second cumulant of the Einstein model
defined by Eq. �14� and �=1/ ��−2��̄2 is defined so that
�2��̄ ,T�→��2��E ,T� at high temperatures. Thus the second
relation on the right only apparently differs from that in Refs.
4 and 19. Analogous scaling factors appear in the single
near-neighbor spring constant model derived by Maradudin
and Flinn.18

III. DFT CALCULATIONS

A. Computational strategy

As noted above, one of the main aims of this paper is to
calculate the force constants D within the quasiharmonic ap-

proximation using DFT and an appropriate choice of
exchange-correlation functional. Due to the extreme sensitiv-
ity of the phonon spectra to the interatomic distances, as
discussed above, the most important parameters entering the
calculation of the dynamical matrix are the lattice constant
and the geometry of the system. A typical effect of expansion
is illustrated in Fig. 1, which shows the variation of the first
moment of the VDOS �i.e., the average frequency 
̄� pro-
jected along the nearest-neighbor single-scattering path of
Cu. For comparison Fig. 1 also shows 
̄ obtained with a
model based on the Born–von Karman parameters at 298 K.
As expected, when the system expands the vibrational fre-
quencies are redshifted due to the weakening of the inter-
atomic interactions. From the common slopes in Fig. 1, we
see that all of the functionals have comparable Grüneisen
parameters ��2.2 at the experimental lattice constant
3.61 Å, in accord with the experimental value21 2.0±0.2.
Note that although at a given lattice constant the GGA func-
tional always produces a stiffer model than LDA, i.e., with
higher mean frequencies, the results at the equilibrium GGA
lattice constant tend to be softer than at the equilibrium LDA
lattice constant. Moreover, when compared with the experi-
mental value, the LDA and GGA functionals, respectively,
underestimate and overestimate the mean frequency by about
5%. This translates into a 20–25 % error in the DW factors
calculated with these methods. This margin of error is too
large to make such calculations of significant value in quan-
titative EXAFS analysis. Based on the above considerations,
we propose two alternative prescriptions to stabilize our DW
factor calculations.

�I� Our first prescription is based on DFT calculations
using the LDA exchange-correlation functional at the calcu-
lated equilibrium lattice constant a�T� at a given temperature.
Note, however, that the errors in the LDA estimates of the
lattice constant are often larger than those obtained in fits to
XAFS experiment.

�II� Our second prescription is based on DFT calculations
using a modified GGA exchange-correlation functional
termed hGGA �with half-LDA and half-GGA� at the experi-
mentally determined lattice constant a�T� at a given tempera-
ture. As described below, this functional is constructed on the
assumption that the “true� functional lies somewhere be-
tween pure LDA and GGA. This second prescription may be
useful when an estimate for the lattice constant is available,
for example, in fits of XAFS data to experiment during
which the interatomic distance is refined. Clearly, the use of
experimental structural parameters limits prescription II,
since it requires some knowledge of the crystal structure at
each temperature of interest.

B. Exchange-correlation functionals

In the course of this work, we investigated a number of
exchange-correlation functionals. Generally, the exchange-
correlation functional is attractive and hence strongly affects
the overall strength and curvature of the interatomic poten-
tial. On the other hand, it is well known that LDA functionals
tend to overbind, yielding lattice constants smaller than ex-
periment typically by about 1%. In contrast, GGA function-
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FIG. 2. Total vibrational density of states of Cu at 49 K from
DFT calculations using the LDA with our prescription I; the hGGA
�see text� with our prescription II; and from experiment �Ref. 12�.
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als tend to underbind10 by about the same amount. These
errors are confirmed by our calculations, which show that for
Cu the LDA yields a lattice constant of 3.57 Å at 0 K and
3.58 Å at 298 K, while the GGA yields 3.69 and 3.70 Å,
respectively, experiment being 3.61 Å. Moreover, the effect
of the functionals on the phonon structure is even larger. For
example, Narasimhan and de Gironcoli10 show that the ther-
mal expansion is about 10% high with LDA and 10% low
with GGA.

Although significant effort has been put into so-called
meta-GGA functionals23,24 that address these issues, they
have not yet been widely implemented. Therefore, to be con-
sistent with various results10 and to preserve the advantages
of the LDA and GGA functionals we have devised a modi-
fied functional termed hGGA which is a mixture of 50%
LDA and 50% GGA, i.e., with a 50% reduction in both the
additional exchange and correlation terms in the GGA. The
motivation for the 50-50 mixture stems from the observation
that the experimental values for many quantities are roughly
bracketed by the LDA and GGA predictions. To simplify the
development, we chose the closely related Perdew-Wang
9225 �LDA� and Perdew-Burke-Ernzerhof26 �GGA� function-
als. For this case the equal parts mixing can be achieved with
two simple changes: First, the � parameter in the exchange
energy term in PBE is reduced by half. This change pre-
serves all the conditions on which PBE was founded, except
the Lieb-Oxford bound. Second, the gradient contribution H
to the correlation energy is also reduced by half. Similar
modified functionals for solids have been proposed by Per-
dew et al.,27 suggesting that modifications similar to the
hGGA may be more generally applicable. Figure 1 shows the
average frequency obtained with the hGGA functional and
confirms that this yields the desired behavior.

C. Dynamical matrix

The key physical quantity needed in calculations of the
Debye-Waller factors is the dynamical matrix D. With mod-
ern electronic structure codes this matrix of force constants
can be calculated with sufficient accuracy from first prin-
ciples both for periodic and molecular systems.7–9 In this
paper we restrict our attention to periodic systems which can
be treated, for example, using the methodology implemented
in the ABINIT code,28 as described in detail in Ref. 31.
Briefly, the reciprocal space dynamical matrix

D̃j�j���q� = 	
l�

Dj0�,j�l��eiq·�Rj�l�−Rj0� �17�

is calculated in a 4�4�4 grid of q vectors. This grid is
interpolated inside the Brillouin zone and the real-space
force constants are obtained by means of an inverse Fourier
transform. We find that such an interpolated grid gives well
converged real-space force constants up to the fourth or fifth
shell. The neglect of the shells beyond that introduces an
error much smaller than other sources of error in the method.
Finally, since the calculation of the DW factors uses clusters
that typically include about 20 shells, the full force constant
matrix for these clusters must be built by replicating the 3
�3 Djl�,j�l�� blocks obtained for each jl , j�l� pair.

D. Lattice and force constants

The temperature-dependent lattice constant a�T� is ob-
tained by minimizing F�a ,T� in Eq. �9� with respect to a at a
given temperature T. Within the electronic structure code AB-

INIT, the total VDOS �a��� is calculated with histogram sam-
pling in q space. However, we find it more convenient here
to use a Lanczos algorithm in real space, similar to the ap-
proach used for the MSRD. This can be done by modifying
the initial normalized displacement state 
0� in Eq. �11� to
that for a single atomic displacement, rather than the dis-
placement along a given MS path. If more than one atom is
present in the unit cell the contributions from each atom
must be calculated and added. Similarly for anisotropic sys-
tems one must trace over three orthogonal initial displace-
ments. Figure 2 shows a typical VDOS generated using the
Lanczos algorithm. We find the free energies calculated with
this approach deviate from the q-space histogram method by
less then 2 meV, i.e., to within 1%.

To minimize F�a ,T� efficiently we proceed as follows:
First, the lattice constant is optimized with respect to the
internal energy E�a� and a potential energy surface �PES� for
the cell expansion is built around the minimum. Second, the
ab initio force constants are computed at each point of the
PES to obtain the vibrational component of F�a ,T�. Since
this is the most time-consuming part of the calculation, we
have taken advantage of the approximately linear behavior
for small variations as illustrated in Fig. 1. Then, each ele-
ment of the force constants matrix is interpolated according
to

Djl�,j�l�� = Ajl�,j�l�� + Bjl�,j�l��	a �18�

from just two ab initio force constant calculations with
slightly different lattice parameters. This interpolation
scheme allows us to reduce the computational cost of a typi-
cal calculation by a factor of 2 /3, while introducing an error
of less than 2% in the average frequencies. Once the values
of F�a ,T� on the PES are obtained, we determine the mini-
mum a�T� by fitting F�a ,T� to a Morse potential

F�a,T� = D0�e−2��a−a�T�� − 2e−��a−a�T��� . �19�

We have estimated that the numerical error in this minimiza-
tion is of order 5�10−4 Å or less by fitting only the internal
energy component E�a� and comparing with the minima ob-
tained using conjugate gradient optimization.

E. Computational details

All the ABINIT calculations reported here use Troullier-
Martins scheme—Fritz-Haber-Institut pseudopotentials. We
found that an 8�8�8 Monkhorst-Pack k-point grid and an
energy cutoff of 60 a.u. �12 a.u. for Ge� were sufficient to
achieve convergence with respect to the DW factors. In all
cases where the geometries were varied, an energy cutoff
smearing of 5% was included to avoid problems induced by
the change in the number of plane wave basis sets. For me-
tallic systems, the occupation numbers were smeared with
the Methfessel and Paxton34 scheme with broadening param-
eter 0.025. Results are presented for LDA �Perdew-Wang
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9225� and GGA �Perdew-Burke-Ernzerhof26� functionals, as
well as for our mixed hGGA functional.

IV. RESULTS

A. Born–von Karman parameters

Phonon dispersion curves are often parametrized in terms
of so-called Born–von Karman �BvK� coupling constants.
These parameters are essentially the Cartesian elements of
the real space dynamical matrix defined in Eq. �12�. The
main difference between the Born–von Karman parameters
and force constants obtained within the quasiharmonic ap-
proximation is that the former are tabulated at specific tem-
peratures while the temperature dependence of the quasihar-
monic model arises implicitly from the dependence of the
lattice parameters on thermal expansion. The dominant BvK
coupling constants �up to the second neighbor� are presented
in Table I.

We find that both the LDA with prescription I and the
hGGA with prescription II generally give force constants that
are within a few percent of experiment. Typically the LDA
force constants with prescription I are slightly higher than
those from the hGGA with prescription II. Also, note that the
transverse components of the BvK parameters tend to be
overestimated. We have also considered the pure PBE GGA
functionals, but find that they produce force constants that
are significantly weaker due to their larger equilibrium lattice
constants �Fig. 1�.

B. Mean-square relative displacements

Calculations of the MSRD for the dominant first near
neighbor path for fcc Cu are shown in Fig. 3, and detailed
results for various scattering paths are presented in Table II.
Both of our prescriptions I and II yield results in good agree-

TABLE I. Born–von Karman parameters Dij
m �N/m� from neu-

tron scattering compared with ab initio calculations from this work.

m ij LDA GGA hGGA Exp.

110 xx 14.53 11.13 13.69 13.278 �Ref. 13�
Cu zz −3.17 −2.18 −3.46 −1.351

49 K xy 17.12 13.12 16.52 14.629

200 xx 1.07 0.85 1.31 −0.041

yy −0.12 −0.11 −0.06 −0.198

110 xx 10.46 6.03 12.98 10.71�17� �Ref. 29�
Ag zz −3.28 −1.65 −4.11 1.75�20�
296 K xy 12.48 7.27 15.94 12.32�32�

200 xx 1.06 0.70 1.34 0.06�29�
yy −0.03 −0.08 −0.05 −0.23�19�

110 xx 14.22 9.17 17.97 16.43�09� �Ref. 29�
Au zz −7.51 −5.31 −8.78 −6.54�10�
295 K xy 18.39 12.10 23.38 19.93�14�

200 xx 3.96 3.30 4.42 4.04�17�
yy −0.33 −0.28 −0.25 −1.27�11�

110 xx 29.17 23.67 29.94 25.681�168� �Ref. 30�
Pt zz −7.60 −6.67 −8.77 −7.703�251�
90 K xy 31.44 26.02 33.50 30.830�303�

200 xx 4.98 4.67 5.18 5.604�329�
yy −1.56 −1.33 −1.28 −1.337�194�
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FIG. 3. Temperature dependence of the Debye-Waller factor for
the nearest-neighbor single scattering path in Cu. The experimental
difference values �Ref. 12� were shifted to match the LDA �I�
results at 0 K.

TABLE II. Debye-Waller factors �n
2�T� �in 10−3 Å2� for the

single scattering path to the nth shell of some fcc lattice metals. The
experimental difference values were shifted to match the LDA �I� at
80 K and the experimental error �in parentheses� indicates the error
in the least significant digits.

n CD LDA�I� GGA hGGA�II� Exp.

Cu 1 6.11 5.48 6.79 5.80 5.57�05� �Ref. 32�
190 K 2 7.49 7.49 9.20 8.01 7.4�3�

3 7.67 7.06 8.70 7.53 6.7�3�
4 7.76 7.02 8.68 7.48 7.0�5�

Cu 1 9.04 8.22 10.45 8.56 7.99�16� �Ref. 32�
300 K 2 11.16 11.44 14.31 12.03 11.2�5�

3 11.50 10.76 13.53 11.28 9.7�6�
4 11.66 10.70 13.49 11.20 11.4�10�

Pt 1 3.55 3.23 3.91 3.23 3.22�05� �Ref. 32�
190 K 2 4.38 4.64 5.57 4.78 4.7�3�

3 4.50 4.44 5.36 4.49 4.3�4�
4 4.56 4.60 5.55 4.66 4.5�4�

Pt 1 5.41 4.98 6.08 4.90 4.83�05� �Ref. 32�
300 K 2 6.69 7.23 8.71 7.34 6.8�5�

3 6.91 6.92 8.40 6.89 6.7�6�
4 7.01 7.17 8.71 7.16 7.0�6�

Ag 1 3.78 3.69 4.89 3.38 3.9�3� �Ref. 33�
80 K 2 4.56 4.97 6.57 4.60 5.4�5�

3 4.62 4.70 5.92 4.32 4.9�5�
4 4.64 4.67 6.22 4.28 5.5�5�
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ment with experiment. For Cu even the correlated Debye
model is quite accurate. Note also a slight deviation from
linearity in temperature T due to the variation in the dynami-
cal matrix with temperature is visible both in the experimen-
tal curve and in the calculation using prescription I.

Similarly, calculations of the MSRD for the first neighbor
path in Ge are shown in Fig. 4, and detailed results for vari-
ous scattering paths are given in Table III. Again, both of our
prescriptions yield results in good agreement with experi-
ment, with the LDA prescription being slightly better. For
this case, however, the correlated Debye model with a single
Debye temperature is significantly in error. This is not
unexpected1 since the projected density of modes ���� for
diamond structures is anisotropic and dominated by optical
modes for near-neighbor bonds. Tables II and III also include
similar results for Ag, Pt, and GaAs.

C. Thermal expansion

The thermal expansion can now be calculated in two
ways. First, by minimizing the free energy of the system

using Eq. �9� one can obtain the overall thermal expansion,
corresponding to the expansion of the lattice constant a�T�.
For monoatomic systems the thermal expansion of any MS
path is proportional to the lattice constant. More generally,
the expansion is MS path dependent, and can be estimated
using the correlated Einstein model of Sec. II C and the Ap-
pendix. From Eq. �16� and the Einstein model Grüneisen
parameter �=−k3R /k, this model predicts that the first cumu-
lant ��1� has a temperature dependence proportional to the
observed �2,

��1� =
3��

R
�2. �20�

As shown in Fig. 5 �dashed and dotted curves�, this corre-
lated Einstein model estimate for the thermal expansion
agrees well with that obtained from minimizing the free en-
ergy of the system and with experimental crystallographic
data.

D. Perpendicular motion contributions

Figure 5 also shows the first cumulant for Cu obtained by
adding the crystallographic component ��1�= x̄ and the con-
tribution due to perpendicular motion �

�

�1� from Eq. �6�. As
observed by Fornasini et al.,12 the mean square perpendicular
motion �MSPD� is correlated with �2, i.e., ��

2 =���2, with
an observed proportionality constant for Cu ���2.5±0.3.35

The MSPD can be calculated using our Lanczos procedure
with an appropriately modified seed state 
0� for perpendicu-
lar vibrations. Thus the correlation between the MSPD and
the MSRD reflects different projections of the same phonon
spectra, and is generally expected to be temperature depen-
dent. Indeed, our Lanczos procedure yields a ratio for ���T�
that varies from 2.17 to 2.36 between 0 and 500 K, respec-
tively, for Cu. Moreover, as shown in the Appendix, ���T�
can be estimated for fcc structures using a correlated Einstein
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FIG. 4. Temperature dependence of the Debye-Waller factor for
the nearest-neighbor single scattering path in Ge. The experimental
difference values �Ref. 20� were shifted to match the LDA �I� re-
sults at 0 K.

TABLE III. Debye-Waller factors �n
2�T� �in 10−3 Å2� for the

single scattering path for the nth shell of some diamond lattice
semiconductors. The experimental difference values were shifted to
match the LDA �I� at 80 K and the experimental error �in parenthe-
ses� indicates the error in the least significant digits.

n CD LDA�I� GGA hGGA�II� Exp.

Ge 1 5.11 3.42 3.98 3.76 3.5�1� �Ref. 32�
295 K 2 7.43 10.38 11.91 9.70 9.6�8�

3 7.64 13.09 15.03 11.84

GaAs 1 5.17 3.97 4.59 3.86 4.2�1� �Ref. 32�
295 K 2 7.75 12.70 14.28 12.01 11.7�14�
�Ga edge� 3 7.69 14.91 16.29 14.01

GaAs 1 5.15 3.96 4.59 3.86 4.2�1� �Ref. 32�
295 K 2 7.20 10.80 11.69 10.19 9.6�11�
�As edge� 3 7.68 14.83 16.66 14.00
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Without ⊥ correction

FIG. 5. Temperature dependence of the first cumulant for the
nearest-neighbor single scattering path in Cu, with and without the
perpendicular correction from Eq. �6�, and obtained either from the
minimization of the free energy �FE� or from the correlated Einstein
model �EM�. Both experimental difference values with �Ref. 12�
and without �Ref. 22� the perpendicular motion correction were
shifted to match the LDA �I� results at 0 K.
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model and gives 2.5 and �5�2.24 at high and low tempera-
tures, respectively. We also show for fcc structures that the
correction due to perpendicular motion is smaller than the
crystallographic contribution by a factor of �� /6�, which for
Cu is about 20%. To illustrate this correlation, Fig. 6 shows
the perpendicular motion contribution ��

2 calculated both by
the Lanczos procedure and with a constant correlation factor
��=2.5.

We have carried out similar calculations of ��
2 for dia-

mond lattices. Due to the strongly directional bonding in
diamond structures, and non-negligible bond bending forces,
the calculations are more complicated than for fcc materials.
Our ab initio calculations using the LDA with prescription I
yield a ratio ��=7.2�3.4� for 600 K �0 K�, respectively, in
reasonable agreement with experiment where ��

=6.5±0.5�3.5±0.6� for the same temperatures.35 In contrast
a single near neighbor spring model, which is usually inad-
equate for the phonon spectra of diamond structures, gives a
smaller high temperature value ��=3.5.

E. Third cumulant

As for the first cumulant the third cumulant can be esti-
mated from the correlated Einstein model and a generalized
cumulant relation.4,19 Again as in Eq. �16�, it is desirable to
express this relation in terms of the observed MSRD �2

��2��E ,T� of Eq. �A5� rather than �2��̄ ,T�=��2��E ,T� of
the original cumulant relations, yielding �see Fig. 7�

��3� = ��2 −
4

3
��0

2

�2�2���1��2. �21�

Note too that the moment ratio � gives another correction to
the relation ��1��2 /��3��2 derived for classical models37

and single-spring models at high temperatures.

F. Crystallographic Debye-Waller factors

Finally, we present results for the x-ray and neutron crys-
tallographic Debye Waller factors W�T�= �1/2�k2u2�T�,

where the mean-square displacements u2�T�= ��u · R̂�2� are
given by Eq. �8�, with �a��� given by the total vibrational
density of states per site, as calculated by our Lanczos algo-
rithm with an appropriate seed state.17 For this case good
agreement is obtained for both of our DFT prescriptions at
low temperature, although the errors become more signifi-
cant at higher temperatures �Fig. 8�. Also, we find that the
convergence of the Lanczos algorithm is slower than for the
path dependent Debye-Waller factors, requiring approxi-
mately 16 iterations to achieve convergence to 1%.

V. DISCUSSION AND CONCLUSIONS

Debye-Waller factors are essential to obtain a quantitative
description of the amplitudes of various x-ray spec-
troscopies. These damping factors characterize the vibra-
tional and structural disorder in a material, and thus may
constitute a valuable probe of lattice dynamical structure in a
system. Moreover, comparisons between calculated and mea-
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FIG. 6. Temperature dependence of the perpendicular compo-
nent ��

2 of the Debye-Waller factor for the nearest-neighbor single
scattering path in Cu. For comparison we also plot 2.5 �2 to show
the correlation ��

2 ����2, together with the values extracted from
experiment �Ref. 12�.
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FIG. 7. Temperature dependence of the third cumulant for the
nearest-neighbor single scattering path in Cu. The experimental dif-
ference values �Ref. 12� were shifted to match the LDA �I� results at
0 K.
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FIG. 8. Temperature dependence of the crystallographic Debye-
Waller factor for the nearest-neighbor single scattering path in Cu,
and compared to experimental values �Ref. 36�.
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sured DW factors can serve as a test of ab initio models of
phonon structure. We have developed a first principles ap-
proach for calculations of these Debye-Waller factors, based
on DFT calculations of the dynamical matrix and a Lanczos
algorithm for the phonon spectra for a given system. We find
that the results depend strongly on the choice of exchange-
correlation potential in the DFT, however, we have devel-
oped two prescriptions that yield stable results: one of these
is based on the LDA, and one is based on a modified GGA
termed hGGA. Calculations for the crystalline systems pre-
sented here show that our LDA prescription yields good
agreement with experiment for all quantities, typically within
about ±10%. Second, if the lattice constant is known a pri-
ori, our hGGA prescription also provides an accurate proce-
dure to estimate the MSRD.

Anharmonic corrections and estimates of the contribution
from perpendicular vibrations are estimated using correlated
Einstein models with calculated Einstein frequencies. For
these anharmonic quantities, however, we have found that
the comparative softness of the lattice dynamics with the
GGA and hGGA functionals leads to results which are some-
what less accurate than those for the LDA. Finally we have
also calculated the crystallographic Debye Waller factors.
Our approach also yields good results for calculations of DW
factors in anisotropic systems, as illustrated for Ge and
GaAs. All of these results demonstrate that the prescriptions
developed herein can yield quantitative estimates of Debye-
Waller factors including anharmonic effects in various crys-
talline systems, and generally improve on phenomenological
models. Thus these DW factors have the potential to yield
significantly improved fits to XAS spectra. Extensions to
molecular systems are in progress.
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APPENDIX

In this Appendix, we briefly discuss the correlated Ein-
stein model used in estimating anharmonic contributions to
the DW factors. The model is illustrated with an application
to the correlated Einstein model for calculating the MSRD
�2 and the MSPD ��

2 = �
	u��
2�.
The construction of Einstein models is not unique in that

different physical quantities reflect different averages over
the VDOS. For example, the theoretical MSRD given by Eq.
�8� reflects an average over a thermal weight factor which
varies as 1 /�2 at high temperatures. Thus the Einstein model
parameters in our prescription are constructed to preserve the
correct high temperature behavior of the MSRD,1,3 �2�T�
→�2��E ,T�=kBT /��E

2 . The first step in this construction is
the calculation of �̄2 in Eq. �14� from the total potential
energy for a net displacement x of a path along a particular

seed displacement state 
0�. Next the spring constant is de-
fined to give the correct high temperature MSRD

k0 = ���0
D
0� = ���̄2, �A1�

where the factor �=1/ ��−2��̄2, and ��−2� is the inverse sec-
ond moment of the projected VDOS. This inverse moment is
obtained using the Lanczos algorithm of Eq. �11� for the
VDOS. The cubic coupling k3 is then defined to be consistent
with the variation in k given by the Grüneisen parameter

� = −
d ln �̄

d ln R3 = −
k3R

k
. �A2�

Consequently k3 must also have a factor � to preserve the
observed lattice expansion

k3 =
�

6

d

dR
�0
D�R�
0� . �A3�

Then the Einstein frequency �E in the quasi-harmonic ap-
proximation is obtained from the relation18

k = k0 + 6k3x̄ = ��E
2 . �A4�

where � is the reduced mass. For Cu the Lanczos algorithm
with the LDA �I� prescription for the dynamical matrix then
yields �=0.73, k0=54.7 N/m, k3=−48.4 N/mÅ, and k
=51.1 N/m. With these definitions our correlated Einstein
model for �2�T� is

�2��E,T� = �0
2 coth��
�E

2
� , �A5�

where the zero-point value �0
2=�2�0�=
�E /2k.

Note, however, that the original relations between the
cumulants19 were derived for single-spring models with Ein-
stein frequency given by �̄ in Eq. �14�. Thus to obtain the
modified relations with the factors of � in Eqs. �16� and �21�,
one must simply replace �2��̄ ,T�→��2��E ,T�. No addi-
tional scaling factor is needed for ��1� since the free energy
Eq. �9� is only weakly �logarithmically� sensitive to the pho-
non frequency distribution, and hence can be modeled by an
Einstein model with frequency �̄. Although our derivation is
based on the high temperature behavior, the validity of these
relations at low T is corroborated by experiment �Figs. 5 and
7�. Thus given the MSRD �2 and the relations between the
cumulants discussed above, one can obtain MS path-
dependent estimates for ��1� and ��3�.

As a second example of Einstein model, we construct a
model for monoatomic fcc Cu starting from an anharmonic
pair potential.4,19 That is, we assume that the lattice dynam-
ics can be described by a pair potential V0 between near-
neighbor atoms of the form

V0�x� �
1

2
k0x2 + k3

0x3. �A6�

Here x is the net displacement x along the bond direction,
with positive displacements referring to expansion and nega-
tive to compression.

To carry out this construction, first consider the potential
energy V
�x� for vibrational displacement x along the bond
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�0R� between lattice points �0,0,0� and R� =R�0,1 ,1� /�2. The
net anharmonic potential V
�x� is then given by Eq. �15� with
a displacement state x
0� defined by u�0= �x /2��0,1 ,1� /�2,
and u�R= �−x /2��0,1 ,1� /�2. Then constructing the dynamical
matrix using Eq. �A6� with small displacements, we find a
net spring constant k0=��0
D
0�= �5� /2�k0, in agreement
with Ref. 4. This result can alternatively be obtained by sum-
ming the 23 pair potentials between the shared bond �0R�,
the 11 nearest-neighbor bonds to the origin and the 11 other
nearest-neighbor bonds to R, giving V
�x�=V0�x�+2V0�
−x /2�+8V0�x /4�+8V0�−x /4�+4V0�0�. Similarly we find that
the anharmonic coupling �cf. Eq. �A3�� is k3= �3� /4�k3

0, so
that

V
�x� =
1

2
�5�

2
k0�x2 + �3�

4
k3

0�x3, �A7�

where we have again included a factor � so that the Einstein
model for �2 agrees with the expression from the inverse
second moment of the VDOS.

In a similar way, we can develop a correlated Einstein
model to describe the perpendicular vibrations. For this case
we consider a vibrational displacement 	u�� of length y
= 
	u��
 perpendicular to the bond between �0,R�. Thus we
set u�0= �y /2��0,1 ,−1� /�2 and u�R= �−y /2��0,1 ,−1� /�2,
where R is the nearest-neighbor distance. The net potential
V��y� is again obtained by summing the 23 pair potentials
between the shared bond �0R�, the 11 nearest-neighbor bonds
to the origin and 11 others to R, similar to the calculation
above for vibrations along the bond. For this case, two bonds
are stretched by y /2, two contracted by y /2, three un-
changed, eight stretched by y /4, and eight contracted by y /4,
yielding a net sum V��y�=2V0�y /2�+2V0�−y /2�+8V0�y /4�
+8V0�−y /4�+3V0�0�, and hence

V��y� =
1

2
�2�k0�y2. �A8�

Note that by symmetry, the net cubic anharmonic contribu-
tion vanishes. Thus the effective spring constant for the

MSPD is k=2�k0 and predicted to be insensitive to thermal
expansion. The correlated Einstein model V��z� is clearly the
same for the MSPD along the z axis.

With these results we can show that the MSPD for the
first neighbor path in fcc materials ��

2 is correlated with �2

= �
	u� 

2�. Both the MSPD and MSRD in the Einstein model
are given by Eq. �A5�, with their respective Einstein frequen-
cies �E= �k /��1/2. For the total contribution from perpen-
dicular vibrations, one has to multiply by two to get the net
��

2 from both independent axes. At high temperatures, we
obtain the MSPD ��

2 =2kBT /2�k0. This is higher than the
MSRD �2= �2/5�kBT /�k0 by a factor of ��=5/2. The model
also predicts a weakly temperature-dependent ratio

���T� =
��

2 �T�
�2�T�

= 2
�E coth��
�E

�/2�
�E

� coth��
�E/2�
, �A9�

which varies between �5=2.236 and 2.5 with increasing
temperature. Thus the ratio �� obtained with the correlated
Einstein model for the fcc lattice depends only on geometry
and describes the anisotropy of the vibrational ellipsoid in
monoatomic fcc structures reasonably well. Because of this
relation the perpendicular contribution to the first cumulant
can be related to the lattice expansion, i.e., from Eqs. �6� and
�20�,

��
�1�

��1� =
��

6��
. �A10�

For fcc Cu this result gives a correction to the first cumulant
��1� of about 25%. Such a shift is comparable to the differ-
ences in the thermal expansion with and without the perpen-
dicular motion term as observed in Fig. 5. Thus for the domi-
nant near neighbor bonds, the correlated Einstein model
predicts a comparatively small but non-negligible contribu-
tion from perpendicular vibrations to EXAFS distance
determinations.

1 E. D. Crozier, J. J. Rehr, and R. Ingalls, in X-Ray Absorption:
Principles, Applications, Techniques of EXAFS, SEXAFS, and
XANES, edited by D. C. Koningsberger and R. Prins �Wiley,
New York, 1988�, p. 375.

2 V. V. Shmidt, Bull. Acad. Sci. USSR, Phys. Ser. �Engl. Transl.�
27, 392 �1963�.

3 E. Sevillano, H. Meuth, and J. J. Rehr, Phys. Rev. B 20, 4908
�1979�.

4 N. Van Hung and J. J. Rehr, Phys. Rev. B 56, 43 �1997�.
5 A. Poiarkova and J. J. Rehr, J. Synchrotron Radiat. 8, 313 �2001�.
6 H. J. Krappe and H. H. Rossner, Phys. Rev. B 66, 184303 �2002�.
7 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 �2001�.
8 C. Lee and X. Gonze, Phys. Rev. B 51, 8610 �1995�.
9 G.-M. Rignanese, J.-P. Michenaud, and X. Gonze, Phys. Rev. B

53, 4488 �1996�.

10 S. Narasimhan and S. de Gironcoli, Phys. Rev. B 65, 064302
�2002�.

11 R. Kubo, J. Phys. Soc. Jpn. 17, 1100 �1962�.
12 P. Fornasini, S. a Beccara, G. Dalba, R. Grisenti, A. Sanson, M.

Vaccari, and F. Rocca, Phys. Rev. B 70, 174301 �2004�.
13 R. M. Nicklow, G. Gilat, H. G. Smith, L. J. Raubenheimer, and

M. K. Wilkinson, Phys. Rev. 164, 922 �1967�.
14 A. V. Poiarkova and J. J. Rehr, Phys. Rev. B 59, 948 �1999�.
15 N. Dimakis and G. Bunker, Phys. Rev. B 58, 2467 �1998�.
16 P. Deuflhard and A. Hohmann, Numerical Analysis �de Gruyter,

Berlin, 1995�.
17 H. H. Rossner, D. Schmitz, P. Imperia, H. J. Krappe, and J. J.

Rehr, Phys. Rev. B 74, 134107 �2006�.
18 A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529 �1963�.
19 A. I. Frenkel and J. J. Rehr, Phys. Rev. B 48, 585 �1993�.
20 G. Dalba, P. Fornasini, R. Grisenti, and J. Purans, Phys. Rev. Lett.

VILA et al. PHYSICAL REVIEW B 76, 014301 �2007�

014301-10



82, 4240 �1999�.
21 J. G. Collins, Philos. Mag. 8, 323 �1963�.
22 American Institute of Physics Handbook �McGraw-Hill, New

York, 1972�.
23 J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys.

Rev. Lett. 91, 146401 �2003�.
24 V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Phys.

Rev. B 69, 075102 �2004�.
25 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 �1992�.
26 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
27 J. P. Perdew �private communication�.
28 X. Gonze et al., Comput. Mater. Sci. 25, 478 �2002�.
29 W. A. Kamitakahara and B. N. Brockhouse, Phys. Lett. A 29, 639

�1969�.
30 D. H. Dutton, B. N. Brockhouse, and A. P. Miiller, Can. J. Phys.

50, 2915 �1972�.
31 X. Gonze and C. Lee, Phys. Rev. B 55, 10355 �1997�.
32 E. A. Stern, B. A. Bunker, and S. M. Heald, Phys. Rev. B 21,

5521 �1980�.
33 M. Newville, Ph.D. thesis, University of Washington, Seattle,

1995.
34 M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 �1989�.
35 P. Fornasini �unpublished�.
36 P. A. Flinn, G. M. McManus, and J. A. Rayne, Phys. Rev. 123,

809 �1961�.
37 E. A. Stern, P. Līvņš, and Z. Zhang, Phys. Rev. B 43, 8850

�1991�.

THEORETICAL X-RAY ABSORPTION DEBYE-WALLER FACTORS PHYSICAL REVIEW B 76, 014301 �2007�

014301-11


