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The ground-state parameters of the two-dimensi@al/2 antiferromagnetic Heisenberg model are calcu-
lated using the stochastic series expansion quantum Monte Carlo method folattices withL up to 16. The
finite-size results for the energl, the sublattice magnetizatioM, the long-wavelength susceptibility
x.(q=2m/L), and the spin stiffness,, are extrapolated to the thermodynamic limit using fits to polynomials
in 1/L, constrained by scaling forms previously obtained from renormalization-group calculations for the
nonlinearo model and chiral perturbation theory. The results are fully consistent with the predicted leading
finite-size corrections, and are of sufficient accuracy for extracting also subleading terms. The subleading
energy correction+{ 1/L%) agrees with chiral perturbation theory to within a statistical error of a few percent,
thus providing numerical confirmation of the finite-size scaling forms to this order. The extrapolated ground-
state energy per spin B=—0.6694375). Theresult from previous Green'’s function Monte CaflBFMC)
calculations is slightly higher than this value, most likely due to a small systematic error originating from
“population control” bias in GFMC. The other extrapolated parametershre0.307@3), ps=0.1752),

x. =0.062%9), and thespin-wave velocityc=1.6737). Thestatistical errors are comparable with those of
previous estimates obtained by fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling
forms. BothM and pg obtained from the finitéF data are, however, a few error bars higher than the present
estimates. It is argued that tie=0 extrapolations performed here are less sensitive to effects of neglected
higher-order corrections, and therefore should be more relighb(.63-18207)01841-9

I. INTRODUCTION of the 2D Heisenberg model are now known to quite suffi-
cient accuracy. However, there are still reasons to go to even
In the nonlinear o model description of the two- higher precision. One is that the model is one of the basic
dimensional(2D) Heisenberg modél,the low-energy and “prototypic’ many-body models in condensed matter phys-
low-temperature properties of the system are completely dees. It has become a testing ground for various analytical and
termined by three ground-state parameters; the sublattiogumerical methods for strongly correlated systems, thus
magnetizationM, the spin stiffness constant;, and the making it important to accurately establish its properties. An-
spin-wave velocityc. Their values are not given by the other reason is the very detailed predictions that have re-
theory, however, but have to be determined starting from theulted from field theoretical studies, such as renormalization-
microscopic Hamiltonian. A large number of calculations of group calculations for the nonlinear model*?4-2¢ and
the ground-state parameters have been carried out. The anghiral perturbation theory’. Apart from giving the low-
ferromagnetically ordered ground state, which has been egnergy properties in the thermodynamic limit, these theories
tablished rigorously only fos> 1/2? was convincingly con- also predict the system size dependence of various
firmed also forS=1/2 in a quantum Monte CarlQMC)  quantities®>~2" This is important from the standpoint of nu-
study by Reger and YourigThe sublattice magnetization merical calculations such as exact diagonalization and QMC,
obtained this wayM~0.30 (in units where the Nal state  which are necessarily restricted to relatively small lattices.
hasM =1/2), also indicated that spin-wave thebhgives a  Finite-size scaling approaches have been very successful in
surprisingly good quantitative description of the groundthe study of 1D quantum spin systems, having convincingly
state. The same conclusion was reached by Sivgho car-  confirmed various predictions from bosonization and confor-
ried out a series expansion around the Ising limit, and foundnal field theory. For example, critical exponents and loga-
M=~0.30,ps~0.18], andc~1.7] (J is the nearest-neighbor rithmic corrections have been extracted from the size depen-
exchange coupling all in good agreement with spin-wave dence of ground-state energies and finite-size &&psid
theory including the B corrections. Subsequent higher- from correlation functioné® With the concrete predictions
order spin-wave calculations showed that th&*1¢orrec-  now available, similar studies show great promise for testing
tions toM, p, andc indeed are small-® Several other QMC theories also in 2D. For the standard Heisenberg model,
simulationst’~% exact diagonalizatior®;?? as well as se- finite-size scaling has been used extensively and successfully
ries expansions to higher ordérshave confirmed and im- in extrapolating, e.g., the sublattice magnetization for small
proved on the accuracy of the above estimates. The presentlgttices to infinite system siz&'°~**but only a few studies
most accurate calculatiolfs'®1°Zindicate that the true val- have so far been accurate enough for reliably addressing the
ues of the ground-state parameters deviate from th&t 1/ validity of the theoretical predictions for the size
spinwave values by only 1-2% or less. correctionst®16:18:19
For most practical purposgsuch as extracting for a In one dimension, exact diagonalization, and more re-
system from experimental datdhe ground-state parameters cently the density matrix renormalization-group metfdd,
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enable highly accurate calculations for systems sufficientlyncluded in a coupleg? fit. The quality of the QMC data for
large to approach the limit where the asymptotic scalinge and M is high enough that size correctiobgyond the
forms are valic?®?° Calculations with these methods in two subleading termbave to be included. The leading-order cor-
dimensions cannot reach linear dimensions large enough tections are fully consistent with the predictions. From a
verify the details of the predicted scaling forms, however.careful statistical analysis of the fits, bounds for the sublead-
Some of the expected leading finite-size behavior has bedfg terms are estimated. The subleading energy correction is
seen in exact diagonalization studies including systems witfiound to agree with the prediction of chiral perturbation
up to 6x6 spins?>?! but constants extracted from the size theory to within a statistical error of 5%he subleading cor-
dependence are typically not consistent with other calcularection forM is also estimated, but has not yet been calcu-
tions. For exampleg extracted from the scaling & devi-  lated analytically. This is hence a numerical confirmation of
ates by 15% from other estimat®sThere are hence clear chiral perturbation theory to subleading order.
indications that these small systems are not yet in the regime The extrapolated ground-state energy; —0.6694375),
where only the dominant corrections are important. has a statistical error six times smaller than the GFMC result
QMC can reach significantly larger lattices at the cost ofoy Runge'® and is slightly lower than his result. Comparing
statistical errors which are often relatively large, making itthe finite-size data of the two calculations, a clear tendency
difficult to accurately extract the scaling behavior. Rungeto overestimation of the energy is seen in the GFMC results.
carried out Green’s function Monte CarlGFMC) simula- ~ This is likely due to a bias originating from “population
tions of LXL Heisenberg systems with up to 16, and control” in GFMC (a small effect of this nature was in fact
found a reasonable consistency with the leading0 size anticipated by Rung8).
dependence of the energy and the sublattice The results for the sublattice magnetization,
magnetizatiort”>!® He also noted the presence of a subleadM =0.307q3), and thespin stiffness,ps=0.1752), are
ing correction to the energy,but the accuracy of the GFMC both slightly lower than the estimates obtained from the
data was not high enough to extract its order, and furtherfinite-T scaling by Beard and Wieké[M=0.3083(2) and
morec extracted from the leading correction was sensitive tops=0.185(2)]. Although it is at this point difficult to defi-
the subleading one. The extrapolated ground-state energfitely conclude which calculation is more reliable, it can
E=-0.66934(3), isnevertheless the most accurate esti-again be noted that the high accuracy of the QMC dat&for
mate reported for this quantity. andM used in the fits carried out in this paper necessitates
Chiral perturbation theory has recently enabled calculathe inclusion of size corrections beyond the orders consid-
tions of scaling forms for finite sizand finite temperature ~ered by Beard and Wiesé Hence, any remaining effects of
for various quantitied’ Such forms have been used in com- neglected corrections of even higher order should be smaller.
bination with QMC data in recent work by Wiese and Quantitative estimates of such effects on the extrapolations
Ying,18 and Beard and Wies€.Their calculations employed, performed here support that they are indeed smaller than the
respectively, methods based on the “loop-cluster algorithm”statistical errors indicated above. For the spin-wave velocity
invented by Evertzt al,! and a continuous-time variant of the two calculations agree, the result obtained here being
that method developed by Beard and Wits@hese algo- ¢=1.673(7) and the value reported in Ref. 19 being
rithms are based on global flips of loops of spins, and overc=1.6§1).
come the problems with long autocorrelation times typical of  The outline of the rest of the paper is the following. In
standard Suzuki-Trott&93 or worldline®®* QMC methods Sec. Il the SSE algorithm and the covariance error reduction
(the continuous-time approach furthermore avoids the sysscheme are outlined. The absence of systematic errors are
tematic discretization error of the Trotter approximation demonstrated in comparisons with exact results fe@4and
Considerably more accurate finifedata could therefore be 6X6 lattices. The fitting procedures and the results of these
generated, and the leading-order scaling forms of chiral perare discussed in Sec. lll. The study is summarized in Sec. IV.
turbation theory were convincingly verified, both in the “cu- Some other problems where the methods applied here should
bic” regime T/c~1/L (Ref. 18 and the “cylindrical” re-  be useful are also mentioned.
gimeT/c<1/L (Ref. 19. The extrapolated, p., andc are

impressively accurate, although there are some minor dis- Il. NUMERICAL METHODS
crepancies between the two results kbr(on the border line _ _ _
of what could be expected within statistical errors ajone The standard 2D Heisenberg model is defined by the

In this paper, a finite-size scaling study &0 data is Hamiltonian
reported. Using the stochastic series expans&®5 QMC
algorithm?®3® high-precision energy results are obtained for .
L XL lattices withL up to 16. The relative statistical errors HZJ(% S-S (3>0), @)
are as low as=10"°. Employing a recently suggested data '
analysis scheme which takes into account covariance amonghere S is a spin-1/2 operator at sifeon a square lattice
calculated quantitie¥, very accurate results for the sublattice with N=Lx L sites, and(i,j) denotes a pair of nearest-
magnetization are also obtained. Furthermore, the spin stiffaeighbor sites. Below, in Sec. Il A, the SSE approach to
ness and the long-wavelength susceptibilitg=2=/L) are  QMC simulation of this model is outlined. More details of
also calculated directly in the simulations. the algorithm are discussed in Refs. 36 and 38. The SSE
Assuming for the size dependences polynomials In, 1/ method has recently been applied to a variety of spin
constrained by scaling forms fd& and M predicted from models®®**? as well as 1D Hubbard-type electronic
chiral perturbation theor§, all the computed quantities are models?®
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It was recently noted that correlations between measurdted to models for which this is possible. The Heisenberg
ments of different observables can be used to significantlynodel considered here is such a mo@ele of the very few
increase the accuracy of certain quantities calculated in SSBut the more general SSE approach of further expanding
simulations’ This covariance scheme for analyzing the dataover a set of basis states is preferable also in this case, for
is of crucial importance in the present work, and thereforeeasons that will be discussed below.
this method is also described below in Sec. Il B. The high The objective now is to develop a scheme for importance
accuracy of the procedures is demonstrated by comparingampling of the terms in the partition functi¢s). A term, or
results for 4<4 and 6x6 lattices with the exact diagonal- configuration, @,S,) is specified by a basis stdte) and an

ization data available for these systems. operator sequencs,. The operatordl,, andH,,, can act
only on states where the spins at sii¢b) and j(b) are
A. Stochastic series expansion antiparallel. The diagonaH,, leaves such a state un-

Based on the exact power series expansior @i, the  changed, whereas the off-diagortd}, flips the spin pair.
SSE methot?*®can be considered a generalization of Hand-Defining a propagated state
scomb’s QMC schem®:“® It is the first “exact” method o
proposed for QMC simulations of general lattice Hamilto- _ ~ _
nians at finite temperatur@vith the usual caveat of being in |a(p)>_i1:[l Ha pla),  |a(0)=|a), ()
practice restricted to models for which the sign problem can . . . o
be avoidedl It is not based on a controlled approximation, @ configuration &,S,) must clearly satisfy the periodicity
such as the Trotter formula used in standard worldlinecondition|a(n))=|a(0)) in order to contribute to the parti-
methods?',4 and therefore directly gives results accurate totion function. For a lattice with. X L sites andL even, this
within statistical errors. Despite being formulated at firite ~ implies that the total number, of the off-diagonal operators
temperatures low enough for studying the ground state cafiust be even, and hence that all terms in @gare positive
easily be reached for moderate-size lattices. and can be used as relative probabilities in a Monte Carlo
As in Handscomb's method for theS=1/2 importance sampling proceduttnis is true for any nonfrus-

antiferromagnet® the SSE approach for this model starts trated system
from the Hamiltonian written asJ&1) For a finite system at finit@, the powersn contributing

significantly to the partition function are restricted to within
. . . N a well defined regime, and the sampling space is therefore
H=— Ebzl [Hip—=Hapl+ 5, (2)  finite in practice. In order to construct an efficient updating
B scheme for the index sequence it is useful to explicitly trun-
whereb is a bond connecting a pair of nearest-neighbor sitesate the Taylor expansion at some self-consistently chosen

(i(b),j(b)), and the operator‘éllb and |:|2b are defined as  UPPer boundh=1, high enoqg_h to cause only an exponen-
’ ’ tially small, completely negligible errdf. One can then de-

2N

|:|1,b=2[%—3.z(b)sjz(b)], (3a) f!ne a samplm_g space wher_e the Iepgth of the sequence is
fixed by inserting a number—n of unit operators, denoted
HZ,b:S:Eb)Sji(b)_’_Sr(b)Sjtb)- (3b) Hoo, in the operator strings. The terms in the partition func-

tion (5) are divided by L), in order to compensate for the
An exact expression for an operator expectation value number of different ways of inserting the unit operators. The
summation oven in Eq. (5) is then implicitly included in the
<A>: ETr{Ae—BI:I}, Z:Tr{e—ﬁl:l}, (4) summation over all sequenceS§, of Iength [, with
Z [ai,bi]=[0,0] as an allowed operator. Denoting B «,S,)

at inverse temperatur=J/T, is obtained by Taylor ex- the weight of a configurationd,S;), the partition function is

. L . hen
pandinge A" and writing the traces as sums over diagonal

matrix elements in the bas{$a)=|S;, ... ,S{)}. The par-
tition function is thed® Z:; % W(a,S). ®
” (—1)"2pB" N Since all nonzero matrix elements in E§) equal one, the
Z=; nZo ; T\ @ |H1 Ha o la). (5 weight is (when nonvanishing
whereS, is a sequence of index pairs defining the operator B\"(I—=n)!
ereS, Is 2 seq P g the op W<a,a>=(—) e ©)
string IIi_1Hy 2 I

_ wheren still is the expansion power of the term, i.e., the
Sn=[a1,ba][@z,b2] - - [0 b, number of nor-0,0] operators irS; .
The following is only a brief outline of the actual sam-
e{l3,bie{l, ... . N}, © pling scheme. More details can be found in Refs. 36 and 38.

and n, denotes the total number of index paiaperators  During the simulationS, and one of the statdsy(p)) are
[a;,b;] with a;=2 (n=n;+n,). Equation(5) deviates from stored. Other propagated states are generated as needed. The
Handscomb’s methotf;*® which relies on exact evaluation simulation is started with a randomly generated sta(®)),
of the traces of the operator sequences and therefore is limvith an index sequenc, containing only[0,0] operators
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(unit operatory and with some arbitrargsmal) |. The trun- 800 -
cation| is adjusted as the simulation proceeds, as will be
discussed further below.

With the fixed-length scheme, all updates of the operator
sequence can be formulated in terms of substitutions of one
or several operators. The simplest involves a diagonal opera-
tor at a single positionf0,0]«~[1,b]. This update can be
carried out consecutively at all positions for which a,
€{0,1}. In the — direction, the bond indek is chosen at
random and the update is rejected if the spins connectéd by
are parallel in the current state(p—1)). The Metropolis
acceptance probabiliti&required to satisfy detailed balance
are obtained from Eq9), where the powen in is changed
by =1. Updates involving the off-diagonal operat¢@b] % 50 100 150 200
are carried out withn fixed. The simplest is of the type MC step
[1b][1b]<—[2b][2b], involving two operators acting on
the same bond. These two sequence updates can generate alFIG. 1. The operator sequence truncation vs the number of
configurations with spin flips on retracing paths on the lat-Monte Carlo steps performed for a4 lattice at inverse tempera-
tice, and are the only ones required for a 1D system witHure 5=32. The finall after 16 MC steps wad =804 (the last
open boundary conditions. For a 2D system, configuration§crease occurred after 6674 stepghe increment used was

associated with spin flips around any closed loop are posé':”lo'

sible, and an additional type of update is required. It is sufsjmulation is shown in Fig. 2, and clearly demonstrates that
ficient to consider substitutions on a plaquette, of the typehe truncation of the expansion is no approximation in prac-
[2,b.][2b5][2b3][2,b4], Whereb,, ... b,is a permuta- tice.
tion of the four bonds of a plaquette. For systems with peri- A Monte Carlo stegMC step is defined as a series of the
odic boundary conditions, updates involving cyclic spin flipssingle (diagona) operator substitutions attempted consecu-
on loops wrapping around the whole system are requiretively at each position ir§, (where possiblg followed by a
(sampling of different winding number sectprand cannot series of off-diagonal updates carried out on each bond,
be accomplished by the above local sequence alterations. Fplaquette, and ring. Due to the locality of the constraints in
the square lattice considered here, the winding number caliiese updates, the number of operati¢the CPU timg per
be changed by substituting/2 operators according to MC step scales linearly wittN and 3. However, the
[2b1]...[2bLa][2bL:1] - . .[2b.], where the set of acceptance rate for the “ring update” that changes the wind-
bondsby, . .. b, is a permutation of bonds forming a closed "9 number decreqses rapidly Wlth increasing system size. It
ring around the system in theor y direction. is therefo_re sometimes _useful to increase the _number of at-
Updating the operator sequence with the four types Ofempted ring updates with the system size, which then leads

operator substitutions described above suffices for generatint8 a faster growth of CPU time wit. The acceptance rate

all possible configurations within a sector of fixed magneti-

zation,m?=3N ,S7. In the grand canonical ensemble, global

600 -

— 400 r

200 |

spin flips changing the magnetization are also required. Here 0.015 ¢
T—0 will be considered(i.e., T is much lower than the

finite-size gap and since the ground state is a sinffi¢he

canonical ensemble witm?=0 is appropriate. It can be 0.010 |

noted that in Handscomb’s method the samplingnsprin-
ciple) automatically over all magnetization sectors, and
therefore a restriction to, e.gn*=0 is not possible. In prac-
tice, this causes problems at low temperatures, and Hand- 0.005 |
scomb’s method has therefore been used for the antiferro-
magnetic Heisenberg model mostly at relatively high
temperaturesT/J=0.4 in 2D).* The SSE method with the
restrictionm?=0 can be used at arbitrarily lowW. 0.000 e ‘ : .
In order to determine a sufficiently high truncation of the 450 550 N 650 750
expansion, the fluctuating poweris monitored during the
equilibration part of the S'_ml_’lat'on' Ih exceeds SPme FIG. 2. The distribution of the power of the sampled terms in
thre_sholdl __A_I/Z! the cutoff is increasedi—1+A,, _by IN- 3 5x10° MC step simulation of & 4 lattice at inverse temperature
serting additional[0,0] operators at random positions. In s—32 after adjusting as shown in Fig. 1. The lower histogram is
practiceA ;~1/10 leads to a rapid saturation bfat a value  the full distribution. The higher, only partially visible histogram is
sufficient to cause no detectable truncation errors. Thene distribution multiplied by a factor 1000. The cutoff was804,
growth of| during equilibration is illustrated for aX¥44 sys-  which is significantly larger than the largassampled. Hence, the
tem in Fig. 1. The distribution oh during a subsequent truncation has not degraded the accuracy of the simulation.

p(n)
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of the ring update currently used becomes too lowLferl6, F. (b b,):<|:|a|;|a'> (16)
and simulations of larger systems therefore in practice have oo b™br /2

to be restricted to the sector with zero winding number. Itis given by®

has recently been not&tthat in fact exact results are ob-
tained asT—0 even for simulations restricted this way. F (b b’):< n
However, compared to simulations with fluctuating winding ool (BI2)?

numbers, lower temperatures are required for the system ob- ) . .
servables to saturate at their ground-state vaftieere only ~ WhereN(bo;b’c”) is the number of times the operatdtg
systems withL <16 are considered, and the update changingandﬂg, appear next to each other 8, in the given order.

the winding number is always included. _ The corresponding static susceptibility,
Measurements of physical observables are carried out us-

N(ba;b’cr')>, (17)

ing the index sequences, obtained by omitting th¢0,0] A N

operators in the generates]. These are then, of course, Xoo'(D,D")= 0 dr(H5(n)Hy, (0), (18)
distributed according to the weight function corresponding to

Eq. (5). is given by the remarkably simple formdfa

One can show that the internal energy per spin is simply

given by the average aof [with the constant term in Eq2) Xoo'(D,0)=4(N(bo)N(b’0") = Spty 850 N(D))/ B,

neglected**3° (19
n whereN(bo) is the total number of operatol%g inS,.
=— Q (10) Now a direct estimator for the spin stiffnepg can be
NB constructed. It is defined as the second derivative of the

This expression also shows that the average power, ar@found-state energy with respect to a twistin the bound-

hence the sequence lendthscales agN at low tempera- &Y condition, around an axis perpendicular to the direction
tures. of the broken symmetry. For a finite lattice, where the sym-

A spin-spin correlation function, metry is not broken,'a factor 3/2 has tolbe'inc!uded in order
to account for rotational averaging. Distributing the twist
C(i,j)=C(ri—rj)=<S,Zsz>, (11 equally over all interacting spin paifs,j), in the x direc-
_ ) _ ) ) tion, the finite-size definition fopg is hence
is obtained averaging the correlations in the propagated

states|@(p)) defined in Eq(7). Further defining 31 *Eq( )
Ps—i L2 Tﬁz )
STpl=(a(p)|Sa(p)), (12)

$=0
the correlation function is given By

(20

where ¢=®/L. An expression which is only dependent on
the ground state atp)=0 is obtained by expanding the

1 2D Hamiltonian to second order ip. The Hamiltonian in the
C(i,j)=( —=> S{pIsipl). (13)  presence of the twist is
The corresponding static susceptibility, A(p)= > S-R(¢)S+ > s-s, (21)
(i) (id)y
B
x(i,j)ZJ dr(S{(7)S{(0)), (14  whereR(¢) is the rotation matrix
0
involves correlations between all the propagated stites: cog) sin(¢) O
_ _ R(¢)=| —sin(¢) cod¢) 0. (22)
,8 n—1 n—-1 0 0 1
(i) =\ smrpl 2, STel| 2 Sip)
P= = Expanding to second order i results in
B v o )
R — S : 15 ~ - 1
| 2, STPISP] (49 Aes)-FO)=-5 3 [SASS+5S)
1) )x
Off-diagonal correlation functions can be easily calcu- +i¢(S,+Sj‘—Si_SJ-+)]. 23)

lated for operators that can be expressed in terms of the

spin-flipping operator§1 2p, €ach of which is a sum of two The first term is proportional t<|§-|(0) (for the rotationally
terms;H;’ :5.+(b)51_(b) andH, = Sl_(b)5j+(b) . The spin stiffness  invariant case considered hgrgéhe expectation value of the
constant, which will be discussed further below, involves ase€cond term vanishes, but it gives a contribution quadratic in
static susceptibility defined in terms of these operators. ¢ in second order perturbation theory. Defining the spin cur-

Although the simulation scheme is formulated with rént operator
I3|2,b=H§+Hg , one can still access the terms individually

[
since only one of them can propagate a given state. One can is=§ > ('S —S'S), (24
show that an equal-time correlation function, (hi)x
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and the current-current correlation function at Matsubara frewith fluctuations correlated to those 6{1,0), such a€£(r)

quencywn=2mmT, with r>1, can therefore be improved with the aid©f.
1 (s For the purpose of accurately measuring correlations be-
_ = —fomT/s (o tween the fluctuations of two different quantities, the so-
As(om) ZL dre "“n’(js(1)is(0)), (25 called “bootstrap method” is a useful todt.With the simu-

lation data as usually divided intM “bin” averages, a

the stiffness is given by “bootstrap sample”A_R is defined as an average ovist

— _3[lE4 randomly selected binﬁ.e., the same number as th_e total
Ps 2[SE+ A0, 26 number of bins, allowing, of course, multiple selections of
whereE is the ground-state energy per spin. the same bin With r(i) denoting theith randomly chosen

The QMC estimate for the energy is given by E#0). bin,
The current-current correlatok;=A4(0) is a sum of inte- y
grals of the form(18). Denoting byN; andN, the number A_—iE A (30)
in S, of operatorsS”S;” andS;S;” with (i,j) a bond in the REME e

x direction, Eqs(25) and(19) give The statistical error can be calculated on the basidaf

32 B bootstrap samplesy , according t6*
ps= g {(Nx =N)?), 27 !
BN My
i.e., the terms linear iN; and N, cancel. Defining the 02=M—R21 (Ag —A)?, (31
=

winding numbersv, andw, in thex andy direction:
where A is the regular average over all bins. Note that Eq.

W, =(Ny =N )/l (a=Xy), (28 (31) lacks the factor 1 x— 1)~ * present in the conventional
the stiffness can also be written as expression for the variance of the average calculated on the
basis ofMg bins. The bootstrap method is in general more
ps= %<w§+w§>/ﬂ. (29 accurate(due to a better realization of a Gaussian distribu-

) L . ) ) tion for the bootstrap samplesn particular ifA is not mea-
This definition is clearly valid only for a simulation that gyred directly in the simulation, but is some nonlinear func-
samples all winding number sectors. With a restriction to th&jon of measured quantitieén which caseA should be
subspace withw,=w,=0, ps can be calculated using the calculated on the basis of bootstrap samples, not individual

long-wavelength limit of a current-current correlator involv- bi A o
) S X X . ing. Sets of bootstrap sampl¢dr } and{Br} generated
ing a twist field with a spatial modulatidfs. ) P Pléd} and{Bg} g

The above method of calculating the stifiness directlyOn the basis of the same randomly selected bins are well
from the winding number fluctuations is clearly strongly re- suited for evaluating correlations between the statistical fluc-

lated to methods used for the superfluid density in simulalu@tions ofA and B, and are used in the covariance error
tions of boson model® reduction scheme described next.

Here this method will be illustrated using simulation re-
. ) ) sults for the staggered structure fac8frr, ) and the stag-
B. Error reduction using covariance gered susceptibility (7, 7). These are defined according to

In Monte Carlo simulations, fluctuationStatistical er- L
rors) of different physical observables are often correlated _ X — XV =V
with each other. These covariance effects can sometimes be S, m)= NIEJ: (= DHAHITACL), (329
used to obtain improved estimators for certain quantities.
In some cases one may have exact knowledge of some quan- 1
tity independently of the QMC calculation. If there are X(TMT)ZNZ (=147 iYix(i,j),  (32b
strong correlations between a known quangtyand some b
other, unknown quantityd, the accuracy oB can be im- with C(i,j) and x(i,j) given by Egs.(13) and (15). The
proved via its covariance with the measuredby calculat-  structure factor is of particular interest, since it defines the
ing the average and statistical error under the condition thagublattice magnetization squared of a finite system. The fluc-
A equals its known value. In other cases, it may be possibleuations of S(w,7) are strongly correlated to those of
to calculate a quantity in more than one way in the sameC(1,0), andS(, ) can therefore be calculated to an accu-
simulation. If one of the estimate8,, is more accurate than racy significantly higher than if only the direct estimathB)
the other A,, a covariance betweek, and some other quan- is used. The susceptibility(7, 7) is only weakly correlated
tity B can again be used to improve the estimat@oWith  with C(1,0), however, and only a modest gain in accuracy
the SSE method the internal energy of the rotationally invarican be achieved for this quantity.
ant Heisenberg model can be calculated in two different First some results for a6 lattice are discussed. This is
ways: E; from the average power of the series expansiorthe largest system for which Lanczos results have been
according to Eq(10), and using the nearest-neighbor corre-obtained® Comparing with these exact results, the accuracy
lation function C(1,0) calculated according to Eql3); of the QMC technique and the covariance method can be
E,=6C(1,0). The manifestly rotationally invariant estimator rigorously checked. The temperature used in the simulation
E, is significantly less noisy thak,. Results for quantities has to be low enough for the calculated quantities to have
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TABLE I. Comparisons of QMC and exact results fox4 and
6X 6 lattices.EqyaciS the exact result for the ground-state energy
per spin,E; is the QMC estimate obtained from the average length
of the series expansion according to Et)), andE, is the estimate
obtained from the nearest-neighbor correlation func@ga,0) cal-
culated according to Eq13). S,,.is the exact staggered structure
O : factor, S, is the QMC result with the accuracy increased by using
--------------------------------- i the covariance witlE,, and S, is the estimate using directly the
: sum of the correlation functions, E(323. The exact. =6 results
are from Ref. 21.

2519 -~

2518 EF-o===—==F

2517

S(m,x)

L=4 L=6

2.516

Eexact ~0.701780 ~0.678872
E, ~0.7017777) —0.67887%4)
E, ~0.701776) ~0.678729)
Sexact 1.47481 2.5180

S, 1.474804) 2.517996)

-0.6790 -0.6788 -0.6786 S, 1.47472) 2.51688)
E

2515

FIG. 3. Correlations between the staggered structure factor andertain systematic errors, such as those originating from
the energy as obtained from the nearest-neighbor correlation fundinite-T effects in calculations aimed at ground-state
tion for a 6X 6 lattice at3=48. Each point represents a bootstrap propertie§i7
sample of QMC bin averages. The solid vertical line indicates the Besjdes illustrating the use of the covariance method to
exact energy, and the solid horizontal line is the exact structurgeqyce the statistical errors, Fig. 3 also clearly demonstrates
factor [the result forS(w, =) is given “only” with 5 significant 45 5 high accuracy the absence of detectable systematic er-
digits in Ref. 21, which actually implies a small uncertainty on the rors in the QMC data. This confirms that the SSE method
scale of this figurg The vertical dotted and dashed lines indicate,indeed produces unbiased results. Table | summarizes the
respectively, the estimate one standard deviation of the energy comparisons with the exact results for botk 4 and 6x6
calculated from the nearest-neighbor correlation function and th?attices

average ofh. The dotted horizontal lines indicate the conventional . . .
estimate of the structure factor, and the dashed ones the improved As the sys'gem Siz€ Increases, Fhe fluctuationS(i, ) .
result obtained using the covariance method. as computed m_the sta_ndard way increase, and gcpurate esti-
mates become increasingly difficult to obtain. This is typical
of algorithms utilizing local updates. The fluctuations in the
saturated at their ground'state values. In order to check ngnergy per site as calculated fro('n> actua”y decrease'
temperature effects, several calculations were carried ouhowever(due to self-averagingHence, the gain in accuracy
Results at inverse temperatur@s-24 and 48 are indistin- achieved with the covariance effect increases with the system
guishable within error bars, indicating that these temperasize. Figure 4 shows= 16 results for the staggered structure
tures are sufficiently low fol.=6. The results presented factor. For this system size the error in the energy estimate
below are for3=48. The simulation was divided into bins of E, is negligible on the scale of the fluctuationstf, and the
5X10° MC step each, and a total of 600 bins were genererror in the improved(, ) is essentially the width of the
ated. elongated shape in the vertical direction. In this case the
Figure 3 shows the covariance between the measurecbvariance method leads to error bar4/100 of those cal-
nearest-neighbor correlation functioB4) andS(, ). The  culated in the standard way.
plot was generated on the basis of 2000 bootstrap samples. Unfortunately, not all quantities exhibit a strong covari-
Strong linear correlations between the two quantities are eviance withC(1,0). Figure 5 shows results for the staggered
dent. Hence further knowledge & can improve the esti- susceptibility(32b) of a 6X6 system. In this case there is
mate ofS. The conventional average and errorSffr, ) is  only a very weak covariance, and hardly any gain in accu-
calculated on the basis of all the points, i.e., the distributiorracy can be achieved.
obtained by projecting the points onto tBeaxis. Having a It is easy to understand why the covariance v@i1,0) is
better estimat&, * o, for E, an improved estimate & can  particularly strong forS(s,7) (or indeed any equal-time
be calculated by weighting the points by a Gaussian centereshin correlatioh The system is rotationally invariant, but the
atE; and with a width equal to the errer,. In this case, the simulation generates configurations in a representation where
reduced statistical error is1/12 of the conventional error. thez direction is singled out, and only this component of the
Note that the conventional estimates of b&rend E, lie  correlation function is measurdthe other components are
outside the exact results byl.5 standard deviatior(®ot an  not easily measurable, which is the case also with standard
unlikely situation statistically The improved estimate &  worldline methods Measurements based on a particular set
is nevertheless within one standard deviation of the exaabf configurations(a single bin or a bootstrap sampleill
result, reflecting this being the case for the more accuratevitably be affected by some deviations from perfect rota-
energy estimaté&,; used in the procedure. In fact, this cor- tional invariance. This is manifested as amplitude fluctua-
recting property of the covariance method can even eliminatéons in the particular spin component measured, and cause
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; . x - nature of the estimatafl0). A somewhat more formal dis-
125 . 1 cussion of the covariance error reduction scheme can be
- found in Ref. 37.

\ IIl. RESULTS

120 | ] Simulations ofL XL systems withL<16 (only evenL)
were carried out at inverse temperatuggs 4L and 8.
Within statistical errors the results are indistinguishable, in-
dicating that in both cases the ground-state completely domi-
rrrrr nates the behavior of the calculated quantities. This can also
\ 8 be checked using the finite-size singlet-triplet gap scaling
N predicted from chiral perturbation theotyFor L=16 and
B=128, this gives an estimate ef10 ’ for the relative
error in the calculated ground-state energy due to excited
states(note that since the simulations are carried out in the
T 0680 67e 5670 canonical ensemble, onty*=0 states are mixed JnFor the
E smaller systems the errors are even smétlex gap scales as
1/N). All results discussed here are f8r=8L.>

The statistical errors of the calculated energies are as

mall as~10"° for all L studied. This accuracy exceeds by

S(r,m)

FIG. 4. Correlations between the energy as obtained from the

nearest-neighbor correlation function and the staggered structu factor 56 that of th i i it . |
factor for a 16< 16 lattice at3=128. The vertical line indicates the a factor >— at ol the most accuraté results previously re-

estimate of the energy from the averagendthe error is too small Ported forL=4-16, the GFMC results by Rung®Com-

to be seen on this scaleThe dotted horizontal lines indicate the Paring the two sets of results, they agreelfst8, but for the

value + one standard deviation &(w,7) calculated using the larger sizes the GFMC data is consistently higher by 2-3

conventional estimator. The dashed, almost indistinguishable lineSFMC error bars. Given the agreement to a relative accuracy

indicate the improved estimate. of less than 10° between the SSE result fir=6 and the
exact result, and the nonapproximate nature of the algorithm,

the covariance effects seen in the data discussed above. Ttés hard to see why there should be any systematic errors in

" . € SSE data for the larger lattices. Note that any remaining
a_1b|l|ty of the Ic_>ca| Monte Qarlo updates_to rotate the.d.'rec'finite-temperature effects would lead to an overestimation of
tion of the antiferromagnetic order in spin space diminishe

o : . : Sk > ~the energy, and hence could not explain the discrepancy with
with increasing size, leading to large statistical fluctuation he GEMC data. As discussed above. care has been taken to
in the conventional estimate of the correlations. The fact th . '

. . . .‘%erify that in fact the finite temperature effects are well be-
the energy fluctuations do not increase with the system SIZBw the statistical errors. GFMC calculations, on the other

can, in the same way, be traced to the rotationally invarianhand' are in general expected to be affected by a small sys-

tematic error originating from “population control” of the
varying number of “random walkers” used in that type of
173 F . . simulation. In Runge’s calculation, attempts were made to
remove such bias more effectively than in previdds
GFMC calculations. However, a small remaining systematic
error could not be ruled out, and the effect was expected to
be an overestimation of the enertfyThe discrepancy found

. here is therefore not completely surprising. The energies ob-
tained with the SSE algorithm are listed in Table II. It is
gratifying to note that the SSE energy is indeed nicely self-
) averaging—despite the considerably fewer numbers of MC
YART steps performed for the larger systems the relative errors do
" . not differ much from the smaller sizes.

Two definitions of the sublattice magnetization have been
frequently used in previous studigsnd will be considered
here as well. The first definition is in terms of the staggered
structure factor,

17.2

x(m.m)

17.1

17.0 - ) .

-0.6790 -0.6788 e -0.6786 -0.6784 M i( L) — 35( m, 7T)/ L2, (33)

and the second one uses the spin-spin correlation function at
FIG. 5. Correlations between the staggered susceptibility anghe |argest separation on the finite lattice,
the energy as obtained from the nearest-neighbor correlation func-

tion for a 6X 6 lattice atB3=48. Due to the very weak covariance, 5
only a modest increase in accuracy can be achieveg (for ). M3(L)=3C(L/2L/2). (34
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TABLE 1l. QMC results for the ground-state energy, the stag-ceptibility of a system with broken symmetry in the thermo-
gered structure factor, and the spin-spin correlation function at didenamic limit, the result has to be adjusted by a factor 3/2.
tancer=(L/2,L/2). The accuracies of the results f8¢#,7) and Hence, the definition is
C(L/2,L/2) were increased by using covariance effects, as dis-
cussed in Sec. Il. The simulations were carried out at inverse tem- x1(L)=32x(27/L,0). (36)
peratures3= 8L, and the total number of MC steps performed for ) ) ) o .
the different systems were 280 (L=4), 3x1f (L=6), 1¢  The spin-wave velocity can be obtained from the infinite-size

(L=8), 1% (L=10), 3x 10’ (L=12), 1.5x10" (L=14), and 16  Vvalues ofps and y, according to the general hydrodynamic

(L=16). relation
L -E (m, ) C(L/2,L/2) c=vps/x,. (37
4 0.7017777) 1.474804) 0.05987%5) The above quantities will now be scaled to the thermody-
6 0.6788784) 2.517996) 0.0508563) namic limit usingy? fits to appropriate scaling forms. Chiral
8 0.6734874) 3.79392) 0.04586T5) perturbation theory gives the following scaling behavior for
10 0.6715494) 5.31243) 0.0428516) the ground-state energy and the sublattice magnetization de-
12 0.67068%%b) 7.078Q7) 0.0408739) fined according to Eq.33) [parameters without the argument
14 0.67022¢7) 9.09Q1) 0.03945%1) L will henceforth denote the infinite-size valles
16 0.6699767) 11.3522) 0.0383%2) 1 2
c

E(L)=E+ﬂCF+4—pSF+"', (383
The factors 3 are included to account for rotational averaging 5
of the z component of the correlation& (L) and M (L) 22,  MT1
should, of course, scale to the same sublattice magnetization Mi(L)=M"+ ach L T (380)

in the thermodynamic limit. Using covariance error reduc- 7 )

tion, both were determined to within relative statistical errorsVhere «=0.62075 andg=—1.4377." The leading correc-

of ~10~* (slightly larger for the largest systejnghis ac- tions ha_lve been obtam(_ed also fron;5 rzgnormallz_atlon—group

curacy also exceeds that of previous studies. The results f&@lculations for the nonlinear model;™and their orders

both S(r, ) andC(L/2,L/2) are listed in Table II. also.agree with spin-wave theo'ﬁ/..Spm-wave theory also
As discussed in Sec. Il, the spin stiffness can be obtaineEerd'Cztfmfhat the leading corrections to; and M, are

directly by measuring the square of the fluctuating winding™ /L,"">"and this should be the case also for(L) due to

number. However, as pointed out recently by Einarsson an#'€ linear spin-wave spectrum for small

Schulz? the two terms in Eq(26) have different leading Individually fitting all the parameters, it is fqund that the

size corrections:-1/L° for E and~1/L for A,. Therefore, ~Nigh accuracy of£(L) necessitates the inclusion also of a

A. is also calculated separately. There is a small discrepand™m ~ 1/L° in Eq. (388. Both MZ(L) and M3(L) require

between the QMC results far=4 andL =6, and the Lanc-  corrections up to order iL?. The QMC results for (L) and

zos results reported in Ref. 22. Adjusting for different factorsx. (L) are less accurate, and only linear and quadratic terms

in the definitions, the Lanczos results akg(4)=0.04832 are needed. Hence, the following size dependences are as-

and A((6)=0.06723, whereas the QMC results obtainegsumed:

here areA4(4)=0.04841(2) andA((6)=0.067913). The

reason _for the qlisc_repam_:y is not cle_ar, l_aut ca_lrrying 0(1_144 E(L)=E+ e_g + e_i + e_g, (399
exact diagonalizations with weak twist fields included in the L> L* L

Hamiltonian, and subsequently calculating the derivative in

Eq. (20) numerically, givesA ((4)=0.04840, in good agree- 20 _yg2, M1 My Mg

ment with the QMC result. Hence, there is reason to believe Mi(L)=M*+ T+ ff+ NN (39H)

that the QMC results are correct.
The uniform susceptibility has typically been obtained in

numerical studies via a definition in terms of the singlet- MS(L)=M2+%+¥+%, (399
triplet excitation gap?!®?! Here a different approach is
taken, not requiring simulations in th8=1 sector. The | |
g-dependent susceptibility, AdL)=A+ fl+ L2 , (39)
1 ) X+ QY Y] X1 Xz
X(qx.qy): Nj - ellax(Xj=xu) +ay(yj=Yyu x(j,k), (39 XL(L):Xi+r+F- (399

The predicted scaling form&8), together with the hydrody-
is calculated using Eq(15), and its value at the longest namic relation37) and the expressiof26) for the spin stiff-
wavelength,q,=2m/L, is taken as the definition of the nessp, imply the following constraints among the param-
finite-size uniform susceptibilitfydue to the finite-size gap eters and size corrections:
and the conserved magnetization,q=0) of course van-
ishes identically. In order to give the correct transverse sus- As=—(LI3)[E+2aM?ez/(Bm,)], (409
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X, =aBM?/(m;ey), (40p  the subleading term. The constraint thag(L) and M (L)
extrapolate to the samM is also enforced.
e,=m,es/(4aM?). (400 First, a remark on the scaling of the ground state energy:

One of the early nonlinear model calculations of the finite-
All the scaling forms(39) are hence coupled to a high de- Size beha;/ior indicattidzﬁthat the subleading correctiof to
gree, and a good simultaneous fit of all parameters wilvas ~1/L°, not ~1/L."." Previous numerical calculations
strongly support the field theoretical predictioi3$). were not accurate enough to distinguish between these
Data for all sized =4— 16 can be included in fits with forms. However, Runge noted that the valuecoéxtracted
good values ofy? per degree of freedomy®/DOF), except from the leading correction was in rather poor agreement

- - ith other estimates if a ILP subleading correction was
in the case ofy, (L) for whichL=4 has to be excludeghot Wi - . .
surprising siﬁr%:(e {he smallest wave-vectpr used in the used, and that a slightly better value was obtained using

ST < 1/L%. Even with the accuracy of the QMC results (L)
definition is as large asr/2 for L=4). Both A (16) and obtained here, individual fits using the two different sublead-
x . (16) have error bars too large to be useful, and are ther

‘?hg correctiongand including also the next higher-order cor-

fore also excluded. _ rection in both cas@scannot by themselves definitely rule

Extrapolating the infinite-size parameters from fits t0 agyt the absence of thel¥ term, although the fit including it
relatively small number of points, one has to take into acis petter. However, it is not at all possible to obtain a good fit
count the fact that there are higher-order corrections preser{onstrained by Eq(40a and (40b) without the 1L* term
which by necessity have been neglected in the scaling formgncluding 11.° and 1L terms, % DOF being as high as
used. The statistical errors of the extrapolated parameters50 in this case. With the 0f (and 1L%) term
may be smaller than the systematic errors introduced due '[/QZ/DOF~ 0.9. Hence, knowing the constraints on the leading
this neglect(even though the fit may be gopdn order to  corrections, the present data unambiguously require that the
minimize this type of subtle errors, the=4 data were ex- subleading energy term is 1/L4.
cluded from all the fits discussed in the following. This leads The parameters obtained in the partially constrained
to larger statistical fluctuations but should significantly re-fit are E=-0.6694365), M=0.30713), ps=0.1762),
duce the risk of underestimating the errdgtise largest ne- x, =0.062310), andc=1.681(14). The statistical errors are
glected correction t& is 11 times larger fot. =4 than for  here significantly reduced relative to the previous uncon-
L=6, and for the other quantities 3—5 times lajger strained fits, and the two sets of parameters are consistent

Before considering the full fit39) with all the constraints With each other. The leading corrections Eoand M are
(40), it is instructive to consider first the results of individual, "OW, Of course, in complete agreement with the theoretical
unconstrained fits to all the different quantities. The effectgPrediction. The subleading energy correction of the fit is

of including the constraints can then be judged in light of€s=4-17(23), whereas E¢38a with the above parameters
these results. gives e,=c“/(4ps)=4.01(7). Hence, it is now also con-

Completely independent fits giveE=—0.669432) firmed, at the 5% accuracy level, Fhat the si;e of the suble_ad-
M=0.3062(6) [from M,(L)], M =0.3068(9) [from, ing energy correction agrees with th_e chiral pe(turbatlon
M,(L)], pe=0.1794), andy, — 0.0631). Note thatM ,(L) theory prediction by I—!asenfratz a_nd Nlederm§t°37ell. is re-
ansz (ISS give the s:,ime é(dblattice magnetizatMmNilthin markable that the derivation of this very detailed theoretical

2

L ; . result is based purely on symmetry and dimensionalit
statistical errors, as they should. Using E&7) the spin- . nsiderationd’ purely 4 y y
wave velocity isc=1.692). These parameters are in good  \yjth the subleading energy correction now firmly estab-

general agreement with previous calculations, except that thished, the last constrair#0c) can also be enforced, and the
energy is slightly lower than the best GFMC estim@&tdie  parameters of this fit are taken as the final results. This fully
to the discrepancies in the finite-size data discussed abovgeupled fit still hasy?/DOF~0.9 (the total number of pa-
The sublattice magnetization is a bit lower than the recentameters is 14, and a total of 28 data points were used
result by Beard and Wiek&[ M =0.3085(2}. Looking at x? for the five individual curves, they all repre-
The consistency with the scaling forr(@8) can of course  sent good fits to their respective data sets. Hence, the con-
also be tested with these independent fits. The leading energyrained fit is in all respects a good one. All the ground-state
correction is found to be;=—2.43(11), whereas E438a8  parameters obtained from the fit are listed in Table lIl, along
in combination with the above estimate far gives with the leading and subleading corrections to the energy and
e;=Bc=2.433). Theconstant of the linear term il (L) the sublattice magnetization. There are only minor changes
is m;=0.5749), whereas the right-hand side of the scalingrelative to the previous partially constrained fit, the main
form (38b) gives m;=aM?/(cy,)=0.550(10). The sub- improvement in accuracy being for the spin-wave velocity.
leading energy correction of the fit is;=4(1), and Eq. The errors of the parameters were calculated using the boot-
(388 givese,=c?/(4ps)=4.0(1).Hence, there is good con- strap method! i.e., fits were carried out for a large number
sistency with the predicted scaling forms, within a few per-of bootstrap samples of the QMC data, and the error is de-
cent for the leading terms, but with a statistical uncertainty agined as one standard deviation of the parameters of those
large as~25% for the subleading energy correction. fits. As explained in Sec. Il B, this should be a very accurate
The leading corrections have been derived in several difmethod for calculating statistical errors even in highly non-
ferent ways>~2’ Given then the good numerical agreementlinear situations such as the constraingt fit. The QMC
found above, it is now reasonable to enforce the constraintdata used, along with the fitted curves, are shown in Figs.
(409 and(40b) which involve these terms. From such a fit, 6-9.
with the constraint on the subleading energy correctitiit) In the figures, it can be observed that even though the
left unenforced, one can get a better estimate of the size df=4 data are not included in the fit, the fitted curves ex-
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TABLE lll. The ground-state parameters and the leading and

subleading corrections t& and M, as obtained from a fit fully 0.28 - r
constrained by the predictions of chiral perturbation theory. 0.26 |

Parameters 0.24 ¢

E —0.6694375) 0.22

M 0.307@3) ~_ 0.20 1

ps 0.1752) Z 018

X1 0.06259) s i

c 1.6737) 0.16

Size corrections “014 |

e —2.40510) 0121

e, 4.006) 0.10

m; 0.5606) 0.08 . . . . o
m, 1.085) 000 005 010 015 020 025

1L

trapolated to. =4 are quite close to these QMC points, ex-  FIG. 7. The sublattice magnetization squared, as defined by Egs.
cept in the case of, (4) (for which this point cannot even (33) and(34), vs inverse system size. The solid and open circles are
be included in an individual fit In fact, calculating also the the QMC data foM,(L) andM,(L), respectively, and the curves
statistical errors of the extrapolations te=4 gives strong @re the results of the constrained fit including the 4 data. The
further support to the reliability of the procedures used. Fof@MC error bars are much smaller than the circles.

all quantities except the energy, the statistical errors argqip E(4) and A(4) are within one standard deviation of
found to be comparable &t=4 andL=o. For the energy the extrapolated results. The sublattice magnetizations
the fluctuations are more than 20 times largerat4, dueto v, (4) andM,(4) both deviate by 2.5 standard deviations,
the high order of the leading correction. The exact results foand y, deviates by 3 standard deviations. These rather small
deviations clearly indicate that there are only minor effects

r ; of neglected higher-order corrections. The extrapolations to
K L= should of course be significantly less sensitive to sys-
tematic errors, since the neglected corrections rapidly vanish
-0.670 for the larger sizes. As already discussed above, the ne-
glected corrections are several times larget &t4 than at
L=6 (the smallest size considered in the )fitslence, any
M remaining systematic errors in the infinite-size extrapolations
0671 listed in Table Il should be well below the indicated statis-
tical errors.
IV. SUMMARY AND DISCUSSION
0672 0.0005 50070 An extensive study of the ground-state parameters of the
) : : 2D Heisenberg model has been presented. Using the stochas-
-0.670
0.10
-0.680
0.09
[8a]
-0.690 0.08
<
0.07
-0.700
. ‘ ‘ 0.06
0.000 0.005 0.010 0.015
1’ , 0.05 |
. 0.04 : : : : ‘
FIG. 6. The ground-state energy v4 1/on two different scales. 000 005 010 0.15 020 0.25
The solid circles are the QMC data. On the scale of the top graph, L

the error bars are smaller than half the radius of the circles. The

smaller circles with error bars in the top graph are the GFMC and FIG. 8. The spin current-current correlator, EB5), vs the in-
extrapolated results by Rung®ef. 16. The result of the con- verse system size, along with the result of the coupled fit to the
strained fit including thé.>4 data is indicated by the curves. L>4 data.
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The close agreement with the actual calculated results, along
with the high orders of the largest neglected corrections,
show that any effects of the higher-order terms on the ex-
trapolations to infinite size should be well below the care-
fully computed statistical errors. It can be noted that Beard
and Wiese also included subleading correctibhsyt not to

the same high orders as was necessary in the present study
(due to the high accuracy of the SSE results for the energy
and the sublattice magnetizatjoinother reason to believe
that the present study is more reliable is that the fit involves
in a direct manner th@ =0 finite-size definitions of the
same infinite-size parameters sought, not functions of those
parameters.

In combination with the covariance error reduction
schemé’ the SSE method is a very efficient method for
calculating correlation functions of isotropic spin models, as
exemplified by the results presented here. The covariance
scheme is most efficient in cases where there are strong long-

FIG. 9. The long-wavelength spin susceptibili§/3 of y, (L)]  ranged correlationévhere the “bare” estimator for the cor-
vs inverse system size, along with the result of the constrained fit téelation function does not behave wellt is currently being
theL>4 data. applied in a study of the temperature dependence of the cor-
relation length of the weakly coupled Heisenberg bilayer, for
larger lattices and lower temperatures than previctggs-

tic series expansion QMC mett§d®in combination with a sible. This is motivated by recent results ogtained from a
data analysis scheme utilizing covariance effé€tgsults of mapplﬂgfto a ngnlmear modfelgor this slys_terﬁl, preﬂ1|_ct|nog
unprecedented accuracy were obtained for the ground-sta mu;: tﬁste_r ||ve|rgenc?_r? tSSeEcolrre a}:;]on hengtl as
energy and the sublattice magnetization for systems of linea antor the single fayer. 1he algoritnm nas also proven

dimensions up td = 16. The long-wavelength susceptibility useful in the case of critical, or near-critical systems, such as

. ) . . the bilayer Heisenberg model close to its quantum critical
and the spin stiffness were also directly calculated in the ® . .
simulations point. More accurate finite-size scalings than previously re-

The QMC data was extrapolated to the thermodynamitpo.r.ted for th'sﬁ als well as _other _models exhibiting quantum
Lo ; X . __tritical behavior*! are possible with the data enhanced using
limit using scaling forms predicted from chiral perturbation

theory?” supplemented by higher-order terms necessary t(':[)he covariance method. .
' QMC methods based on the loop-cluster algorithm,

obtain good fits. Both .the Ieading and'subleading co'rrectionﬁave proven to be very efficient in several studie$Sef1/2
were found to agree in magnitude with the theoretical pre'Heisenberg modef€:1%5and are clearly more efficient than
dictions to within a few percent. To the author’'s knowledge, '

this is the first numerical verification of the predictions of Lheerestﬁgt Eitgg?/a:ﬂa??gi/n(é?ﬁgg.czzagt)(:imr?ix‘?éamllvaisrn S?g\‘;\gn
chiral perturbation theofy to subleading order. g y Imp

The ground-state energy extracted from the fit is the mos&he accuracy of calculated static susceptibilities, which ap-

accurate estimate obtained to date, and is slightly higher thae & to 21% very accurately given in Ioop_ algonthm
the best Green’s function Monte Carlo resiThis discrep- simulations.” The method used here for calculating the spin

ancy is most likely due to a “population control” bias in the stiffness directly from the winding number ﬂuctua;ions
GEMC calculatior® The spin stifiness and the sublattice would probably also be more accurate with loop algorithms.

S However, it is not clear whether loop algorithms can easil
magnetization are both lower than the results of a recent p aigorty g
roduce more accurate results for equal-time correlation

X i i . P
low-temperature loop algorithm QMC studyThe discrep functions or energies than those presented in this paper.

ancy appears to be marginally larger than what could be . .
explained by statistical fluctuations alone. For the spin-wav?0 r'll'ih?]erpithods dd|S(|:us|se;j hte:ﬁ can a'?" he eaﬁny exr:ended
velocity the results are consistent with each other. 9 pin models. 1n fact, the covariance scheme has an
In the QMC study by Beard and WieSethe size and a}dd|tlozngl_advantage de>;/2, m_that th-e on-site correla-
temperature dependence of the uniform and staggered sdion (SW_) IS kn_own e_xactly(ln the_ |§otrop|c case bu_t fluc- .
tuates in the simulation and exhibits strong covariance with

ceptibilities were fit to scaling forms from chiral perturbation > . . ? ;
b 9 b %ther correlation function¥. Detailed studies of various

0.07

0.06 -

% (2n/L,0)

0.05

0.04 ‘ : : ‘ :
000 005 010 015 020 0.25

/L

theory. Hence, the underlying theory for analyzing the data is’, . . .
the same as used in the present study, but the physical qua gher-spin models should therefore now be feasible also in

tities used are different, as is the temperature rediove but
finite T versusT=0 in this study. Since both QMC algo-
rithms are “exact,” the discrepancies must originate from
the scaling procedures. In this paper the effects of neglected | would like to thank B. Beard, D. Scalapino, R. Sugar,
higher-order corrections were discussed, and attempts weend U.-J. Wiese for discussions. This work was supported by
made to minimize these as much as possible. Furthermore, #se National Science Foundation under Grants No. DMR-89-
a quantitative check of remaining effects of this nature, the20538 and No. DMR-95-27304. The QMC simulations were
calculated scaling functions were extrapolated to latticegarried out at the Supercomputer Computations Research In-
smaller(L=4) than the smallest size used in the fit=6).  stitute (SCRJ) at Florida State University.
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