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Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model

Anders W. Sandvik
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

~Received 16 May 1997!

The ground-state parameters of the two-dimensionalS51/2 antiferromagnetic Heisenberg model are calcu-
lated using the stochastic series expansion quantum Monte Carlo method forL3L lattices withL up to 16. The
finite-size results for the energyE, the sublattice magnetizationM , the long-wavelength susceptibility
x'(q52p/L), and the spin stiffnessrs , are extrapolated to the thermodynamic limit using fits to polynomials
in 1/L, constrained by scaling forms previously obtained from renormalization-group calculations for the
nonlinears model and chiral perturbation theory. The results are fully consistent with the predicted leading
finite-size corrections, and are of sufficient accuracy for extracting also subleading terms. The subleading
energy correction (;1/L4) agrees with chiral perturbation theory to within a statistical error of a few percent,
thus providing numerical confirmation of the finite-size scaling forms to this order. The extrapolated ground-
state energy per spin isE520.669437(5). Theresult from previous Green’s function Monte Carlo~GFMC!
calculations is slightly higher than this value, most likely due to a small systematic error originating from
‘‘population control’’ bias in GFMC. The other extrapolated parameters areM50.3070(3), rs50.175(2),
x'50.0625(9), and thespin-wave velocityc51.673(7). Thestatistical errors are comparable with those of
previous estimates obtained by fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling
forms. BothM andrs obtained from the finite-T data are, however, a few error bars higher than the present
estimates. It is argued that theT50 extrapolations performed here are less sensitive to effects of neglected
higher-order corrections, and therefore should be more reliable.@S0163-1829~97!01841-9#
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I. INTRODUCTION

In the nonlinear s model description of the two
dimensional~2D! Heisenberg model,1 the low-energy and
low-temperature properties of the system are completely
termined by three ground-state parameters; the subla
magnetizationM , the spin stiffness constantrs , and the
spin-wave velocityc. Their values are not given by th
theory, however, but have to be determined starting from
microscopic Hamiltonian. A large number of calculations
the ground-state parameters have been carried out. The
ferromagnetically ordered ground state, which has been
tablished rigorously only forS.1/2,2 was convincingly con-
firmed also forS51/2 in a quantum Monte Carlo~QMC!
study by Reger and Young.3 The sublattice magnetizatio
obtained this way,M'0.30 ~in units where the Ne´el state
hasM51/2), also indicated that spin-wave theory4,5 gives a
surprisingly good quantitative description of the grou
state. The same conclusion was reached by Singh,6 who car-
ried out a series expansion around the Ising limit, and fou
M'0.30,rs'0.18J, andc'1.7J (J is the nearest-neighbo
exchange coupling!, all in good agreement with spin-wav
theory including the 1/S corrections.5 Subsequent higher
order spin-wave calculations showed that the 1/S2 correc-
tions toM , rs, andc indeed are small.7–9 Several other QMC
simulations,10–19 exact diagonalizations,20–22 as well as se-
ries expansions to higher orders,23 have confirmed and im
proved on the accuracy of the above estimates. The pres
most accurate calculations16,18,19,23indicate that the true val
ues of the ground-state parameters deviate from their 1S2

spinwave values by only 1–2 % or less.
For most practical purposes~such as extractingJ for a

system from experimental data!, the ground-state paramete
560163-1829/97/56~18!/11678~13!/$10.00
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of the 2D Heisenberg model are now known to quite su
cient accuracy. However, there are still reasons to go to e
higher precision. One is that the model is one of the ba
‘‘prototypic’’ many-body models in condensed matter phy
ics. It has become a testing ground for various analytical
numerical methods for strongly correlated systems, t
making it important to accurately establish its properties. A
other reason is the very detailed predictions that have
sulted from field theoretical studies, such as renormalizati
group calculations for the nonlinears model,1,24–26 and
chiral perturbation theory.27 Apart from giving the low-
energy properties in the thermodynamic limit, these theo
also predict the system size dependence of vari
quantities.25–27 This is important from the standpoint of nu
merical calculations such as exact diagonalization and QM
which are necessarily restricted to relatively small lattic
Finite-size scaling approaches have been very successf
the study of 1D quantum spin systems, having convincin
confirmed various predictions from bosonization and conf
mal field theory. For example, critical exponents and log
rithmic corrections have been extracted from the size dep
dence of ground-state energies and finite-size gaps,28 and
from correlation functions.29 With the concrete predictions
now available, similar studies show great promise for test
theories also in 2D. For the standard Heisenberg mo
finite-size scaling has been used extensively and success
in extrapolating, e.g., the sublattice magnetization for sm
lattices to infinite system size,3,10–14 but only a few studies
have so far been accurate enough for reliably addressing
validity of the theoretical predictions for the siz
corrections.15,16,18,19

In one dimension, exact diagonalization, and more
cently the density matrix renormalization-group method30
11 678 © 1997 The American Physical Society
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56 11 679FINITE-SIZE SCALING OF THE GROUND-STATE . . .
enable highly accurate calculations for systems sufficie
large to approach the limit where the asymptotic scal
forms are valid.28,29 Calculations with these methods in tw
dimensions cannot reach linear dimensions large enoug
verify the details of the predicted scaling forms, howev
Some of the expected leading finite-size behavior has b
seen in exact diagonalization studies including systems w
up to 636 spins,20,21 but constants extracted from the si
dependence are typically not consistent with other calc
tions. For example,c extracted from the scaling ofE devi-
ates by 15% from other estimates.20 There are hence clea
indications that these small systems are not yet in the reg
where only the dominant corrections are important.

QMC can reach significantly larger lattices at the cost
statistical errors which are often relatively large, making
difficult to accurately extract the scaling behavior. Run
carried out Green’s function Monte Carlo~GFMC! simula-
tions of L3L Heisenberg systems withL up to 16, and
found a reasonable consistency with the leadingT50 size
dependence of the energy and the sublat
magnetization.15,16 He also noted the presence of a suble
ing correction to the energy,16 but the accuracy of the GFMC
data was not high enough to extract its order, and furth
morec extracted from the leading correction was sensitive
the subleading one. The extrapolated ground-state ene
E520.66934(3), isnevertheless the most accurate es
mate reported for this quantity.

Chiral perturbation theory has recently enabled calcu
tions of scaling forms for finite sizeand finite temperature
for various quantities.27 Such forms have been used in com
bination with QMC data in recent work by Wiese an
Ying,18 and Beard and Wiese.19 Their calculations employed
respectively, methods based on the ‘‘loop-cluster algorith
invented by Evertzet al.,31 and a continuous-time variant o
that method developed by Beard and Wiese.19 These algo-
rithms are based on global flips of loops of spins, and ov
come the problems with long autocorrelation times typica
standard Suzuki-Trotter32,33 or worldline34 QMC methods
~the continuous-time approach furthermore avoids the s
tematic discretization error of the Trotter approximatio!.
Considerably more accurate finite-T data could therefore be
generated, and the leading-order scaling forms of chiral p
turbation theory were convincingly verified, both in the ‘‘cu
bic’’ regime T/c'1/L ~Ref. 18! and the ‘‘cylindrical’’ re-
gimeT/c!1/L ~Ref. 19!. The extrapolatedM , rs , andc are
impressively accurate, although there are some minor
crepancies between the two results forM ~on the border line
of what could be expected within statistical errors alone!.

In this paper, a finite-size scaling study ofT50 data is
reported. Using the stochastic series expansion~SSE! QMC
algorithm,35,36 high-precision energy results are obtained
L3L lattices withL up to 16. The relative statistical error
are as low as'1025. Employing a recently suggested da
analysis scheme which takes into account covariance am
calculated quantities,37 very accurate results for the sublattic
magnetization are also obtained. Furthermore, the spin s
ness and the long-wavelength susceptibilityx(q52p/L) are
also calculated directly in the simulations.

Assuming for the size dependences polynomials in 1L,
constrained by scaling forms forE and M predicted from
chiral perturbation theory,27 all the computed quantities ar
ly
g

to
.
en
th

-

e

f
t
e

e
-

r-
o
gy,
-

-

’’

r-
f

s-

r-

s-

r

ng

ff-

included in a coupledx2 fit. The quality of the QMC data for
E and M is high enough that size correctionsbeyond the
subleading termshave to be included. The leading-order co
rections are fully consistent with the predictions. From
careful statistical analysis of the fits, bounds for the suble
ing terms are estimated. The subleading energy correctio
found to agree with the prediction of chiral perturbatio
theory to within a statistical error of 5%~the subleading cor-
rection for M is also estimated, but has not yet been cal
lated analytically!. This is hence a numerical confirmation o
chiral perturbation theory to subleading order.

The extrapolated ground-state energy,E520.669437(5),
has a statistical error six times smaller than the GFMC re
by Runge,16 and is slightly lower than his result. Comparin
the finite-size data of the two calculations, a clear tende
to overestimation of the energy is seen in the GFMC resu
This is likely due to a bias originating from ‘‘populatio
control’’ in GFMC ~a small effect of this nature was in fac
anticipated by Runge16!.

The results for the sublattice magnetizatio
M50.3070(3), and thespin stiffness,rs50.175(2), are
both slightly lower than the estimates obtained from t
finite-T scaling by Beard and Wiese19 @M50.3083(2) and
rs50.185(2)#. Although it is at this point difficult to defi-
nitely conclude which calculation is more reliable, it ca
again be noted that the high accuracy of the QMC data foE
and M used in the fits carried out in this paper necessita
the inclusion of size corrections beyond the orders con
ered by Beard and Wiese.19 Hence, any remaining effects o
neglected corrections of even higher order should be sma
Quantitative estimates of such effects on the extrapolati
performed here support that they are indeed smaller than
statistical errors indicated above. For the spin-wave velo
the two calculations agree, the result obtained here be
c51.673(7) and the value reported in Ref. 19 bei
c51.68(1).

The outline of the rest of the paper is the following.
Sec. II the SSE algorithm and the covariance error reduc
scheme are outlined. The absence of systematic errors
demonstrated in comparisons with exact results for 434 and
636 lattices. The fitting procedures and the results of th
are discussed in Sec. III. The study is summarized in Sec.
Some other problems where the methods applied here sh
be useful are also mentioned.

II. NUMERICAL METHODS

The standard 2D Heisenberg model is defined by
Hamiltonian

Ĥ5J(
^ i , j &

Si•Sj ~J.0!, ~1!

whereSi is a spin-1/2 operator at sitei on a square lattice
with N5L3L sites, and^ i , j & denotes a pair of neares
neighbor sites. Below, in Sec. II A, the SSE approach
QMC simulation of this model is outlined. More details o
the algorithm are discussed in Refs. 36 and 38. The S
method has recently been applied to a variety of s
models,39–42 as well as 1D Hubbard-type electron
models.43
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It was recently noted that correlations between meas
ments of different observables can be used to significa
increase the accuracy of certain quantities calculated in
simulations.37 This covariance scheme for analyzing the d
is of crucial importance in the present work, and theref
this method is also described below in Sec. II B. The h
accuracy of the procedures is demonstrated by compa
results for 434 and 636 lattices with the exact diagona
ization data available for these systems.

A. Stochastic series expansion

Based on the exact power series expansion ofe2bĤ, the
SSE method35,36can be considered a generalization of Han
scomb’s QMC scheme.44,45 It is the first ‘‘exact’’ method
proposed for QMC simulations of general lattice Hamilt
nians at finite temperature~with the usual caveat of being i
practice restricted to models for which the sign problem c
be avoided!. It is not based on a controlled approximatio
such as the Trotter formula used in standard worldl
methods,34 and therefore directly gives results accurate
within statistical errors. Despite being formulated at finiteT,
temperatures low enough for studying the ground state
easily be reached for moderate-size lattices.

As in Handscomb’s method for the S51/2
antiferromagnet,45 the SSE approach for this model sta
from the Hamiltonian written as (J51)

Ĥ52
1

2 (
b51

2N

@Ĥ1,b2Ĥ2,b#1
N

2
, ~2!

whereb is a bond connecting a pair of nearest-neighbor s

^ i (b), j (b)&, and the operatorsĤ1,b and Ĥ2,b are defined as

Ĥ1,b52@ 1
4 2Si ~b!

z Sj ~b!
z #, ~3a!

Ĥ2,b5Si ~b!
1 Sj ~b!

2 1Si ~b!
2 Sj ~b!

1 . ~3b!

An exact expression for an operator expectation value

^Â&5
1

Z
Tr$Âe2bĤ%, Z5Tr$e2bĤ%, ~4!

at inverse temperatureb5J/T, is obtained by Taylor ex-
pandinge2bĤ and writing the traces as sums over diago
matrix elements in the basis$ua&5uS1

z , . . . ,SN
z &%. The par-

tition function is then35

Z5(
a

(
n50

`

(
Sn

~21!n2bn

n! K aU)
i 51

n

Ĥai ,biUaL , ~5!

whereSn is a sequence of index pairs defining the opera
string ) i 51

n Ĥai ,bi
,

Sn5@a1 ,b1#@a2 ,b2# . . . @an ,bn#,

aiP$1,2%,biP$1, . . . ,2N%, ~6!

and n2 denotes the total number of index pairs~operators!
@ai ,bi # with ai52 (n5n11n2). Equation~5! deviates from
Handscomb’s method,44,45 which relies on exact evaluatio
of the traces of the operator sequences and therefore is
e-
ly
E
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ited to models for which this is possible. The Heisenbe
model considered here is such a model~one of the very few!,
but the more general SSE approach of further expand
over a set of basis states is preferable also in this case
reasons that will be discussed below.

The objective now is to develop a scheme for importan
sampling of the terms in the partition function~5!. A term, or
configuration, (a,Sn) is specified by a basis stateua& and an
operator sequenceSn . The operatorsĤ1,b and Ĥ2,b can act
only on states where the spins at sitesi (b) and j (b) are
antiparallel. The diagonalĤ1,b leaves such a state un
changed, whereas the off-diagonalĤ2,b flips the spin pair.
Defining a propagated state

ua~p!&5)
i 51

p

Ĥai ,bi
ua&, ua~0!&5ua&, ~7!

a configuration (a,Sn) must clearly satisfy the periodicity
conditionua(n)&5ua(0)& in order to contribute to the parti
tion function. For a lattice withL3L sites andL even, this
implies that the total numbern2 of the off-diagonal operators
must be even, and hence that all terms in Eq.~5! are positive
and can be used as relative probabilities in a Monte Ca
importance sampling procedure~this is true for any nonfrus-
trated system!.

For a finite system at finiteb, the powersn contributing
significantly to the partition function are restricted to with
a well defined regime, and the sampling space is there
finite in practice. In order to construct an efficient updati
scheme for the index sequence it is useful to explicitly tru
cate the Taylor expansion at some self-consistently cho
upper boundn5 l , high enough to cause only an expone
tially small, completely negligible error.35 One can then de-
fine a sampling space where the length of the sequenc
fixed, by inserting a numberl 2n of unit operators, denoted
Ĥ0,0, in the operator strings. The terms in the partition fun
tion ~5! are divided by (n

l ), in order to compensate for th
number of different ways of inserting the unit operators. T
summation overn in Eq. ~5! is then implicitly included in the
summation over all sequencesSl of length l , with
@ai ,bi #5@0,0# as an allowed operator. Denoting byW(a,Sl)
the weight of a configuration (a,Sl), the partition function is
then

Z5(
a

(
Sl

W~a,Sl !. ~8!

Since all nonzero matrix elements in Eq.~5! equal one, the
weight is ~when nonvanishing!

W~a,Sl !5S b

2 D n ~ l 2n!!

l !
, ~9!

where n still is the expansion power of the term, i.e., th
number of non-@0,0# operators inSl .

The following is only a brief outline of the actual sam
pling scheme. More details can be found in Refs. 36 and
During the simulation,Sl and one of the statesua(p)& are
stored. Other propagated states are generated as neede
simulation is started with a randomly generated stateua(0)&,
with an index sequenceSl containing only@0,0# operators
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56 11 681FINITE-SIZE SCALING OF THE GROUND-STATE . . .
~unit operators!, and with some arbitrary~small! l . The trun-
cation l is adjusted as the simulation proceeds, as will
discussed further below.

With the fixed-length scheme, all updates of the opera
sequence can be formulated in terms of substitutions of
or several operators. The simplest involves a diagonal op
tor at a single position;@0,0#↔@1,b#. This update can be
carried out consecutively at all positionsp for which ap

P$0,1%. In the→ direction, the bond indexb is chosen at
random and the update is rejected if the spins connectedb
are parallel in the current stateua(p21)&. The Metropolis
acceptance probabilities46 required to satisfy detailed balanc
are obtained from Eq.~9!, where the powern in is changed
by 61. Updates involving the off-diagonal operators@2,b#
are carried out withn fixed. The simplest is of the type
@1,b#@1,b#↔@2,b#@2,b#, involving two operators acting on
the same bond. These two sequence updates can gener
configurations with spin flips on retracing paths on the l
tice, and are the only ones required for a 1D system w
open boundary conditions. For a 2D system, configurati
associated with spin flips around any closed loop are p
sible, and an additional type of update is required. It is s
ficient to consider substitutions on a plaquette, of the ty
@2,b1#@2,b2#↔@2,b3#@2,b4#, whereb1 , . . . ,b4 is a permuta-
tion of the four bonds of a plaquette. For systems with pe
odic boundary conditions, updates involving cyclic spin fli
on loops wrapping around the whole system are requ
~sampling of different winding number sectors!, and cannot
be accomplished by the above local sequence alterations
the square lattice considered here, the winding number
be changed by substitutingL/2 operators according to
@2,b1# . . . @2,bL/2#↔@2,bL/211# . . . @2,bL#, where the set of
bondsb1 , . . . ,bL is a permutation of bonds forming a close
ring around the system in thex or y direction.

Updating the operator sequence with the four types
operator substitutions described above suffices for genera
all possible configurations within a sector of fixed magne
zation,mz5( i 51

N Si
z . In the grand canonical ensemble, glob

spin flips changing the magnetization are also required. H
T→0 will be considered~i.e., T is much lower than the
finite-size gap!, and since the ground state is a singlet47 the
canonical ensemble withmz50 is appropriate. It can be
noted that in Handscomb’s method the sampling is~in prin-
ciple! automatically over all magnetization sectors, a
therefore a restriction to, e.g.,mz50 is not possible. In prac
tice, this causes problems at low temperatures, and H
scomb’s method has therefore been used for the antife
magnetic Heisenberg model mostly at relatively hi
temperatures (T/J*0.4 in 2D!.45 The SSE method with the
restrictionmz50 can be used at arbitrarily lowT.

In order to determine a sufficiently high truncation of t
expansion, the fluctuating powern is monitored during the
equilibration part of the simulation. Ifn exceeds some
thresholdl 2D l /2, the cutoff is increased,l→ l 1D l , by in-
serting additional@0,0# operators at random positions. I
practiceD l' l /10 leads to a rapid saturation ofl at a value
sufficient to cause no detectable truncation errors. T
growth of l during equilibration is illustrated for a 434 sys-
tem in Fig. 1. The distribution ofn during a subsequen
e
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simulation is shown in Fig. 2, and clearly demonstrates t
the truncation of the expansion is no approximation in pr
tice.

A Monte Carlo step~MC step! is defined as a series of th
single ~diagonal! operator substitutions attempted consec
tively at each position inSl ~where possible!, followed by a
series of off-diagonal updates carried out on each bo
plaquette, and ring. Due to the locality of the constraints
these updates, the number of operations~the CPU time! per
MC step scales linearly withN and b.36,38 However, the
acceptance rate for the ‘‘ring update’’ that changes the wi
ing number decreases rapidly with increasing system siz
is therefore sometimes useful to increase the number o
tempted ring updates with the system size, which then le
to a faster growth of CPU time withN. The acceptance rat

FIG. 1. The operator sequence truncation vs the numbe
Monte Carlo steps performed for a 434 lattice at inverse tempera
ture b532. The finall after 105 MC steps wasl 5804 ~the last
increase occurred after 6674 steps!. The increment used wa
D l5 l /10.

FIG. 2. The distribution of the powern of the sampled terms in
a 53106 MC step simulation of 434 lattice at inverse temperatur
b532, after adjustingl as shown in Fig. 1. The lower histogram
the full distribution. The higher, only partially visible histogram
the distribution multiplied by a factor 1000. The cutoff wasl 5804,
which is significantly larger than the largestn sampled. Hence, the
truncation has not degraded the accuracy of the simulation.
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11 682 56ANDERS W. SANDVIK
of the ring update currently used becomes too low forL*16,
and simulations of larger systems therefore in practice h
to be restricted to the sector with zero winding number
has recently been noted48 that in fact exact results are ob
tained asT→0 even for simulations restricted this wa
However, compared to simulations with fluctuating windi
numbers, lower temperatures are required for the system
servables to saturate at their ground-state values.48 Here only
systems withL<16 are considered, and the update chang
the winding number is always included.

Measurements of physical observables are carried ou
ing the index sequencesSn obtained by omitting the@0,0#
operators in the generatedSl . These are then, of course
distributed according to the weight function corresponding
Eq. ~5!.

One can show that the internal energy per spin is sim
given by the average ofn @with the constant term in Eq.~2!
neglected#:44,35

E52
^n&
Nb

. ~10!

This expression also shows that the average power,
hence the sequence lengthl , scales asbN at low tempera-
tures.

A spin-spin correlation function,

C~ i , j !5C~r i2r j !5^Si
zSj

z&, ~11!

is obtained averaging the correlations in the propaga
statesua(p)& defined in Eq.~7!. Further defining

Si
z@p#5^a~p!uSi

zua~p!&, ~12!

the correlation function is given by35

C~ i , j !5K 1

n11(
p50

n

Si
z@p#Sj

z@p#L . ~13!

The corresponding static susceptibility,

x~ i , j !5E
0

b

dt^Si
z~t!Sj

z~0!&, ~14!

involves correlations between all the propagated states:36

x~ i , j !5K b

n~n11!S (
p50

n21

Si
z@p# D S (

p50

n21

Sj
z@p# D

1
b

~n11!2S (
p50

n

Si
z@p#Sj

z@p# D L . ~15!

Off-diagonal correlation functions can be easily calc
lated for operators that can be expressed in terms of
spin-flipping operatorsĤ2,b , each of which is a sum of two
terms;Ĥb

15Si (b)
1 Sj (b)

2 andĤb
25Si (b)

2 Sj (b)
1 . The spin stiffness

constant, which will be discussed further below, involves
static susceptibility defined in terms of these operators.

Although the simulation scheme is formulated wi
Ĥ2,b5Hb

11Hb
2 , one can still access the terms individua

since only one of them can propagate a given state. One
show that an equal-time correlation function,
e
t

b-

g

s-

o

ly

nd

d

-
e

a

an

Fss8~b,b8!5^Ĥb
sĤb8

s8&, ~16!

is given by36

Fss8~b,b8!5 K n21

~b/2!2 N~bs;b8s8!L , ~17!

whereN(bs;b8s8) is the number of times the operatorsĤb
s

andĤb8
s8 appear next to each other inSn , in the given order.

The corresponding static susceptibility,

xss8~b,b8!5E
0

b

dt^Ĥb
s~t!Ĥb8

s8~0!&, ~18!

is given by the remarkably simple formula36

xss8~b,b8!54^N~bs!N~b8s8!2dbb8dss8N~bs!&/b,
~19!

whereN(bs) is the total number of operatorsĤb
s in Sn .

Now a direct estimator for the spin stiffnessrs can be
constructed. It is defined as the second derivative of
ground-state energy with respect to a twistF in the bound-
ary condition, around an axis perpendicular to the direct
of the broken symmetry. For a finite lattice, where the sy
metry is not broken, a factor 3/2 has to be included in or
to account for rotational averaging. Distributing the tw
equally over all interacting spin pairŝi , j &x in the x direc-
tion, the finite-size definition forrs is hence

rs5
3

2

1

L2

]2E0~f!

]f2 U
f50

, ~20!

wheref5F/L. An expression which is only dependent o
the ground state atf50 is obtained by expanding th
Hamiltonian to second order inf. The Hamiltonian in the
presence of the twist is

Ĥ~f!5 (
^ i , j &x

Si•R~f!Sj1 (
^ i , j &y

Si•Sj , ~21!

whereR(f) is the rotation matrix

R~f!5S cos~f! sin~f! 0

2sin~f! cos~f! 0

0 0 1
D . ~22!

Expanding to second order inf results in

Ĥ~f!2Ĥ~0!52
1

2 (
^ i , j &x

@f2~Si
xSj

x1Si
ySj

y!

1 if~Si
1Sj

22Si
2Sj

1!#. ~23!

The first term is proportional toĤ(0) ~for the rotationally
invariant case considered here!. The expectation value of the
second term vanishes, but it gives a contribution quadrati
f in second order perturbation theory. Defining the spin c
rent operator

j s5
i

2 (
^ i , j &x

~Si
1Sj

22Si
2Sj

1!, ~24!
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and the current-current correlation function at Matsubara
quencyvm52pmT,

Ls~vm!5
1

L2E0

b

dte2 ivmt^ j s~t! j s~0!&, ~25!

the stiffness is given by

rs52 3
2 [ 1

3 E1Ls~0!], ~26!

whereE is the ground-state energy per spin.
The QMC estimate for the energy is given by Eq.~10!.

The current-current correlatorLs[Ls(0) is a sum of inte-
grals of the form~18!. Denoting byNx

1 andNx
2 the number

in Sn of operatorsSi
1Sj

2 andSi
2Sj

1 with ^ i , j & a bond in the
x direction, Eqs.~25! and ~19! give

rs5
3/2

bN
^~Nx

12Nx
2!2&, ~27!

i.e., the terms linear inNx
1 and Nx

2 cancel. Defining the
winding numberswx andwy in the x andy direction:

wa5~Na
12Na

2!/L ~a5x,y!, ~28!

the stiffness can also be written as

rs5
3
4 ^wx

21wy
2&/b. ~29!

This definition is clearly valid only for a simulation tha
samples all winding number sectors. With a restriction to
subspace withwx5wy50, rs can be calculated using th
long-wavelength limit of a current-current correlator invol
ing a twist field with a spatial modulation.49

The above method of calculating the stiffness direc
from the winding number fluctuations is clearly strongly r
lated to methods used for the superfluid density in simu
tions of boson models.50

B. Error reduction using covariance

In Monte Carlo simulations, fluctuations~statistical er-
rors! of different physical observables are often correla
with each other. These covariance effects can sometime
used to obtain improved estimators for certain quantitie37

In some cases one may have exact knowledge of some q
tity independently of the QMC calculation. If there a
strong correlations between a known quantityA and some
other, unknown quantityB, the accuracy ofB can be im-
proved via its covariance with the measuredA, by calculat-
ing the average and statistical error under the condition
A equals its known value. In other cases, it may be poss
to calculate a quantity in more than one way in the sa
simulation. If one of the estimates,A1, is more accurate than
the other,A2, a covariance betweenA2 and some other quan
tity B can again be used to improve the estimate ofB. With
the SSE method the internal energy of the rotationally inv
ant Heisenberg model can be calculated in two differ
ways: E1 from the average power of the series expans
according to Eq.~10!, and using the nearest-neighbor corr
lation function C(1,0) calculated according to Eq.~13!;
E256C(1,0). The manifestly rotationally invariant estimat
E1 is significantly less noisy thanE2. Results for quantities
-

e

-

d
be

an-
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i-
t

n
-

with fluctuations correlated to those ofC(1,0), such asC(r )
with r .1, can therefore be improved with the aid ofE1.

For the purpose of accurately measuring correlations
tween the fluctuations of two different quantities, the s
called ‘‘bootstrap method’’ is a useful tool.51 With the simu-
lation data as usually divided intoM ‘‘bin’’ averages, a
‘‘bootstrap sample’’ ĀR is defined as an average overM
randomly selected bins~i.e., the same number as the tot
number of bins, allowing, of course, multiple selections
the same bin!. With r ( i ) denoting thei th randomly chosen
bin,

ĀR5
1

M (
i 51

M

Ar ~ i ! . ~30!

The statistical error can be calculated on the basis ofMR

bootstrap samplesĀRi
, according to51

s25
1

MR
(
i 51

MR

~ ĀRi
2 Ā!2, ~31!

where Ā is the regular average over all bins. Note that E
~31! lacks the factor (MR21)21 present in the conventiona
expression for the variance of the average calculated on
basis ofMR bins. The bootstrap method is in general mo
accurate~due to a better realization of a Gaussian distrib
tion for the bootstrap samples!, in particular ifA is not mea-
sured directly in the simulation, but is some nonlinear fun
tion of measured quantities~in which caseA should be
calculated on the basis of bootstrap samples, not individ
bins!. Sets of bootstrap samples$ĀRi

% and $B̄Ri
% generated

on the basis of the same randomly selected bins are
suited for evaluating correlations between the statistical fl
tuations ofA and B, and are used in the covariance err
reduction scheme described next.

Here this method will be illustrated using simulation r
sults for the staggered structure factorS(p,p) and the stag-
gered susceptibilityx(p,p). These are defined according

S~p,p!5
1

N (
i , j

~21!xj 2xi1yj 2yiC~ i , j !, ~32a!

x~p,p!5
1

N (
i , j

~21!xj 2xi1yj 2yix~ i , j !, ~32b!

with C( i , j ) and x( i , j ) given by Eqs.~13! and ~15!. The
structure factor is of particular interest, since it defines
sublattice magnetization squared of a finite system. The fl
tuations of S(p,p) are strongly correlated to those o
C(1,0), andS(p,p) can therefore be calculated to an acc
racy significantly higher than if only the direct estimator~13!
is used. The susceptibilityx(p,p) is only weakly correlated
with C(1,0), however, and only a modest gain in accura
can be achieved for this quantity.

First some results for a 636 lattice are discussed. This i
the largest system for which Lanczos results have b
obtained.21 Comparing with these exact results, the accura
of the QMC technique and the covariance method can
rigorously checked. The temperature used in the simula
has to be low enough for the calculated quantities to h
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11 684 56ANDERS W. SANDVIK
saturated at their ground-state values. In order to check f
temperature effects, several calculations were carried o
Results at inverse temperaturesb524 and 48 are indistin-
guishable within error bars, indicating that these temper
tures are sufficiently low forL56. The results presented
below are forb548. The simulation was divided into bins of
53105 MC step each, and a total of 600 bins were gene
ated.

Figure 3 shows the covariance between the measur
nearest-neighbor correlation function (E2) andS(p,p). The
plot was generated on the basis of 2000 bootstrap sampl
Strong linear correlations between the two quantities are ev
dent. Hence further knowledge ofE can improve the esti-
mate ofS. The conventional average and error ofS(p,p) is
calculated on the basis of all the points, i.e., the distributio
obtained by projecting the points onto theS axis. Having a
better estimateE16s1 for E, an improved estimate ofS can
be calculated by weighting the points by a Gaussian center
at E1 and with a width equal to the errors1. In this case, the
reduced statistical error is'1/12 of the conventional error.
Note that the conventional estimates of bothS and E2 lie
outside the exact results by'1.5 standard deviations~not an
unlikely situation statistically!. The improved estimate ofS
is nevertheless within one standard deviation of the exa
result, reflecting this being the case for the more accura
energy estimateE1 used in the procedure. In fact, this cor-
recting property of the covariance method can even elimina

FIG. 3. Correlations between the staggered structure factor a
the energy as obtained from the nearest-neighbor correlation fun
tion for a 636 lattice atb548. Each point represents a bootstrap
sample of QMC bin averages. The solid vertical line indicates th
exact energy, and the solid horizontal line is the exact structu
factor @the result forS(p,p) is given ‘‘only’’ with 5 significant
digits in Ref. 21, which actually implies a small uncertainty on the
scale of this figure#. The vertical dotted and dashed lines indicate
respectively, the estimate6 one standard deviation of the energy
calculated from the nearest-neighbor correlation function and th
average ofn. The dotted horizontal lines indicate the conventiona
estimate of the structure factor, and the dashed ones the improv
result obtained using the covariance method.
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certain systematic errors, such as those originating fr
finite-T effects in calculations aimed at ground-sta
properties.37

Besides illustrating the use of the covariance method
reduce the statistical errors, Fig. 3 also clearly demonstr
to a high accuracy the absence of detectable systemati
rors in the QMC data. This confirms that the SSE meth
indeed produces unbiased results. Table I summarizes
comparisons with the exact results for both 434 and 636
lattices.

As the system size increases, the fluctuations inS(p,p)
as computed in the standard way increase, and accurate
mates become increasingly difficult to obtain. This is typic
of algorithms utilizing local updates. The fluctuations in t
energy per site as calculated from̂n& actually decrease
however~due to self-averaging!. Hence, the gain in accurac
achieved with the covariance effect increases with the sys
size. Figure 4 showsL516 results for the staggered structu
factor. For this system size the error in the energy estim
E1 is negligible on the scale of the fluctuations ofE2, and the
error in the improvedS(p,p) is essentially the width of the
elongated shape in the vertical direction. In this case
covariance method leads to error bars'1/100 of those cal-
culated in the standard way.

Unfortunately, not all quantities exhibit a strong cova
ance withC(1,0). Figure 5 shows results for the stagger
susceptibility~32b! of a 636 system. In this case there
only a very weak covariance, and hardly any gain in ac
racy can be achieved.

It is easy to understand why the covariance withC(1,0) is
particularly strong forS(p,p) ~or indeed any equal-time
spin correlation!: The system is rotationally invariant, but th
simulation generates configurations in a representation w
thez direction is singled out, and only this component of t
correlation function is measured~the other components ar
not easily measurable, which is the case also with stand
worldline methods!. Measurements based on a particular
of configurations~a single bin or a bootstrap sample! will
inevitably be affected by some deviations from perfect ro
tional invariance. This is manifested as amplitude fluctu
tions in the particular spin component measured, and ca

nd
c-

e
re

,

e
l
ed

TABLE I. Comparisons of QMC and exact results for 434 and
636 lattices.Eexact is the exact result for the ground-state ener
per spin,E1 is the QMC estimate obtained from the average len
of the series expansion according to Eq.~10!, andE2 is the estimate
obtained from the nearest-neighbor correlation functionC(1,0) cal-
culated according to Eq.~13!. Sexact is the exact staggered structu
factor, S1 is the QMC result with the accuracy increased by us
the covariance withE2, and S2 is the estimate using directly th
sum of the correlation functions, Eq.~32a!. The exactL56 results
are from Ref. 21.

L54 L56

Eexact 20.701780 20.678872
E1 20.701777~7! 20.678873~4!

E2 20.70177~6! 20.67872~9!

Sexact 1.47481 2.5180
S1 1.47480~4! 2.51799~6!

S2 1.4747~2! 2.5168~8!
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the covariance effects seen in the data discussed above.
ability of the local Monte Carlo updates to rotate the direc
tion of the antiferromagnetic order in spin space diminishe
with increasing size, leading to large statistical fluctuation
in the conventional estimate of the correlations. The fact th
the energy fluctuations do not increase with the system si
can, in the same way, be traced to the rotationally invaria

FIG. 4. Correlations between the energy as obtained from th
nearest-neighbor correlation function and the staggered structu
factor for a 16316 lattice atb5128. The vertical line indicates the
estimate of the energy from the average ofn ~the error is too small
to be seen on this scale!. The dotted horizontal lines indicate the
value 6 one standard deviation ofS(p,p) calculated using the
conventional estimator. The dashed, almost indistinguishable lin
indicate the improved estimate.

FIG. 5. Correlations between the staggered susceptibility an
the energy as obtained from the nearest-neighbor correlation fun
tion for a 636 lattice atb548. Due to the very weak covariance,
only a modest increase in accuracy can be achieved forx(p,p).
he
-
s
s
at
ze
t

nature of the estimator~10!. A somewhat more formal dis
cussion of the covariance error reduction scheme can
found in Ref. 37.

III. RESULTS

Simulations ofL3L systems withL<16 ~only evenL)
were carried out at inverse temperaturesb54L and 8L.
Within statistical errors the results are indistinguishable,
dicating that in both cases the ground-state completely do
nates the behavior of the calculated quantities. This can
be checked using the finite-size singlet-triplet gap scal
predicted from chiral perturbation theory.27 For L516 and
b5128, this gives an estimate of;1027 for the relative
error in the calculated ground-state energy due to exc
states~note that since the simulations are carried out in
canonical ensemble, onlymz50 states are mixed in!. For the
smaller systems the errors are even smaller~the gap scales a
1/N). All results discussed here are forb58L.52

The statistical errors of the calculated energies are
small as'1025 for all L studied. This accuracy exceeds b
a factor 5–6 that of the most accurate results previously
ported forL54 – 16, the GFMC results by Runge.16 Com-
paring the two sets of results, they agree forL<8, but for the
larger sizes the GFMC data is consistently higher by 2
GFMC error bars. Given the agreement to a relative accur
of less than 1025 between the SSE result forL56 and the
exact result, and the nonapproximate nature of the algorit
it is hard to see why there should be any systematic error
the SSE data for the larger lattices. Note that any remain
finite-temperature effects would lead to an overestimation
the energy, and hence could not explain the discrepancy
the GFMC data. As discussed above, care has been tak
verify that in fact the finite temperature effects are well b
low the statistical errors. GFMC calculations, on the oth
hand, are in general expected to be affected by a small
tematic error originating from ‘‘population control’’ of the
varying number of ‘‘random walkers’’ used in that type o
simulation. In Runge’s calculation, attempts were made
remove such bias more effectively than in previous11,13

GFMC calculations. However, a small remaining systema
error could not be ruled out, and the effect was expected
be an overestimation of the energy.16 The discrepancy found
here is therefore not completely surprising. The energies
tained with the SSE algorithm are listed in Table II. It
gratifying to note that the SSE energy is indeed nicely s
averaging—despite the considerably fewer numbers of
steps performed for the larger systems the relative errors
not differ much from the smaller sizes.

Two definitions of the sublattice magnetization have be
frequently used in previous studies,3 and will be considered
here as well. The first definition is in terms of the stagge
structure factor,

M1
2~L !53S~p,p!/L2, ~33!

and the second one uses the spin-spin correlation functio
the largest separation on the finite lattice,

M2
2~L !53C~L/2,L/2!. ~34!
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11 686 56ANDERS W. SANDVIK
The factors 3 are included to account for rotational averag
of the z component of the correlations.M1(L) and M2(L)
should, of course, scale to the same sublattice magnetiza
in the thermodynamic limit. Using covariance error redu
tion, both were determined to within relative statistical erro
of '1024 ~slightly larger for the largest systems!. This ac-
curacy also exceeds that of previous studies. The results
both S(p,p) andC(L/2,L/2) are listed in Table II.

As discussed in Sec. II, the spin stiffness can be obtai
directly by measuring the square of the fluctuating wind
number. However, as pointed out recently by Einarsson
Schulz,22 the two terms in Eq.~26! have different leading
size corrections;;1/L3 for E and;1/L for Ls . Therefore,
Ls is also calculated separately. There is a small discrepa
between the QMC results forL54 andL56, and the Lanc-
zos results reported in Ref. 22. Adjusting for different facto
in the definitions, the Lanczos results areLs(4)50.04832
and Ls(6)50.06723, whereas the QMC results obtain
here areLs(4)50.04841(2) andLs(6)50.06791(3). The
reason for the discrepancy is not clear, but carrying out 434
exact diagonalizations with weak twist fields included in t
Hamiltonian, and subsequently calculating the derivative
Eq. ~20! numerically, givesLs(4)50.04840, in good agree
ment with the QMC result. Hence, there is reason to beli
that the QMC results are correct.

The uniform susceptibility has typically been obtained
numerical studies via a definition in terms of the singl
triplet excitation gap.12,16,21 Here a different approach i
taken, not requiring simulations in theS51 sector. The
q-dependent susceptibility,

x~qx ,qy!5
1

N (
j ,k

ei @qx~xj 2xu!1qy~yj 2yu!#x~ j ,k!, ~35!

is calculated using Eq.~15!, and its value at the longes
wavelength,q152p/L, is taken as the definition of th
finite-size uniform susceptibility@due to the finite-size gap
and the conserved magnetization,x(q50) of course van-
ishes identically#. In order to give the correct transverse su

TABLE II. QMC results for the ground-state energy, the sta
gered structure factor, and the spin-spin correlation function at
tancer5(L/2,L/2). The accuracies of the results forS(p,p) and
C(L/2,L/2) were increased by using covariance effects, as
cussed in Sec. II. The simulations were carried out at inverse t
peraturesb58L, and the total number of MC steps performed f
the different systems were 2.53108 (L54), 33108 (L56), 108

(L58), 108 (L510), 33107 (L512), 1.53107 (L514), and 107

(L516).

L 2E S(p,p) C(L/2,L/2)

4 0.701777~7! 1.47480~4! 0.059872~5!

6 0.678873~4! 2.51799~6! 0.050856~3!

8 0.673487~4! 3.7939~2! 0.045867~5!

10 0.671549~4! 5.3124~3! 0.042851~6!

12 0.670685~5! 7.0780~7! 0.040873~9!

14 0.670222~7! 9.090~1! 0.03945~1!

16 0.669976~7! 11.352~2! 0.03839~2!
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ceptibility of a system with broken symmetry in the therm
dynamic limit, the result has to be adjusted by a factor 3
Hence, the definition is

x'~L !5 3
2 x~2p/L,0!. ~36!

The spin-wave velocity can be obtained from the infinite-s
values ofrs andx' according to the general hydrodynam
relation

c5Ars /x'. ~37!

The above quantities will now be scaled to the thermo
namic limit usingx2 fits to appropriate scaling forms. Chira
perturbation theory gives the following scaling behavior f
the ground-state energy and the sublattice magnetization
fined according to Eq.~33! @parameters without the argume
L will henceforth denote the infinite-size values#:

E~L !5E1bc
1

L3 1
c2

4rs

1

L4 1•••, ~38a!

M1
2~L !5M21a

M2

cx'

1

L
1•••, ~38b!

wherea50.62075 andb521.4377.27 The leading correc-
tions have been obtained also from renormalization-gro
calculations for the nonlinears model,25,26 and their orders
also agree with spin-wave theory.53 Spin-wave theory also
predicts that the leading corrections toLs and M2 are
;1/L,22,53 and this should be the case also forx'(L) due to
the linear spin-wave spectrum for smallq.

Individually fitting all the parameters, it is found that th
high accuracy ofE(L) necessitates the inclusion also of
term ;1/L5 in Eq. ~38a!. Both M1

2(L) and M2
2(L) require

corrections up to order 1/L3. The QMC results forLs(L) and
x'(L) are less accurate, and only linear and quadratic te
are needed. Hence, the following size dependences are
sumed:

E~L !5E1
e3

L3 1
e4

L4 1
e5

L5 , ~39a!

M1
2~L !5M21

m1

L
1

m2

L2 1
m3

L3 , ~39b!

M2
2~L !5M21

n1

L
1

n2

L2 1
n3

L3 , ~39c!

Ls~L !5Ls1
l 1

L
1

l 2

L2 , ~39d!

x'~L !5x'1
x1

L
1

x2

L2 . ~39e!

The predicted scaling forms~38!, together with the hydrody-
namic relation~37! and the expression~26! for the spin stiff-
nessrs , imply the following constraints among the param
eters and size corrections:

Ls52~1/3!@E12aM2e3 /~bm1!#, ~40a!
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x'5abM2/~m1e3!, ~40b!

e45m1e3 /~4abM2!. ~40c!

All the scaling forms~39! are hence coupled to a high d
gree, and a good simultaneous fit of all parameters
strongly support the field theoretical predictions~38!.

Data for all sizesL54216 can be included in fits with
good values ofx2 per degree of freedom (x2/DOF!, except
in the case ofx'(L) for which L54 has to be excluded~not
surprising, since the smallest wave-vectorq1 used in the
definition is as large asp/2 for L54). Both Ls(16) and
x'(16) have error bars too large to be useful, and are th
fore also excluded.

Extrapolating the infinite-size parameters from fits to
relatively small number of points, one has to take into
count the fact that there are higher-order corrections pres
which by necessity have been neglected in the scaling fo
used. The statistical errors of the extrapolated parame
may be smaller than the systematic errors introduced du
this neglect~even though the fit may be good!. In order to
minimize this type of subtle errors, theL54 data were ex-
cluded from all the fits discussed in the following. This lea
to larger statistical fluctuations but should significantly
duce the risk of underestimating the errors~the largest ne-
glected correction toE is 11 times larger forL54 than for
L56, and for the other quantities 3 – 5 times larger!.

Before considering the full fit~39! with all the constraints
~40!, it is instructive to consider first the results of individua
unconstrained fits to all the different quantities. The effe
of including the constraints can then be judged in light
these results.

Completely independent fits giveE520.66943(2),
M50.3062(6) @from M1(L)#, M50.3068(9) @from
M2(L)#, rs50.179(4), andx'50.063(1). Note thatM1(L)
andM2(L) give the same sublattice magnetizationM within
statistical errors, as they should. Using Eq.~37! the spin-
wave velocity isc51.69(2). These parameters are in goo
general agreement with previous calculations, except tha
energy is slightly lower than the best GFMC estimate,16 due
to the discrepancies in the finite-size data discussed ab
The sublattice magnetization is a bit lower than the rec
result by Beard and Wiese19 @M50.3085(2)#.

The consistency with the scaling forms~38! can of course
also be tested with these independent fits. The leading en
correction is found to bee3522.43(11), whereas Eq.~38a!
in combination with the above estimate forc gives
e35bc52.43(3). Theconstant of the linear term inM1(L)
is m150.574(9), whereas the right-hand side of the scali
form ~38b! gives m15aM2/(cx')50.550(10). The sub-
leading energy correction of the fit ise454(1), and Eq.
~38a! givese45c2/(4rs)54.0(1).Hence, there is good con
sistency with the predicted scaling forms, within a few p
cent for the leading terms, but with a statistical uncertainty
large as'25% for the subleading energy correction.

The leading corrections have been derived in several
ferent ways.25–27 Given then the good numerical agreeme
found above, it is now reasonable to enforce the constra
~40a! and ~40b! which involve these terms. From such a fi
with the constraint on the subleading energy correction~40c!
left unenforced, one can get a better estimate of the siz
ll
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the subleading term. The constraint thatM1(L) and M2(L)
extrapolate to the sameM is also enforced.

First, a remark on the scaling of the ground state ener
One of the early nonlinears model calculations of the finite
size behavior indicated that the subleading correction toE
was ;1/L5, not ;1/L4.26 Previous numerical calculation
were not accurate enough to distinguish between th
forms. However, Runge noted that the value ofc extracted
from the leading correction was in rather poor agreem
with other estimates if a 1/L5 subleading correction wa
used, and that a slightly better value was obtained us
1/L4. Even with the accuracy of the QMC results forE(L)
obtained here, individual fits using the two different sublea
ing corrections~and including also the next higher-order co
rection in both cases! cannot by themselves definitely rul
out the absence of the 1/L4 term, although the fit including it
is better. However, it is not at all possible to obtain a good
constrained by Eq.~40a! and ~40b! without the 1/L4 term
~including 1/L5 and 1/L6 terms!, x2/DOF being as high as
'50 in this case. With the 1/L4 ~and 1/L5) term
x2/DOF'0.9. Hence, knowing the constraints on the lead
corrections, the present data unambiguously require that
subleading energy term is;1/L4.

The parameters obtained in the partially constrain
fit are E520.669436~5!, M50.3071~3!, rs50.176~2!,
x'50.0623~10!, andc51.681~14!. The statistical errors are
here significantly reduced relative to the previous unc
strained fits, and the two sets of parameters are consis
with each other. The leading corrections toE and M are
now, of course, in complete agreement with the theoret
prediction. The subleading energy correction of the fit
e454.17(23), whereas Eq.~38a! with the above parameter
gives e45c2/(4rs)54.01(7). Hence, it is now also con-
firmed, at the 5% accuracy level, that the size of the suble
ing energy correction agrees with the chiral perturbat
theory prediction by Hasenfratz and Niedermayer.27 It is re-
markable that the derivation of this very detailed theoreti
result is based purely on symmetry and dimensiona
considerations.27

With the subleading energy correction now firmly esta
lished, the last constraint~40c! can also be enforced, and th
parameters of this fit are taken as the final results. This fu
coupled fit still hasx2/DOF'0.9 ~the total number of pa-
rameters is 14, and a total of 28 data points were us!.
Looking atx2 for the five individual curves, they all repre
sent good fits to their respective data sets. Hence, the
strained fit is in all respects a good one. All the ground-st
parameters obtained from the fit are listed in Table III, alo
with the leading and subleading corrections to the energy
the sublattice magnetization. There are only minor chan
relative to the previous partially constrained fit, the ma
improvement in accuracy being for the spin-wave veloci
The errors of the parameters were calculated using the b
strap method,51 i.e., fits were carried out for a large numb
of bootstrap samples of the QMC data, and the error is
fined as one standard deviation of the parameters of th
fits. As explained in Sec. II B, this should be a very accur
method for calculating statistical errors even in highly no
linear situations such as the constrainedx2 fit. The QMC
data used, along with the fitted curves, are shown in F
6–9.

In the figures, it can be observed that even though
L54 data are not included in the fit, the fitted curves e
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trapolated toL54 are quite close to these QMC points, e
cept in the case ofx'(4) ~for which this point cannot even
be included in an individual fit!. In fact, calculating also the
statistical errors of the extrapolations toL54 gives strong
further support to the reliability of the procedures used. F
all quantities except the energy, the statistical errors
found to be comparable atL54 andL5`. For the energy
the fluctuations are more than 20 times larger atL54, due to
the high order of the leading correction. The exact results

TABLE III. The ground-state parameters and the leading a
subleading corrections toE and M , as obtained from a fit fully
constrained by the predictions of chiral perturbation theory.

Parameters

E 20.669437~5!
M 0.3070~3!
rs 0.175~2!
x' 0.0625~9!
c 1.673~7!
Size corrections

e3 22.405~10!
e4 4.00~6!
m1 0.560~6!
m2 1.08~5!

FIG. 6. The ground-state energy vs 1/L3 on two different scales.
The solid circles are the QMC data. On the scale of the top gra
the error bars are smaller than half the radius of the circles.
smaller circles with error bars in the top graph are the GFMC
extrapolated results by Runge~Ref. 16!. The result of the con-
strained fit including theL.4 data is indicated by the curves.
r
re

r

both E(4) andLs(4) are within one standard deviation o
the extrapolated results. The sublattice magnetizati
M1(4) andM2(4) both deviate by 2.5 standard deviation
andx' deviates by 3 standard deviations. These rather sm
deviations clearly indicate that there are only minor effe
of neglected higher-order corrections. The extrapolations
L5` should of course be significantly less sensitive to s
tematic errors, since the neglected corrections rapidly van
for the larger sizes. As already discussed above, the
glected corrections are several times larger atL54 than at
L56 ~the smallest size considered in the fits!. Hence, any
remaining systematic errors in the infinite-size extrapolatio
listed in Table III should be well below the indicated stat
tical errors.

IV. SUMMARY AND DISCUSSION

An extensive study of the ground-state parameters of
2D Heisenberg model has been presented. Using the stoc

d

h,
e
d

FIG. 7. The sublattice magnetization squared, as defined by
~33! and~34!, vs inverse system size. The solid and open circles
the QMC data forM1(L) andM2(L), respectively, and the curve
are the results of the constrained fit including theL.4 data. The
QMC error bars are much smaller than the circles.

FIG. 8. The spin current-current correlator, Eq.~25!, vs the in-
verse system size, along with the result of the coupled fit to
L.4 data.
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tic series expansion QMC method35,36 in combination with a
data analysis scheme utilizing covariance effects,37 results of
unprecedented accuracy were obtained for the ground-
energy and the sublattice magnetization for systems of lin
dimensions up toL516. The long-wavelength susceptibilit
and the spin stiffness were also directly calculated in
simulations.

The QMC data was extrapolated to the thermodyna
limit using scaling forms predicted from chiral perturbatio
theory,27 supplemented by higher-order terms necessary
obtain good fits. Both the leading and subleading correcti
were found to agree in magnitude with the theoretical p
dictions to within a few percent. To the author’s knowledg
this is the first numerical verification of the predictions
chiral perturbation theory27 to subleading order.

The ground-state energy extracted from the fit is the m
accurate estimate obtained to date, and is slightly higher
the best Green’s function Monte Carlo result.16 This discrep-
ancy is most likely due to a ‘‘population control’’ bias in th
GFMC calculation.16 The spin stiffness and the sublattic
magnetization are both lower than the results of a rec
low-temperature loop algorithm QMC study.19 The discrep-
ancy appears to be marginally larger than what could
explained by statistical fluctuations alone. For the spin-w
velocity the results are consistent with each other.

In the QMC study by Beard and Wiese19 the size and
temperature dependence of the uniform and staggered
ceptibilities were fit to scaling forms from chiral perturbatio
theory. Hence, the underlying theory for analyzing the dat
the same as used in the present study, but the physical q
tities used are different, as is the temperature regime~low but
finite T versusT50 in this study!. Since both QMC algo-
rithms are ‘‘exact,’’ the discrepancies must originate fro
the scaling procedures. In this paper the effects of negle
higher-order corrections were discussed, and attempts w
made to minimize these as much as possible. Furthermor
a quantitative check of remaining effects of this nature,
calculated scaling functions were extrapolated to latti
smaller(L54) than the smallest size used in the fit (L56).

FIG. 9. The long-wavelength spin susceptibility@2/3 of x'(L)#
vs inverse system size, along with the result of the constrained fi
the L.4 data.
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The close agreement with the actual calculated results, a
with the high orders of the largest neglected correctio
show that any effects of the higher-order terms on the
trapolations to infinite size should be well below the ca
fully computed statistical errors. It can be noted that Be
and Wiese also included subleading corrections,19 but not to
the same high orders as was necessary in the present
~due to the high accuracy of the SSE results for the ene
and the sublattice magnetization!. Another reason to believe
that the present study is more reliable is that the fit involv
in a direct manner theT50 finite-size definitions of the
same infinite-size parameters sought, not functions of th
parameters.

In combination with the covariance error reductio
scheme,37 the SSE method is a very efficient method f
calculating correlation functions of isotropic spin models,
exemplified by the results presented here. The covaria
scheme is most efficient in cases where there are strong l
ranged correlations~where the ‘‘bare’’ estimator for the cor
relation function does not behave well!. It is currently being
applied in a study of the temperature dependence of the
relation length of the weakly coupled Heisenberg bilayer,
larger lattices and lower temperatures than previously39 pos-
sible. This is motivated by recent results obtained from
mapping to a nonlinears model for this system,54 predicting
a much faster divergence of the correlation length asT→0
than for the single layer. The SSE algorithm has also pro
useful in the case of critical, or near-critical systems, such
the bilayer Heisenberg model close to its quantum criti
point. More accurate finite-size scalings than previously
ported for this,40 as well as other models exhibiting quantu
critical behavior,41 are possible with the data enhanced us
the covariance method.

QMC methods based on the loop-cluster algorithm31

have proven to be very efficient in several studies ofS51/2
Heisenberg models,18,19,55and are clearly more efficient tha
the SSE method in many cases. For example, it was sh
here that the covariance method cannot significantly impr
the accuracy of calculated static susceptibilities, which
pear to be very accurately given in loop algorith
simulations.19 The method used here for calculating the sp
stiffness directly from the winding number fluctuation
would probably also be more accurate with loop algorithm
However, it is not clear whether loop algorithms can eas
produce more accurate results for equal-time correla
functions or energies than those presented in this paper.

The methods discussed here can also be easily exte
to higher-spin models. In fact, the covariance scheme ha
additional advantage forS.1/2, in that the on-site correla
tion (Si

z)2 is known exactly~in the isotropic case!, but fluc-
tuates in the simulation and exhibits strong covariance w
other correlation functions.37 Detailed studies of various
higher-spin models should therefore now be feasible als
2D.
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