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The electronic structure of BaFe12O19 hexaferrite is calculated using the density functional theory and
generalized gradient approximationsGGAd. The GGA+U method is used to improve the description of
strongly correlated 3d electrons of Fe. The calculation is performed for a number of spin configurations. From
differences of the total energies 13 independent exchange integrals are determined as functions of the param-
eterU. Their magnitude decreases with increasingU, pointing to the dominating role played by the antiferro-
magnetic superexchange. The Curie temperatureTC is calculated using the molecular field and the random
phase approximations.TC determined by the random phase approximation agrees with the experimentalTC for
U<6–7 eV.
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I. INTRODUCTION

M-type hexaferritesMFe12O19 sM =Sr,Ba,Pbd are suit-
able and inexpensive materials for hard magnetssfor a sur-
vey of their properties, see Ref. 1d. At the same time these
systems represent a unique possibility to study iron in the
same compound but in different ligand polyhedra, as Fe en-
ters five different sublattices—three with octahedral, one
with tetrahedral, and one with bipyramidal co-ordination.
The knowledge of magnetic interactions of the iron ions on
individual sublattices would significantly help in predicting
the properties of substituted hexaferrites. In view of the com-
plexity of the system, such information is difficult to obtain
experimentally and theoretical analysis is thus desirable. In
this paper the calculation of the exchange interaction, based
on the density functional theorysDFTd, in the BaFe12O19

hexaferrite is presented. A stringent check of the reliability of
the calculated exchange integrals is the value of correspond-
ing Curie temperatureTC. The molecular field approximation
sMFAd, commonly used to determineTC in complex mag-
netic insulators, is known to overestimate its value.2 An im-
provement of MFA is represented by the random phase ap-
proximation sRPAd that until now was applied to simple,
single sublattice ferromagnets only. In the present paper RPA
is applied to the complex ferrimagnet in question and the
result is compared with that obtained by MFA.

Electronic structure of the stoichiometric strontium hexa-
ferrite was calculated recently by Fanget al.3 These authors
used the localized spherical wave method employing density
functional theorysDFTd and the local spin density approxi-
mation sLSDAd. Besides the spin configuration that corre-
sponds to the ground state, several other spin configurations
were considered. In Sec. V these results will be discussed
and compared with the results obtained in the present paper.

II. MANY-SUBLATTICE SYSTEM—EXCHANGE
INTEGRALS AND TOTAL ENERGY

Assuming that the exchange interaction is isotropic and

bilinear, the energye12 of the pair of spinsSW1, SW2 is

e12 = JsSW1SW2d, s1d

whereJ is the exchange integral. In the complex system with
N magnetic sublattices, where only intersublattice exchange
is nonzero, the exchange energy per unit cell may be then
written as

Eex=
1

2o
i=1

N

o
jÞi=1

N

nizijJijsSW iSW jd, s2d

where i, j numerate the sublattices,ni is the number ofith
sublattice sites in the unit cell, andzij is the number of sites
belonging to the sublatticej that are neighbors of the site

from sublatticei. SW i is the spin of the atom on theith sublat-
tice.

The following analysis is limited to collinear systems, but
we consider different mutual arrangements of the sublattice
spins. Then

SW iSW j = SiSjsi
sads j

sad, s3d

where indexa labels different arrangements of the sublattice
spins andsi

sad= ±1. Eex then becomes

Eex=
1

2o
i=1

N

o
jÞi=1

N

nizijJijSiSjsi
sads j

sad. s4d

The differenceDsad of the exchange energy of the excited
statea and the ground statesa=0d is
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Dsad =
1

2o
i=1

N

o
jÞi=1

N

nizijJijSiSjssi
sads j

sad − si
s0ds j

s0dd. s5d

First we consider an arrangement in which the spinSW i of a
single sublattice is inverted relative to the ground state and
denoteDsad;Di:

Di = − 2Sinio
jÞi

zijJijSjsi
s0ds j

s0d. s6d

Second, an arrangement corresponding to spinsSW i, SW j of two
sublattices inverted relative to the ground state is considered.
DenotingDsad;Di j we obtain

Di j = Di + D j + 4nizijJijSiSjsi
s0ds j

s0d. s7d

Note thatnizij =njzji . With known Si, andni, zij fixed by the
geometry of the crystal lattice, this equation allows us to
determine the exchange integral

Jij = sDi j − Di − D jd/s4SiSjnizijsi
s0ds j

s0dd. s8d

The density-functional-based calculations yield the total
energy and, if they could be performed for all above spin
arrangements, the exchange integrals are easily determined.
To make this approach useful, the exchange interaction must
be short range, otherwise very large unit cells have to be
considered. It is generally accepted that in ferrites this con-
dition is fulfilled—the main mechanism is the superexchange
that decreases rapidly with the increasing FeuFe distance
ssee Ref. 4 for detailed analysisd.

In the above analysis we assumed that there is no intrasu-
blattice exchange and that the spin in theith sublattice inter-
acts with the nearestj th neighbors only. If the intra-sublattice
exchange for a specific sublattice is important, the sublattice
should be subdivided so that the interacting spins are in dif-
ferent sub-sublattices. Similarly, if exchange integralsJij are
nonzero not only for the nearestsnnd but also for the next-
nearest neighborssnnnd, a subdivision is required or we have
to be satisfied with determining the linear combination
zij

nnJij
nn+zij

nnnJij
nnn instead ofJij

nn, Jij
nnn.

In the hexaferrites, iron ions enter five different sublat-
tices and in the Ba- hexaferrite the nominal valency of iron
in all sublattices is 3+. The ground state of Fe3+ ion is 6S
corresponding to spinS=5/2 andorbital momentL=0. Zero
orbital moment is of importance as it implies that the ex-
change interaction is isotropic to a good approximation. Ba-

sic information concerning the five iron sublattices is given
in Table I, while numbers of the neighborszij and corre-
sponding distancesr ij are summarized in Table II.

III. METHOD OF CALCULATION

All calculations were performed with the experimental
crystal structure parameters5 employing the WIEN2k
program.6 This program is based on the density functional
theory and it uses the full-potential linearized augmented
plane wavesFPLAPWd method with the dual basis set. In the
APW-like methods the space is divided in the nonoverlap-
ping atomic spheres and the interstitial region. The electron
states are then classified as the core states, which are fully
contained in the atomic spheres, and the valence states. The
valence states are expanded using the basis functions; each
of the basis functions has the form of a plane wave in the
interstitial region, while it is an atomiclike function in the
atomic spheres. To make possible treatment of two valence
functions with the same orbital numberslike 3p and 4p func-
tions of Fed, so-called local orbitals are added to the basis
functions.7 In our calculations 3p, 3d, 4s, 4p states of Fe, 2s,
2p, 3s of O, and 4s, 4p, 5s, 5p of Ba are treated as valence
states. The numbernk of thek points in the irreducible part of
the Brillouin zone was 4. The symmetry of the crystal lattice
is hexagonal with 24 symmetry operations. The unit cell
comprises then 11 inequivalent sites—Basmultiplicity 2d,
five iron sitessmultiplicity 2,2,4,4,12d, and five oxygen sites
smultiplicity 4,4,6,12,12d. The total number of sites in the
unit cell is thus 64.

All calculations were spin polarized; for the exchange
correlation potential we adopted the GGA form.8 Single cal-
culation with the LSDA exchange-correlation potential9 was
performed for the ground state spin structure. The radii of the
atomic spheres were 2.0 a.u. for Ba, 1.9 a.u. for all five in-
equivalent Fe, and 1.6 a.u. for the oxygens.

Despite the fact that GGA is more suitable than LSDA
when applied to inhomogeneous electron systems, in the 3d
transition metal oxides the energy gap and the magnetic mo-
ments are still underestimated.10 To improve the description

TABLE I. The Fe sublattices in hexaferrites.ni is number of
atoms belonging to theith sublattice in the unit cell,si

s0d=1 s−1d
denotes that in the ground state the spin of theith sublattice is up
sdownd.

Index Denomination Polyhedron ni si
s0d

1 a octahedron 2 +1

2 b bipyramid 2 +1

3 f1 tetrahedron 4 −1

4 f2 octahedron 4 −1

5 k octahedron 12 +1

TABLE II. The nearest neighbor Fe ions in BaFe12O19. zij is the
number of sites belonging to the sublatticej that are neighbors of
the site from sublatticei and r ij is corresponding distance in nm.
The data for the next-nearest neighbors are also given ifr ij is
smaller than 0.4 nm.

2a 2b 4f1 4f2 12k

zij r ij zij r i j zij r i j zij r i j zij r i j

2a 6 0.589 2 0.580 6 0.346 6 0.557 6 0.305

2b 2 0.580 6 0.589 6 0.619 6 0.367 6 0.371

4f1 3 0.346 3 0.619 3 0.363 1 0.379 6 0.350

3 0.356

4f2 3 0.557 3 0.367 1 0.379 1 0.277 6 0.351

12k 1 0.305 1 0.371 2 0.350 2 0.351 2 0.291

1 0.356 2 0.298
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of Fe 3d electrons we thus used the rotationally invariant
version of the LDA+U method as described by Liechten-
steinet al.,13 but with the GGA instead of LSDA exchange-
correlation potential. The method should be therefore more
correctly denoted as GGA+U. The method is no longer truly
ab initio as the values of the Hubbard parameterU and the
exchange parameterJ must be inserted. These can either be
taken from experiment or estimated using the restricted
LSDA sGGAd calculation. In the restricted LSDA calcula-
tions for octahedrally coordinated Fe3+ ion in LaFeO3 sRef.
11d U=9.3 eV was obtained, while a smaller valueUsFe3+d
=5.5 eV was deduced from the photoemission and inverse
photoemission experiments ona-Fe2O3.

12 The exchange pa-
rameter J is believed to be close to its atomic valueJ
,1 eV.11 In any case we can rely on reasonable limits for
these parameters rather than on their specific values.

In the LDA+U methods an orbitally dependent potential
is introduced for the chosen set of electron states, which in
our case are 3d states of Fe. The additional potential has an
atomic Hartree-Fock form, but with screened Coulomb and
exchange interaction parameters. The problem is that the ex-
change and correlation already contained in the LSDA or
GGA should be subtracted. The form of this “double count-
ing correction” is spherically symmetrical and it is not clear
to which extent its application in the full potential methods is
justified, as there is no “double counting correction” for the
nonspherical terms in the orbital potential. We avoided this
problem by using instead of the parameterU an effective
Ueff=U−J and putting the nonspherical terms in orbital po-
tential equal to zero. In what follows the notationU;Ueff is
used, but it should be kept in mind that we are dealing with
the effectiveU which is somewhat smaller than the Hubbard
parameter asJ/U<0.1−0.2. To see how the results depend
on Ueff, three valuesUeff=3.47, 6.94, and 10.41 eV were
employed in addition to the GGA calculation which corre-
sponds toU=0. We note that the WIEN2k program was used
recently to calculateUeff of the Fe3+ ion in Fe2O3 and
Fe3O4.

14 The valuesUeff=7.33 and 7.38 eV were obtained
for the octahedrally coordinated Fe3+ ion in Fe2O3 and
Fe3O4, while smaller value 6.33 eV was calculated for the
tetrahedral Fe3+ ion in Fe3O4.

To check whether the numbernk of the k points in the
irreducible part of the Brillouin zone and the size of the basis
yield sufficiently accurate results, additional calculations us-
ing the GGAsU=0d were made, as in this case the system is
metallic for most of the excited configurations and thus the
results are more sensitive comparing toUÞ0 calculations,
for which the gap always exists.nk was increased from 4 to
7 and the number of basis functionsnB from 4160 to 5220.
While the change of the total energy itself is appreciable, the
differences of the total energies from which the exchange
integrals are calculated are rather insensitive. Their typical
change was a few percent, with the maximal change 7.3%.
For the GGA+U calculations the changes should be smaller
and we thus concluded that the lower values ofnk andnB are
sufficient.

IV. RESULTS

A. Ground state spin arrangement

The total density of statessDOSd for the ground state spin
arrangement calculated with LSDA, GGA, and GGA+U

sU=6.94 eVd is displayed in Fig. 1. A metallic state, with the
nonzero DOS at the Fermi energy, is predicted by the LSDA;
GGA gives a state on the brink of metal and insulator. An
insulating state is only obtained with the GGA+U. The mag-
netic moments of individual atoms, the total moment, and the
gap magnitude are given in Table III. Total magnetic moment
calculated with LSDA is smaller than nominal magnetic mo-
ment 40mB per unit cell. The GGA gives moment closer to
40 mB and in all GGA+U calculations the total magnetiza-
tion is very close to its nominal value—the remaining dis-
crepancy originates from the error of the integration over the

TABLE III. The ground spin configuration. LSDA and GGA
+U calculations for four values of the parameterU sU=0 corre-
sponds to the GGAd. Magnetic moments inside the atomic spheres
of individual nonequivalent ions, magnetic momentM of the unit
cell and the gap. All magnetic moments are in units ofmB; param-
eterU and the gap are in eV.

LSDA
U=0

GGA+U

U=0 U=3.47 U=6.94 U=10.41

Ba 0.0 0.0 0.0 0.0 0.0

Fes2ad 3.48 3.67 4.02 4.20 4.34

Fes2bd 3.36 3.48 3.89 4.12 4.29

Fes4f1d −3.22 −3.38 −3.87 −4.12 −4.29

Fes4f2d −3.04 −3.30 −3.95 −4.10 −4.35

Fes12kd 3.46 3.68 4.02 4.21 4.36

Os4ed 0.34 0.39 0.35 0.29 0.23

Os4fd 0.09 0.12 0.09 0.07 0.05

Os6hd 0.08 0.07 0.04 0.02 0.01

Os12k1d 0.08 0.10 0.09 0.07 0.06

Os12k1d 0.17 0.19 0.17 0.14 0.11

M 37.73 39.93 40.01 40.01 40.01

Gap 0.0 0.0 1.07 2.11 2.70

FIG. 1. The DOSsin states/eVd of BaFe12O19 hexaferrite calcu-
lated using LSDA, GGA, and GGA+UsU=6.94 eVd methods.
Positive snegatived values correspond to majoritysminorityd spin
states.
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Brillouin zone and from leaking of the core states out of the
atomic spheres. The magnetic moments of Fe ions increase
and moments on oxygens decrease asU is increased—this is
a typical result of the LDA+U methods that tend to make the
occupation of electron states integer.

B. Inter-sublattice interactions

There are five Fe sublattices, thus there are five arrange-
ments with the spin of the single sublattice inverted and the
number of arrangements with the spins of two sublattices
inverted is ten. In addition the ground state must be consid-
ered. To make full use of the formulas8d 16 calculations are
thus needed. Inspection of Table II shows that in the case of
4f1−12k exchange the interaction between the next-nearest
neighbors may be important. Fortunately the geometry of the
FeuOuFe triad of the nearest and the next-nearest neigh-
bors is similars12k-O distances are 0.2116 and 0.2093 nm,
4f1-O distances 0.1894 and 0.1893 nm and the 12k-O-4f1
angle 121.3 and 126.1 deg, respectivelyd. In what follows we
neglect the difference and merge the nn and nnn putting
zf1k=9.

When using the GGA, converged results were obtained
for eight excited spin arrangements only. For six of them the
total magnetic momentmtot differs markedly from its nomi-
nal value, pointing to the fact that the spin inversion led to a
profound change of the electron structure. This in turn is
connected with the metallic character of the system. On the
other hand the GGA+U calculations may be converged for
all 15 excited spin arrangements and the calculated moment
always equals its nominal value. The DOS exhibits a gap; its
smallest value is 0.80 eV obtained for the ferromagnetic con-
figuration andU=3.47 eV.

The intersublattice exchange integrals as functions of the
parameterU are plotted in Fig. 2. Interactions Fesad-Fesbd
and Fesad-Fesf2d proved to be very small withuJabu, uJaf2

u
,0.01 eV and they are thus not shown.

C. Intra-sublattice interactions

Inspection of Table II reveals that the distance of neigh-
boring sites in sublattices 4f1, 4f2, and 12k is smaller than

0.4 nm and in fact 4f2 and 12k sites have the nearest Fe
neighbors in the same sublattice. The exchange interaction
within these two sublattices cannot be thus neglected. More-
over, for the 12k sublattice the interaction between the next-
nearest neighbors must also be considered. Similarly as for
4f1-12k interaction the geometries of the FeuOuFe triads
for the nearest and the next-nearest Fe neighbors are very
similar and, neglecting their difference, we putzkk=4.

As mentioned in Sec. II, to determine the intra-sublattice
exchange we have to subdivide the sublattice in question.
The subdivision lowers the symmetry of the system and the
number of inequivalent sites increases which makes the cal-
culation more costly. If possible the inversion symmetry
should be preserved, as for the systems without inversion the
complex instead of real eigenvalue problem must be solved.
The sublattices can be divided in several different ways; the
subdivision which preserves the highest symmetry should be
preferred. We divided the sublattice 4f2 in 2f28, 2f29, which
increased the numberNa of inequivalent atoms from 11 to 19
and reduced the numberNs of symmetry operations from 24
to 12. The inversion center is preserved. For the 12k sublat-
tice we have chosen the division in 8k8, 4k9 sub-sublattices,
which leads toNa=15, Ns=8 and again inversion center is
preserved. Finally the division of 4f1 in 2f18, 2f19 increasesNa
to 18, reducesNs to 12, and the center of inversion is lost.
The results are summarized in Table V.

The three intra-sublattice exchange integrals as functions
of the parameterU are plotted in Fig. 3.

V. DISCUSSION

It is seen from Tables IV and V that among all possible
spin configurations it is the experimentally found spin struc-
ture that has the lowest energy. The same conclusion was
also made by Fanget al.,3 though only a limited number of
configurations were considered by these authors. Their re-
sults are based on the localized spherical wavesLSWd
method that is faster but presumably less reliable compared
to the FPLAPW method used in the present paper. First, the
LSW is not a full potential method as the potential is spheri-
cally averaged within the atomic spheres. Second, to fill the
space, “empty atomic spheres” must be added and that is a
rather arbitrary procedure. Another difference is that the lo-
cal spin density approximation was employed in Ref. 3 and
no attempt was made to improve the description of the elec-

FIG. 2. sColor onlined The intersublattice exchange integrals as
functions ofU. Exchange integralsuJabu and uJaf1

u are smaller than
0.01 eV and they are omitted.

FIG. 3. sColor onlined The intrasublattice exchange integrals as
functions ofU for 4f1, 4f2, and 12k sublattices.
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tron correlation. As far as magnetism is concerned, the alkali
metal ions play a passive role, the corresponding states being
far from the Fermi level; the fact that Sr hexaferrite was
considered in Ref. 3 is likely to be insignificant, more impor-
tant may be the difference of the crystal parameters. Taking
all these differences into account, the LSW method seems to
work surprisingly well. Despite the poor description of the
strong electron correlation by LSDA the gap<0.63 eV was
obtained. The energy differences between the excited and
ground state spin configurations come out similar to our re-
sults for the smallestU value, in particular their sequence is,
with one exception, the samesTable IVd.

An important conclusion follows from Table II and Fig.
2—once the distance between the Fe ions is largefr ij

.0.5 nm,si , jd;sa,bd ,sa, f2d ,sb, f1dg the exchange inte-
grals are small. This justifies the limitation of the present
analysis, in which the interactions between the nearest neigh-
bors were taken into account and the next-nearest neighbors
were considered only if the FeuFe distance was smaller
than 0.4 nm.

Virtually all exchange integrals are positive, i.e., the ex-
change is in our convention antiferromagnetic. As seen from
Figs. 2 and 3 in all casesJij decrease as the onsite Coulomb
repulsion parameterU increases. This can be expected: the
leading interaction in ferrites is believed to be the superex-
change and in the simple Anderson picture corresponding
exchange integrals are proportional tob2/U, whereb is the
transfer integral.15 On the other hand, theJijsUd decrease is
slower than the Anderson theory predicts, pointing to the fact
that the oxygen states play an active role and that other ex-
change mechanisms cannot be neglected. Of interest is the
4f1-4f2 interaction—in this case the exchange path is com-
plicated, as the iron ions in question do not share a common
oxygen neighbor. Despite this fact, the exchange integral
comes out as medium large.

We used the complete set of the 13 calculatedJij to de-
termine the Curie temperature. In the molecular field
approximation2 the Curie temperature corresponds to the
largest eigenvalue of the complete 24324 matrix of ex-
change interactionssThe Bravais unit cell contains 24 sites
of iron atomsd multiplied by the number of equivalent neigh-
bors. In the molecular field approximation the fluctuation of
spins is neglected, the system is artificially made more
stable, and, as a consequence, the transition temperature is
overestimated. The fluctuation of spins is taken into account
in RPA, but until now this method was applied to simple
magnetic systems only. We did extend the RPA to structur-
ally complex materials sthe details will be presented
elsewhere,16 but a brief summary of the approach is given in
the Appendixd. In Fig. 4 we show critical temperatures cal-
culated within both MFA and RPA. Experimental value is
drawn as a horizontal barsits height corresponds to the span
of experimental datad. The reduction obtained by RPA for a

TABLE IV. The energy differenceDsUd in eV between excited
spin arrangementsinverted spins of iron sublatticess1, s2d and the
ground state. GGA+U calculation have four differentU values
sU=0 corresponds to GGAd. D* are the results for SrFe12O19 taken
from Ref. 3.Ms0d is the magnetic moment of the unit cell for the
GGA calculation in units ofmB, Mn is its nominal value. The cal-
culations withUÞ0 led to M that differed fromMn by less than
0.03mB. nc in the “U=0” column means that the calculation does
not converge or that it converges to a different spin configuration.

s1 s2 Ds0d Ds3.47d Ds6.94d Ds10.41d D* Ms0d Mn

2a ¯ 1.378 1.035 0.708 0.477 ¯ 19.99 20

2b ¯ 1.184 0.849 0.532 0.331 ¯ 19.96 20

4f1 ¯ 4.871 3.600 2.251 1.425 3.77 67.91 80

4f2 ¯ nc 3.545 2.190 1.389 4.86 nc 80

12k ¯ 6.244 4.337 2.790 1.817 ¯ −62.88 −80

2a 2b nc 1.883 1.240 0.808 1.78 nc 0

2a 4f1 3.458 2.286 1.518 1.006 ¯ 59.50 60

2a 4f2 nc 4.578 2.900 1.868 ¯ nc 60

2a 12k nc 5.639 3.516 2.237 6.77 nc −100

2b 4f1 nc 4.371 2.747 1.737 ¯ nc 60

2b 4f2 3.323 1.918 1.216 0.787 ¯ 52.18 60

2b 12k nc 6.036 3.802 2.440 7.22 nc −100

4f1 4f2 nc 7.350 4.534 2.860 8.66 nc 120

4f1 12k 4.671 2.951 1.926 1.265 ¯ −33.57 −40

4f2 12k 4.480 3.072 2.017 1.317 3.15 −39.90 −40

TABLE V. The intrasublattice exchange interactions. Energy
differencesDsUd in eV are between excited spin arrangementsin-
verted spins of iron sublatticess1, s2d and the ground state.

s1 s2 Ds3.47d Ds6.94d Ds10.41d

2f18 ¯ 1.768 1.112 0.746

2f19 ¯ 1.768 1.112 0.746

2f18 2f19 3.648 2.251 1.512

2f28 ¯ 1.740 1.080 0.695

2f29 ¯ 1.740 1.080 0.695

2f28 2f29 3.544 2.190 1.392

8k8 ¯ 2.269 1.567 1.063

4k9 ¯ 0.798 0.636 0.464

8k8 4k9 4.319 2.765 1.798

FIG. 4. The Curie temperature calculated from inter- and intra-
sublatticeJij using the molecular field approximation and random
phase approximation. The horizontal bar corresponds to the range
of experimental valuessRef. 1d.
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single sublattice ferromagnet with spin 5/2 andz=6 inter-
acting neighbors is substantialTC

RPA/TC
MFA=2/3.2 This ap-

proximately holds also for our much more complicated struc-
ture. Taking MFA as an upper bound and RPA as a lower
bound, we can conclude that the experimental critical tem-
perature is reproduced by calculations forU in the range
from 6 to 7 eV. This result is in agreement with the general
experience concerning the strength of the intraatomic Cou-
lomb correlations in iron compounds.

VI. CONCLUSIONS

Our results show that the calculations based on DFT are
capable to describe the exchange interaction in the complex
iron oxides. The method we used employs differences of the
total energy of different collinear spin configurations. Its suc-
cess depends crucially on the fact that the electronic structure
of all configurations corresponds to an insulator—the rever-
sal of the spin then leads to a small change of the electronic
states only. In order to obtain the insulating state, the GGA
+U method had to be used. The calculations do not allow us
to identify contributions of different mechanisms to the ex-
change integrals, but from theJijsUd dependence we can
conclude that the leading mechanism is the antiferromagnetic
superexchange.
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APPENDIX: CALCULATION OF THE CRITICAL
TEMPERATURE—RANDOM PHASE APPROXIMATION

The RPA formalism is based on Green’s function tech-
nique. We define thesretardedd Green’s functionsanalogi-
cally to Callen17d

Gij
ABsa;td = −

i

"
Ustdkfŝi,A

+ std,expsaŝj ,B
z dŝj ,B

− gl, sA1d

wherea is an auxiliary parameter andfX̂,Ŷg=X̂Ŷ−ŶX̂ is a
commutator. Hereŝi,A

± = ŝi,A
x ± iŝi,A

y and ŝi,A
z are spin operators

operating in the unit celli at basis siteA; their time depen-
dence is understood within the Heisenberg picture.Ustd is a
step function, i.e.,Ustd=1 for tù0, zero otherwise. Mean

value in the equation sA1d means kÂl=TrfrÂg
=Trfexps−bĤdÂg /Trfexps−bĤdg with Ĥ being the Heisen-
berg Hamiltonian andb=1/kBT with kB being the Boltzmann
constant andT a temperature.

The equation of motion for the Green’s functionsA1d can
be simplified by applying the RPA decoupling according to
Tyablikov.18 Time and lattice Fourier transformations allow
then to express the Green’s function explicitly in the follow-
ing form,

GABsv,qd =
1

2p
kfŝi,A

+ ,expsaŝj ,A
z dŝj ,A

− glhf"v1 − Nsqdg−1jAB,

sA2d

where1 is unity matrix and

NABsqd = dABo
C

JACs0dkŝC
z l − kŝA

zlJABsqd. sA3d

Application of the fluctuation-dissipative theorem leads to
a set of decoupled differential equations in variablea of the
type solved by Callenfsee Eq.s44d in Ref. 8g. From their
solution in the limitT→TC we obtain a set of self-consistent
equations for mean values of moments

kŝA
zl =

2SAsSA + 1d
3kBTC

S 1

V
E dqfN−1sqdgAAD−1

, sA4d

which can be solved by iterative methods. Together with the
self-consistent set ofkŝA

zl we obtain critical temperatureTC,
Eq. sA4d.
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