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The thermal properties of hcp metals Mg, Ti, and Zr are investigated by performing density functional theory
and density functional perturbation theory calculations within the quasiharmonic approximation. The tempera-
ture dependence of various quantities such as the anisotropic thermal expansion, the heat capacity, bulk
modulus, and Grüneisen parameters are computed. The electronic contribution to the thermal expansion and
heat capacity are discussed. Our results are in good agreement with available experimental data in a wide range
of temperature.
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I. INTRODUCTION

Nowadays the equilibrium structure of a large class of
materials can be determined within first-principles methods
based on density functional theory �DFT�.1–3 Furthermore,
different approaches have been used to calculate thermal
properties from first-principles.4 Thermal properties of solids
such as thermal expansion depend on their lattice dynamical
behavior. A simplified method for thermal expansion calcu-
lations is a Debye–Grüneisen based model.5 Thermal expan-
sion calculations for metals6,7 and compounds8 have been
carried out based on this model. A more accurate approach is
first-principles molecular dynamics �MD� simulations such
as Car–Parrinello method.9 However, since the ionic degrees
of freedom are treated classically, these simulations are not
valid at temperatures comparable to or lower than the Debye
temperature. In the 1990’s, another approach had been made
possible by the achievements of density functional perturba-
tion theory �DFPT�10,11 which allowed exact calculations of
vibrational frequencies in every point of the Brillouin Zone.
Since then, many applications have been made within
DFPT.4 The vibrational free energy can be obtained using the
quasiharmonic approximation. In this approximation, anhar-
monic effects are included through the explicit volume de-
pendence of the vibrational frequencies. Several thermal ex-
pansion calculations about cubic metals based on DFPT have
been carried out,12–15 and they give good results about iso-
tropic thermal expansion and related thermal properties. For
noncubic structure, because of the large computational cost
of determining the complete phonon spectrum as a function
of volume, few thermal expansion calculations based on
DFPT have been carried out.16 In this paper we apply DFPT
within quasiharmonic approximation to the study of the an-
isotropic thermal expansion for hcp metals Mg, Ti, and Zr.
Another purpose of the present paper is to check the elec-
tronic contribution to the thermal properties which previous
calculations often neglected. As a by-product, bulk modulus
and heat capacities at constant volume �pressure� are also
calculated. Our results demonstrate that all these quantities
can be well predicted by this approach in a wide range of
temperature.

II. THEORY

The equilibrium structural parameters, a= �a1 ,a2 , . . . �, of
a crystal at any temperature, T, are obtained by minimizing

the Helmholtz free energy, F, of a system. The free energy F
at temperature T and structural parameters a is given by

F�a,T� = Etot�a� + kBT�
q�

ln�2 sinh���q��a�
2kBT

�� + Eel�a,T�

− TSel�a,T� �1�

where Etot�a� is the ground state �T=0 K� total energy of the
crystal. The next term is the vibrational free energy. The
electronic energy due to thermal electronic excitations is
given by

Eel�V,T� = N�
0

�

n��,V�f����d� − N�
0

�F

n��,V��d� , �2�

where n�� ,V� and f��� represent the electronic density of
state �DOS� and the Fermi-Dirac �FD� distribution, respec-
tively. The electronic entropy is formulated as

Sel�V,T� = − NkB�
0

�

n��,V�	f ln f + �1 − f�ln�1 − f�
d� .

�3�

It is often assumed that the electronic contribution to free
energy is negligible.

To calculate free energy F, one must be able to calculate
frequencies all over the Brillouin zone, and this can be done
exactly using DFPT. Furthermore, this calculation must be
performed at various values of the structural parameters. Be-
cause of this, it is difficult from a computational point of
view. In the case of anisotropic thermal expansion of an hcp
crystal, the system is described by two parameters, a and c.
One can compute phonon dispersions in a grid of points in
the �a, c� space and obtain phonon spectrum at any lattice
parameters by interpolation. The equilibrium lattice con-
stants at temperature T is obtained by minimizing F with
respect to a and c. The coefficients of linear expansion
�CTE� are given by

�a =
1

a293
�da�T�

dT
� ,
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�c =
1

c293
�dc�T�

dT
� , �4�

and the thermal expansion are described by

�a =
a − a293

a293
,

�c =
c − c293

c293
. �5�

Here a and c mean equilibrium lattice constants at corre-
sponding temperatures. The subscript 293 means 293 K. We
have similar definitions for the coefficients of volume expan-
sion and volume expansion.

Once phonon spectrum is obtained, we can easily calcu-
late the vibrational heat capacity at constant volume from the
next equation:

CV
ph = kB�

q�

���q��a�
2kBT

�2

csch2���q��a�
2kBT

� . �6�

The electronic heat capacity can be obtained from

CV
el = �T

�Sel

�T
�

V
. �7�

The heat capacity at constant pressure can be computed by
using the relation

CP = CV + �2BVT , �8�

where B is bulk modulus, CV=CV
ph+CV

el, and � is coefficient
of volume expansion. For hcp structure, �=2�a+�c.

III. COMPUTATIONAL DETAILS

The thermal properties calculations of hcp metals, Mg, Ti,
and Zr, were performed using the ABINIT codes.17 The static
energies were computed using DFT, and phonon frequencies

FIG. 1. Temperature dependence of the linear thermal expansion
for Mg. Solid and dashed curves are the calculated result in direc-
tions perpendicular and parallel to the principal axis, respectively.
Squares and diamonds represent corresponding experimental data
from Ref. 19.

FIG. 2. Same as Fig. 1 but for Ti.

FIG. 3. Same as Fig. 1 but for Zr.

FIG. 4. Temperature dependence of the volume thermal expan-
sion for Mg. The solid curve is the calculated result and circles
represent experimental data from Ref. 19.
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using DFPT. The interactions between the ions and valence
electrons were described using norm-conserving local den-
sity approximation pseudopotentials which are generated in
the scheme of Troullier–Martins.18 Brillouin-zone integra-
tions were performed using 12�12�8 k-point mesh, and
phonon frequencies were computed on a 6�6�4 q-point
mesh. Plane-wave basis sets with a cutoff of 16, 40, and
20 Hartree were used for Mg, Ti, and Zr, respectively. These
calculating parameters are chosen to guarantee the total en-
ergy error in 0.1 mHartree.

To obtain the free energy, we perform 81 sets of first-
principles electronic total energy and response-function cal-
culations of Mg, Ti, and Zr by varying lattice constants a /a0
and c /c0 from 0.99 to 1.03 with a step of 0.005, respectively.
At each set of a and c, the electronic free energies and en-
tropies at several temperatures from 0 to 1000 K �for Mg,
from 0 to 800 K� are obtained from the self-consistent DFT
calculations using FD smearing. Then the electronic free en-
ergies and entropies at any temperature can be obtained by

interpolation. The full phonon spectrum is obtained by the
Fourier interpolation algorithm of dynamical matrices. From
the full phonon spectrum, the lattice vibration free energy
and then the total Helmholtz free energy are calculated. In
order to get the temperature dependence of lattice param-
eters, we calculated 81 sets of total free energy at tempera-
ture points with a step of 1 K from 0 to 1000 K �for Mg
from 0 to 800 K�. At each temperature point, we first fit the
81 sets free energy vs a and c with spline function and cal-
culate the equilibrium a0 and c0 by minimizing vibration free
energy. Next, fit a0 and c0 vs temperature data with spline
function, respectively. This gives us the temperature depen-
dencies of lattice parameters a and c.

IV. RESULTS

A. Thermal expansion

Figures 1–3 show the temperature dependence of lattice
parameters a and c.

FIG. 5. Same as Fig. 4 but for Ti.

FIG. 6. Same as Fig. 4 but for Zr.

FIG. 7. Temperature dependence of the volume coefficients of
thermal expansion for Mg. The solid curve is the calculated result
and circles represent experimental data from Ref. 19.

FIG. 8. Same as Fig. 7 but for Ti.
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For Mg, we find excellent agreement between the theoret-
ical results and available experimental data. For Ti and Zr,
we could not find available experimental data for linear ex-
pansion. To check the theoretical results, we calculated the
volume expansion from linear expansion. Figures 4–6 show
the results.

They are all in good agreement with available experimen-
tal data in a wide range of temperatures, especially the re-
sults for Mg. It suggests the calculated linear expansion re-
sults for Ti and Zr are credible, although there are no
available corresponding experimental data for them. Com-
paring the calculated and experimental values at 800 K, the
calculated values are lower than the corresponding experi-
mental values by 4% and 5% for Ti and Zr, respectively. For
Mg, this relative error is only 0.5% at 800 K.

We also calculated coefficients of volume thermal expan-
sion, as shown in Figs. 7–9. The results for Mg are in good
agreement with available experimental data. At 800 K, the

relative error is about 3%. For Ti and Zr, the errors are about
7% and they increase with temperature remarkably. These
relative errors for Ti and Zr at 1000 K are about 9% and
15%, respectively.

B. Elastic constants

The lattice constants and bulk modulus obtained for zero
temperature are listed in Table I.

In all cases the calculated lattice constants are 1�2%
underestimated except the c value for Zr. The bulk modulus
are 3�4% overestimated for Mg and Zr, 12% for Ti.

Theoretical elastic constants calculated at 0 K are pre-
sented in Table II. The experimental values from Ref. 20 are
measured at 4 K. Most calculated values and corresponding
experimental date differ from each other by 10% �20%.
The C44 for Zr has a relative error of 28%. The largest error
is 61% of C66 for Ti.

According to linear expansion, we can obtained equilib-
rium lattice constants at any temperature, then the bulk
modulus at any temperature can be obtained. Figure 10
shows the ratio of bulk modulus for Mg, Ti, and Zr. Com-
paring to experimental data, our calculated values for Ti and
Zr decrease with temperature slowly. At 1000 K, they are
overestimated by about 4%. For Mg, not only is the bulk
modulus the smallest in these three metals, but also the cal-

FIG. 10. Temperature dependence of the ratio of bulk modulus
for Mg, Ti, and Zr. Solid and dashed curves are the calculated and
experimental �Ref. 20� results, respectively.

FIG. 11. Temperature dependence of heat capacity for Mg. Solid
and thick dashed curves show the calculated CP, including elec-
tronic contribution and not, respectively. Thin dashed and dot-
dashed lines show vibrational and electronic CV, respectively.
Circles represent experimental data for CP.

FIG. 9. Same as Fig. 7 but for Zr.

TABLE I. Ground properties for Mg, Ti, and Zr. The experimen-
tal bulk modulus for Ti and Zr are from Ref. 20 �calculated from
elastic constants at 4 K�. All other experimental data are from Ref.
19.

a �Å� c �Å� B �GPa�

Calc. Expt. Calc. Expt. Calc. Expt.

Mg 3.138 3.209 5.107 5.211 36.7 35.6

Ti 2.900 2.951 4.671 4.679 123 110

Zr 3.229 3.232 5.166 5.147 101 97.5
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culated ratio decreases more rapidly with temperature raising
than that for Ti and Zr. This is consistent with the fact that
Mg has larger thermal expansion than Ti and Zr.

C. Specific heat

Once the phonon spectrum over the entire Brillouin zone
is available, the vibrational heat capacity at constant volume
CV

ph and the electronic contribution to heat capacity at con-
stant volume CV

el can be calculated by Eqs. �6� and �7�, re-
spectively. Then, the specific heat at constant pressure can be
computed by Eq. �8�. As a comparison, both Cp values, in-
cluding electronic contribution and not, are plotted. The re-
sults are shown in Figs. 11–13. All the experimental specific
heat data below are from Ref. 21.

As temperature increases, CV
ph tends to the classical con-

stant 3R; CV
el and Cp still increase. We find CV

el is not negli-
gible at high temperature, though smaller than CV

ph. From
Figs. 11–13, once again we find good agreement between the
calculated results and the experimental data for Mg, and
some larger errors for Ti and Zr.

At very low temperature, CV
el becomes larger than CV

ph, and
the discrepancy between CP and CV can be neglected. Fig-
ures 14–16 show the results.

The calculated values are in excellent agreement with the
experimental data.

V. DISCUSSION

Comparing with thermal expansion, �, the errors in � are
larger. This is due to the numerical derivative of a and c with
respect to temperature. The numerical derivative is sensitive
to the errors in source data. On the other hand, the change of
lattice parameters is proportional to the product of the � and
the change of temperature. Considering � and � have the
order of magnitude 10−3 and 10−6, respectively, we can ex-
pect a large relative error in � causes only a small relative
error in � when the change of temperature is not large.

At high temperature, the larger errors for Ti and Zr may
suggest the limitation of the quasiharmonic approximation,
because the quasiharmonic approximation accounts only par-
tially for the anharmonic effects. There should be larger an-
harmonic effects when the temperature rises up to hcp
→bcc phase transformation point. In quasiharmonic ap-
proximation, the phonon frequencies at given lattice param-
eters are independent of temperature. In real crystal, it is not
the case. Anharmonic effects make each phonon frequency
suffers a shift.22 At high temperature, these shifts are propor-
tional to temperature and depend on frequencies. According

TABLE II. Experimental and calculated elastic constants �GPa� for Mg, Ti, and Zr, here C66

= 1
2 �C11−C12�.

Work C11 C12 C13 C33 C44 C66

Mg Calc. 65.1 23.9 21.7 65.0 17.7 20.6

Expt.a 59.7 26.2 21.7 61.7 16.4 16.8

Ti Calc. 219 76.6 72.8 227 50.4 71.2

Expt.b 176 86.9 68.3 191 50.8 44.6

Zr Calc. 155 69.1 74.7 163 26.2 43.0

Expt.b 155 67.2 64.6 175 36.3 44.1

aReference 19.
bReference 20.

FIG. 12. Same as Fig. 11 but for Ti. FIG. 13. Same as Fig. 11 but for Zr.
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to Grüneisen relation �=�CV /VB, and Grüneisen parameter
�=−d ln � /d ln V, we can roughly estimate that the discrep-
ancy between � calculated within quasiharmonic approxima-
tion and that, including anharmonic effects, is proportional to
temperature, and then the discrepancy between calculate �
and the experimental data is also proportional to temperature.
Another cause12 of large errors at high temperature is that the
LDA underestimates lattice parameters and overestimates
bulk modulus, then underestimates thermal expansion. Thus,
as the temperature is increased, these two effects �underesti-
mation of lattice parameters and overestimation of bulk
modulus� are both aggravated further, resulting in increasing
errors.

From the results of heat capacity, the discrepancy between
the calculated and experimental CP is large for Ti and Zr,
when the electronic contribution is not included. At first
sight, the discrepancy may seem to be attributed to the error
in �. However, the error due to the underestimation of � is
canceled out to some extent by the overestimation of bulk
modulus, when we calculate the difference CP−CV=�2BVT.
To check this, we calculated �2BVT, using the experimental
data for �, B, and V. It is almost the same as the theoretical

result. When we consider the electronic contribution, the the-
oretical CP are improved remarkably. It is clear that the elec-
tronic contribution should be considered, especially for tran-
sition metals. Although CV

el is smaller than CV
ph, it is larger

than the value CP−CV=�2BVT for Ti and Zr. The electronic
heat capacity can be expressed as CV

el=�T, where � is known
as the electronic constants. From our calculations, the values
of � for Mg change from �in unit mJ mole−1 K−2� 1.1 to 1.4
in the considering range of temperatures. For Ti and Zr, the
values change from 3.2 to 3.5 and 2.8 to 3.2, respectively. As
we expected, the transition metals have large �, because they
often have large density of states near Fermi energy. Our
calculated values of � are in good agreement with experi-
mental data21 at low temperature, 1.3, 3.5, and 2.8 for Mg,
Ti, and Zr, respectively. However, there still remains discrep-
ancies between the theoretical and experimental values of CP
at high temperature for Ti and Zr. At 1000 K, the discrepan-
cies are 10% and 9.0% for Ti and Zr, respectively. The errors
may arise from theory about electronic calculations at high
temperature, or other nonvibrational contribution to heat ca-
pacity. Earlier calculation15 of specific heat for cubic metal
tungsten underestimated CP and attributed the large discrep-
ancy at high temperature to the failure of quasiharmonic ap-
proximation because of the large underestimation of � for
tungsten. In fact, we calculated the electronic contribution to
the specific heat for tungsten and found good agreement be-
tween the calculated CP and experimental data.

On the contrary, the electronic contribution to thermal ex-
pansion can be negligible in our calculations for these three
metals. As an estimation, the CTE can be expressed as �
= ��elCV

el+�phCV
ph� /VB, where �el and �ph are overall Grü-

neisen parameters due to electronic and vibrational contribu-
tion, respectively. CV

el and CV
ph are electronic and vibrational

contribution to specific heat. The overall Grüneisen param-
eters can be calculated from �a and �c, where both electronic
and vibrational �a and �c are formulated as23

�a =
1

2

��S/� ln a�T,c

CV
,

FIG. 14. Temperature dependence of heat capacity for Mg. Solid
line shows the calculated CP. Dashed and dot-dashed lines show
vibrational and electronic CV, respectively. Circles represent experi-
mental data for CP.

FIG. 15. Same as Fig. 14 but for Ti.

FIG. 16. Same as Fig. 14 but for Zr.
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�c =
��S/� ln c�T,a

CV
, �9�

where S represents electronic �vibrational� entropy and the
relations give the corresponding electronic �vibrational� Grü-
neisen parameters. We calculated Grüneisen parameters for
these three metals. For Mg, Ti, and Zr, the values of �el are
about 2%, 10%, and 9% of �ph, respectively. While the val-
ues of CV

el are about 2%, 7%, and 6% of CV
ph at high tempera-

ture, respectively. Thus, the values of � due to electronic
contribution are about 0.04%, 0.7%, and 0.5% of vibrational
contribution at high temperature.

According to Eq. �9�, the Grüneisen parameters are func-
tions of temperature. To check the anisotropic thermal expan-
sion, we calculate the mean values. �a and �c for Mg are
1.67 and 1.69. The same parameters for Ti are 1.38 and 1.54,
for Zr, 1.32 and 1.49. According to relations23

�a =
CV

V
	�S11 + S12��a + S13�c
 ,

�c =
CV

V
	2S13�a + S33�c
 . �10�

The anisotropic thermal expansion is due to anisotropy in
anharmonicity of vibrations which represented by �a and �c,
and the anisotropy in the elasticity, which can be described
by the ratio �S13+S33� / �S11+S12�. Mg has almost isotropic
Grüneisen parameters, and the ratio �S13+S33� / �S11+S12�
=1.04, is close to 1. Unlike the nearly isotropic thermal ex-
pansion of Mg, the theoretical thermal expansion for Ti and

Zr are anisotropic between the directions parallel and perpen-
dicular to the principal axis. The ratios �S13+S33� / �S11+S12�
for them are 0.98 and 0.92. According to anisotropy in elas-
ticity, Ti and Zr should have larger expansion in a direction.
However, Ti has �c	�a and the anisotropy in elasticity is
small �0.98�, so it shows larger expansion in c direction. For
Zr, it also shows larger expansion in c direction at high tem-
perature because of �c	�a. At low temperature, the Grü-
neisen parameters are smaller than the mean values, the an-
isotropy in elasticity �0.92� results in the larger expansion in
a direction.

VI. CONCLUSIONS

In conclusion, thermal properties of hcp metal Mg, Ti, and
Zr, such as the thermal expansions and heat capacities at
constant volume �pressure� are studied by DFT and DFPT
calculations. The electronic contribution to heat capacity
cannot be neglected, especially for transition metals, while
its contribution to thermal expansion is negligible. The an-
isotropic thermal expansion of Ti and Zr are due to their
anisotropic Grüneisen parameters, while Mg has almost iso-
tropic thermal expansion because of its isotropic Grüneisen
parameters and elasticity. The calculated results are in good
agreement with available experimental data in a wide range
of temperature. It suggests the anisotropic thermal expansion
and other thermal properties of noncubic metals can be well
calculated from this first-principles approach.
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