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Analytical investigations of the critical state are carried out for strip-array systems, in which thin supercon-
ducting strip lines parallel to thexy plane are arranged periodically. Two types of strip-array systems are
considered: a stack of strip lines piled along thez axis and an array of strip lines aligned in thexy plane. The
results show that the relations between the magnetic fieldH and the current densityJ of strip-array systems in
an applied magnetic field perpendicular to the strips can be transformed to theH-J relation for an isolated strip
line. Therefore,H and J of strip-array systems in the Meissner state and in the Bean’s critical state can be
easily derived by transforming theH andJ for an isolated strip line. Magnetization properties and interactions
in multiple strip lines are discussed.@S0163-1829~96!06842-7#

I. INTRODUCTION

The concept of a critical state was introduced to describe
the magnetic hysteresis of type-II superconductors and was
first applied to slab and cylindrical superconductors in mag-
netic fields applied parallel to the superconductors.1 The
critical state in superconducting strips in perpendicular mag-
netic fields was considered by Swan2 and Norris.3 Recently,
the electromagnetic properties~e.g., magnetic field, current
density, magnetization, and ac loss! of flat superconductors
in perpendicular fields, in which the demagnetization factor
is close to 1, have been extensively investigated.

The magnetic field and current density in the critical state
of strip lines have been analytically investigated as
follows.4–7 Consider an isolated strip line of width 2w and
thicknessd ~the strip line fills the areauxu<w, uzu<d/2, and
uyu,`). The width of the strip line, 2w, is assumed to be
much larger than the thicknessd and the effective penetra-
tion depth in thin films8 2l2/d, wherel is the London pen-
etration depth. This assumption allows us to describe the
electromagnetic property of the strip array by thez compo-
nent of the magnetic field atz50, H(x)[Hz(x,z50), and
by the y component of the mean current density,
J(x)[(1/d)*2d/2

1d/2Jy(x,z)dz. The basic equation of the Biot-
Savart law forH(x) and J(x) for an isolated strip line is
given by

H~x!5Ha2
d

2pE2w

1wJ~u!

x2u
du, ~1!

where the magnetic fieldHa is applied parallel to thez axis.
In the critical state of a strip line,H(x) andJ(x) are deter-
mined so as to satisfy the integral equationsH(uxu,a)50
anduJ(a,uxu,w)u5Jc with Eq. ~1!, wherea is the position
of the flux front andJc is the critical current density. The
integral equations forH(x) andJ(x) can be solved analyti-
cally assuming the Bean’s critical state model,4–6 in which
Jc is assumed to be field independent; on the contrary, a
numerical calculation is necessary for field-dependentJc .

7

Bean’s critical state for disk superconductors in perpendicu-
lar fields has also been investigated analytically.9–11 These
results show that theH(x) andJ(x) profiles of a strip and a

disk in perpendicular fields are very different from those of a
slab and a cylinder in parallel fields.

The magnetic field distribution in strip lines predicted by
those previous analyses have been experimentally confirmed
by using magneto-optical Faraday effects12,13 and by using
an electron spin resonance probe.14 Magnetization properties
predicted by the theoretical works have been confirmed in
studies of the magnetization curves for YBa2Cu3Oy disks.

15

In these previous works, isolated strip lines or disks were
investigated. When multiple strip lines are subject to a mag-
netic field, on the other hand,H(x) and J(x) profiles are
affected by the interaction of the strip lines. For example, a
stack of strip lines may behave like a slab superconductor, if
the spacing between strip lines in the stack is much narrower
than the width. Multiple strip lines or wires are utilized for
device and power application of superconductors, and basic
physical investigations of the electromagnetic response of
such a strip-array system is useful for the application of su-
perconductors.

In the present paper, analytical expressions ofH(x) and
J(x) are determined for systems of multiple strip lines in
perpendicular magnetic fields on the basis of the Bean’s criti-
cal state model. The results show that the basicH-J relation
of the Biot-Savart law for strip-array systems can be trans-
formed to theH-J relation for an isolated strip line, Eq.~1!.
Conversely, theH(x) and J(x) for multiple strip lines can
then be obtained by a simple transformation ofH(x) and
J(x) for an isolated strip line. I consider two types of strip-
array systems: a stack of strip lines along thez axis ~I call
this stack aZ stack! is analyzed in Sec. II and an array of
strip lines in thexy plane~I call this array anX array! in Sec.
III.

II. STACK OF STRIP LINES ALONG THE z AXIS
„Z STACK …

In this section we consider aZ stack in which an infinite
number of strip lines are stacked along thez axis. Each strip
line has width 2w and thicknessd, and is stacked at the same
intervalD as shown in Fig. 1. Thenth superconducting strip
occupies an area whereuxu<w, uyu,`, and uz2nDu<d/2
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(n50,61,62,•••,6`). We assume 2w@d, 2w@2l2/d,
andD@d.

A. Basic equations

WhenHa is applied parallel to thez axis~perpendicular to
the strips!, the Biot-Savart law for thez component of the
magnetic fieldH(x) and the mean current densityJ(x) in a
Z stack is given by

H~x!5Ha2
d

2p (
n52`

1` E
2w

1w

J~u!
~x2u!du

~x2u!21~nD!2

5Ha2
d

2DE2w

1w

J~u!cothS p~x2u!

D Ddu. ~2!

By introducing the following transformation of the variables,

x̃5
D

p
tanhS px

D D , w̃5
D

p
tanhS pw

D D , ~3!

Eq. ~2! is reduced to

H̃~ x̃!5H̃a2
d

2pE2w̃

1w̃J̃~ ũ!

x̃2ũ
dũ, ~4!

where H̃( x̃) is the transformed magnetic field,J̃( x̃) is the
transformed current density, andH̃a is the transformed ap-
plied field given by

H̃a5Ha1
d

2pE2w̃

1w̃
J̃~ ũ!

ũdũ

~D/p!22~ ũ!2

5Ha1
d

2DE2w

1w

J~u!tanhS pu

D Ddu. ~5!

Note that Eq.~4! has the same form as Eq.~1!; namely, Eq.
~4! shows theH̃( x̃)-J̃( x̃) relation for an isolated strip line of
width w̃ with a magnetic fieldH̃a in x̃ space. Therefore,
H(x) andJ(x) of a Z stack can be derived from those of an
isolated strip line using the transformation given by Eqs.~3!
and ~5!. The magnetizationM is then calculated fromJ(x)
as

M5
1

2wE2w

1w

xJ~x!dx. ~6!

If a Z stack carries no transport current,I t50, then
J(x) is asymmetric,J(2x)52J(x), and we have

H̃~ x̃5D/p!5Ha . ~7!

This equation can be used to determineH̃a , becauseH̃a is
implicit on the left-hand side of the equation. Since the ex-
tension to the case ofI tÞ0 is straightforward,16 in this paper
we deriveH(x) andJ(x) for HaÞ0 andI t50.

B. Meissner state

In the Meissner stateH̃( x̃) and J̃( x̃) for a Z stack, which
are the same expressions asH(x) and J(x) for an isolated
strip line,4–6 are given by

H̃~ ux̃u.w̃!5H̃a

ux̃u

Ax̃22w̃2
, ~8!

J̃~ ux̃u,w̃!52
2H̃a

d

x̃

Aw̃22 x̃2
, ~9!

and H̃(ux̃u,w̃)50. Substitutingx̃5D/p in Eq. ~8! and us-
ing Eq. ~7!, we have

H̃a5
Ha

cosh~pw/D !
. ~10!

TheH(x) andJ(x) for aZ stack are obtained from Eqs.~3!,
~8!, ~9!, and~10! as

H~ uxu.w!5
Hasinh~puxu/D !

Asinh2~px/D !2sinh2~pw/D !
, ~11!

J~ uxu,w!52
~2Ha /d!sinh~px/D !

Asinh2~pw/D !2sinh2~px/D !
, ~12!

andH(uxu,w)50. At the edge of the strip line (uxu;w),
H(x) andJ(x) diverge as follows:

H~ uxu→w10!;HaA tanh~pw/D !

2p~ uxu2w!/D
, ~13!

J~ uxu→w20!;2
Ha

d
sgn~x!A tanh~pw/D !

p~w2uxu!/2D
. ~14!

The magnetizationM is calculated as

M52Ha

D2

pwd
lnFcoshS pw

D D G . ~15!

C. Critical state

In the critical state, when aZ stack is exposed to a mag-
netic field increased after zero-field cooling,H(uxu,a)50
in the shielded region, andH(a,uxu,w).0 in the flux-

FIG. 1. Arrangement of strip lines in aZ stack, in which an
infinite number of strip lines are stacked along thez axis at an
intervalD. Each strip line has width 2w, thicknessd, and is infi-
nitely long along they axis.
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filled region, wherea.0 is the position of the flux front. The
current densityJ saturates asJ(a,uxu,w)52Jc sgn(x),
where we assume that the critical current densityJc is field
independent1 in this paper.

In the critical state, theH̃( x̃) and J̃( x̃) are given by4–6

H̃~ x̃!5H 0, ux̃u,ã,

H0 arctanh~1/uw̃~ x̃!u!, ã,ux̃u,w̃,

H0 arctanhuw̃~ x̃!u, ux̃u.w̃,

~16!

J̃~ x̃!5H 2~2/p!Jcarctanw̃~ x̃!, ux̃u,ã,

2Jc sgn~ x̃!, ã,ux̃u,w̃,
~17!

whereH0 is the characteristic field given by

H05Jcd/p ~18!

and w̃( x̃) is

w̃~ x̃!5
x̃

w̃
A w̃22ã2

uã22 x̃2u
. ~19!

The transformed flux frontã5(D/p)tanh(pa/D) satisfies

coshS H̃a

H0
D 5

w̃

ã
5
tanh~pw/D !

tanh~pa/D !
. ~20!

The relation betweenHa and H̃a is then obtained from Eq.
~7! as

sinhS H̃a

H0
D 5

sinh~Ha /H0!

cosh~pw/D !
. ~21!

Using Eqs.~20! and ~21!, we have the following relation
betweenHa anda:

sinhS pa

D D5
sinh~pw/D !

cosh~Ha /H0!
. ~22!

For a low applied field@Ha!H0 andw2a!min(w,D)#, Eq.
~22! is then approximated as

w2a.
D

2p SHa

H0
D 2tanhS pw

D D . ~23!

For a high field (Ha*H0 anda!D), on the other hand, we
have

a.
2D

p
expS 2

Ha

H0
D sinhS pw

D D . ~24!

As shown in Eqs.~23! and ~24!, w2a grows with field as
;Ha

2 and saturates exponentially. These field penetration
properties are similar to those for an isolated strip line.

Substituting Eq.~3! into Eqs. ~16!, ~17!, and ~19!, we
obtainH(x) andJ(x) in the critical state as

H~x!5H 0, uxu,a,

H0 arctanh~1/uw~x!u!, a,uxu,w,

H0 arctanhuw~x!u, uxu.w,

~25!

J~x!5H 2~2/p!Jcarctanw~x!, uxu,a,

2Jc sgn~x!, a,uxu,w,
~26!

wherew(x) is

w~x!5
tanh~px/D !

tanh~pw/D !
A tanh2~pw/D !2tanh2~pa/D !

utanh2~pa/D !2tanh2~px/D !u
.

~27!

At the edge of the strip line (uxu;w), H(x) diverges loga-
rithmically as

H~ uxu→w!;
H0

2
lnF tanh~pw/D !

puuxu2wu/2D
sinh2SHa

H0
D G . ~28!

At the flux front (uxu;a), J(x) and H(x) have vertical
slopes,

Jc2uJ~ uxu→a20!u;
2

d
H~ uxu→a10!

;
2

p
JccothSHa

H0
DA2p~ uxu2a!/D

tanh~pa/D !
.

~29!

Logarithmic divergence ofH(x) at uxu;w and vertical
slopes ofH(x) andJ(x) at uxu;a appear in aZ stack as well
as in an isolated strip line. For a high field (Ha.H̃a*H0),
H̃a given by Eq.~21! is reduced to

H̃a5Ha2H0lnFcoshS pw

D D G , ~30!

andH(x) is given by

H~x!5Ha2
H0

2
lnU sinh2~pw/D !

sinh2~px/D !
21U. ~31!

Figure 2 showsH(x) andJ(x) profiles for aZ stack~solid
lines! and for an isolated strip line~dashed lines!. This figure
clearly shows that the field shielding effect is larger and the
width of the flux-filled regionw2a is smaller for aZ stack
than for an isolated strip line.

In the critical state,M for a Z stack is calculated by sub-
stituting Eqs.~26! and ~27! into Eq. ~6!; thus we have

M52
D2

2pwdE0
Ha
lnF 11

sinh2~pw/D !

cosh2~H8/H0!
GdH8

52
M0

nz
2 E

0

nz
lnFcosh~s1h!

cosh~s2h!Gds, ~32!

whereM0, nz , andh are defined as

M05
1

2
wJc , nz5

pw

D
, h5

Ha

H0
5

pHa

Jcd
. ~33!

For h,nz ~i.e., Ha,pH0w/D5Jcwd/D), Eq. ~32! can be
rewritten as the following series:

2
M

M0
5
2h

nz
2S h

nz
D 22 1

nz
2 (
k51

`
~21!k21

k2

3@12e22kh2e22knzsinh~2kh!#. ~34!
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On the other hand, forh.nz ~i.e.,Ha.pH0w/D), we have

2
M

M0
512

2

nz
2(
k51

`
~21!k21

k2
e22khsinh2~knz!. ~35!

In a low applied field (h!1), Eq. ~32! is reduced to

2
M

M0
.

1

nz
2 F2h ln~coshnz!2

h3

3
tanh2nz1••• G , ~36!

and in a high field (h@1), we have

2
M

M0
.122e22h

sinh2nz
nz
2 1•••. ~37!

When the spacing in aZ stack is large (nz!1), we have

2
M

M0
.tanhh2

nz
2

6

tanhh

cosh2h
1•••. ~38!

The first term of the right-hand side of Eq.~38! corresponds
to the magnetization for an isolated strip line.

We denote the magnetizationM in an increasing field
(Ha.0) after zero-field cooling asM zfc(Ha), which is given
by Eq. ~32!. Then, the magnetizationM ↓(Ha) whenHa is
decreasing from a maximum fieldHm.0 (uHau,Hm) and
the magnetizationM ↑(Ha) when Ha is increasing from
2Hm are given by4,15,17

M ↓~Ha!5M zfc~Hm!22M zfcSHm2Ha

2 D , ~39!

M ↑~Ha!52M zfc~Hm!12M zfcSHm1Ha

2 D52M ↓~2Ha!.

~40!

Hysteretic ac loss per unit volume for one field cycle,
P(Hm), is calculated as17

P~Hm!52m0 R M ~Ha!dHa

52m0E
2Hm

1Hm
M ↓~Ha!dHa

54m0HmM zfc~Hm!28m0E
0

Hm
M zfc~Ha!dHa .

~41!

Substituting Eq.~32! for M zfc(Ha), Eq. ~41! becomes

P~Hm!5
2m0D

2

pwd E
0

Hm
dHa~Hm22Ha!

3 lnF 11
sinh2~pw/D !

cosh2~Ha /H0!
G , ~42!

D. Densely piledZ stack

All results presented in Secs. IIA–IIC withD→` corre-
spond to the results for an isolated strip line, which is con-
sidered in Refs. 4–6. For a densely piledZ stack in which
spacing between strip lines is small (D&w), on the other
hand, theH(x) andJ(x) profiles are significantly affected by
the interactions between multiple strip lines. Here we con-
sider such aZ stack whereD&w (e22pw/D!1).

For uxu2w*D, H(x) in the Meissner state given by Eq.
~11! is approximated as

H~ uxu.w!.Ha@ 11 1
2e

22p~ uxu2w!/D#. ~43!

For uxu*D andw2uxu*D, J(x) given by Eq.~12! is ap-
proximated as

J~ uxu,w!.2
2Ha

d
sgn~x!e2p~w2uxu!/D. ~44!

These two equations show thatH(x) is almost same asHa
except near the edge of the strips, and that the current flows
only near the edge.

In the critical state, Eq.~22! is approximated as

p

D
~w2a!.

Ha

H0
2 ln2, ~45!

for a*D andw2a*D. Here, the flux-filled regionw2a
grows linearly with increasingHa , similar to growth seen in
slab superconductors with parallel fields. Note thatw2a
grows as Eq.~23! in the vicinity of zero field (w2a!D)
even in the densely piledZ stack. For w2a*D,
w.a.uxu*D, anda2uxu*D, J(x) is given by

J~ uxu,a!.2
2

p
Jc sgn~x!e2p~a2uxu!/D, ~46!

namely, uJ(uxu,a)u!Jc . For w2a*D, H(x) outside the
strip and not so close to the edge (uxu2w*D) is given by

FIG. 2. Profiles of~a! magnetic fieldH(x) and~b! current den-
sity J(x) in a Z stack whereD/w50.7 ~solid lines! and in an
isolated strip line where D/w→` ~dashed lines! at
Ha /H050.5,1,2,3, and 4.
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H~ uxu.w!.Ha1
H0

2
e22p~ uxu2w!/D. ~47!

In the flux-filled region not so close to either the edge
(w2uxu*D) or the flux front (uxu2a*D), we have

H~a,uxu,w!.Ha2pH0Fw2uxu
D

2
1

2p
e22p~w2uxu!/DG .

~48!

As shown in Eqs.~47! and~48!, except near the flux front
and near the edge of the strip lines,H(x) in a densely piled
Z stack is approximately given byH(uxu.w).Ha and
H(a,uxu,w).Ha2(d/D)Jc(w2uxu). Figure 3 shows
that theH(x) and J(x) profiles in aZ stack with narrow
spacing (D/w50.2) are similar to those in slab supercon-
ductors. The anomaly ofH(x) at the edge (uxu;w), and at
the flux front (uxu;a), becomes small asD/w decreases.
Furthermore, at the narrow spacing limit (nz@1), M given
by Eq. ~34! is approximated asM /M0;2(2h/nz)
1(h/nz)

2 for low fields except in the vicinity of zero field
(h,nz and e22h!1), and becomes saturated as
M /M0;21 in high fields (h.nz). These results show that
the electromagnetic properties of a densely piledZ stack
with a narrow spacing ofD!w in the critical state are simi-
lar to those of a slab in which critical current density is
Jcd/D.

III. PARALLEL STRIP LINES IN THE xy PLANE
„X ARRAY …

In this section we consider anX array in which an infinite
number of strip lines are aligned in thexy plane. Each su-
perconducting strip has width 2w, thicknessd (!w), and is
placed at the same intervalL (.2w) as shown in Fig. 4. The

nth superconducting strip occupies an area where
ux2nLu<w (n50,61,62, . . . ,6`), uyu,`, and uzu
<d/2.

A. Basic equations

When Ha is applied parallel to thez axis, the relation
betweenH(x) andJ(x) in anX array is given by

H~x!5Ha2
d

2p (
n52`

1` E
2w

1w J~u!du

x2~u1nL!

5Ha2
d

2L E2w

1w

J~u!cotS p~x2u!

L Ddu. ~49!

Since J(x) and H(x) are periodic with periodL as
J(x1nL)5J(x) and H(x1nL)5H(x), it is sufficient to
consider only the electromagnetic field foruxu,L/2. By in-
troducing the following transformation of the variables,

x̃5
L

p
tanS px

L D , w̃5
L

p
tanS pw

L D , ~50!

Eq. ~49! is reduced to

H̃~ x̃!5H̃a2
d

2pE2w̃

1w̃J̃~ ũ!

x̃2ũ
dũ, ~51!

where H̃( x̃) is the transformed magnetic field,J̃( x̃) is the
transformed current, andH̃a is the transformed applied field
given by

H̃a5Ha2
d

2pE2w̃

1w̃
J̃~ ũ!

ũdũ

~L/p!21~ ũ!2

5Ha2
d

2LE2w

1w

J~u!tanS pu

L Ddu5H~x5L/2!. ~52!

Note that Eq.~51! has the same form as Eq.~1!. Therefore,
H(x) andJ(x) of anX array can be derived from those of an
isolated strip line using the transformation given by Eqs.~50!
and ~52!.

FIG. 3. Profiles of~a! magnetic fieldH(x) and~b! current den-
sity J(x) in a densely piledZ stack where D/w50.2 at
Ha /H051,5,10,15, and 20.

FIG. 4. Arrangement of strip lines in anX array, in which an
infinite number of strip lines are aligned along thex axis at a period
L. Each strip line has width 2w and thicknessd, and is infinitely
long along they axis.
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Furthermore, the transformation ofD→ iL ~where
i5A21) in Eqs.~2!, ~3!, and~5! lead to Eqs.~49!, ~50!, and
~52!, respectively. The expressions forH, J, M , andP for an
X array are then easily obtained by the simple transformation
D→ iL of the expressions for aZ stack given in Secs. II B
and II C.

B. Meissner state

In the Meissner state,H(x) andJ(x) for anX array are

H~w,uxu,L/2!5
Hasin~puxu/L !

Asin2~px/L !2sin2~pw/L !
, ~53!

J~ uxu,w!5
2~2Ha /d!sin~px/L !

Asin2~pw/L !2sin2~px/L !
, ~54!

andH(uxu,w)50.
For L22w!L, Eq. ~54! is approximated as

J~ uxu,w!.2
2Ha

d
tanS px

L D , ~55!

except near the edge (w2uxu!w;L/2). TheH(x) at the
center of the spacing of strip lines forL22w!L is much
larger thanHa ,

H~ uxu5L/2!5
Ha

cos~pw/L !
.

4w

p~L22w!
Ha . ~56!

In the Meissner state,M for anX array is

M5Ha

L2

pwd
lnFcosS pw

L D G . ~57!

C. Critical state

The flux fronta for anX array in the critical state is given
by

sinS pa

L D5
sin~pw/L !

cosh~Ha /H0!
, ~58!

andH(x) andJ(x) are given by Eqs.~25! and ~26!, where
w(x) for anX array is

w~x!5
tan~px/L !

tan~pw/L !
A tan2~pw/L !2tan2~pa/L !

utan2~pa/L !2tan2~px/L !u
. ~59!

For a high field (Ha*H0), H(x) is given by

H~ uxu.a!.Ha2
H0

2
lnU sin2~pw/L !

sin2~px/L !
21U, ~60!

which is approximated forL.2w as

H~ uxu.a!.Ha1H0lnF tanS puxu
L D G . ~61!

Figure 5 showsH(x) and J(x) profiles for anX array
with L/w53 ~solid lines! and for an isolated strip line
~dashed lines!. Note that the edges of the neighboring strips
are atx/w562. Both profiles foruxu,w are similar to those

for an isolated strip line. The magnetic field for
w,uxu,L/2 is enhanced due to the demagnetization effect
of neighboring strip lines.

The magnetizationM for anX array in the critical state is
given by

M5
L2

2pwdE0
Ha
lnF 12

sin2~pw/L !

cosh2~H8/H0!
GdH8 ~62!

and is expanded as the following series:

2
M

M0
512

2

nx
2 (
k51

`
~21!k21

k2
e22khsin2~knx!, ~63!

where M05wJc/2, nx5pw/L, and h5Ha /H0. For low
fields (h!1), we have

2
M

M0
.2

1

nx
2 F2h ln~cosnx!1

h3

3
tan2nx1••• G ~64!

and, for high fields (h@1),

2
M

M0
.122e22h

sin2nx
nx
2 1•••. ~65!

When the spacing in anX array is large (nx!1), Eq.~62! is
reduced to

2
M

M0
.tanhh1

nx
2

6

tanhh

cosh2h
1•••. ~66!

Hysteretic ac loss per unit volume for one field cycle
P(Hm) is

FIG. 5. Profiles of~a! magnetic fieldH(x) and~b! current den-
sity J(x) in anX array whereL/w53 ~solid lines! and in an iso-
lated strip line where L/w→` ~dashed lines! at
Ha /H050.5,1,2,3, and 4.

13 220 54Y. MAWATARI



P~Hm!52
2m0L

2

pwd E
0

Hm
dHa~Hm22Ha!

3 lnF 12
sin2~pw/L !

cosh2~Ha /H0!
G . ~67!

IV. CONCLUSIONS

The electromagnetic properties in the Meissner state and
the critical state were determined analytically for two types
of superconducting strip-array systems, aZ stack and anX

array, in perpendicular magnetic fields. The magnetic field
H and the current densityJ for both systems can be derived
by using simple transformations ofH andJ for an isolated
strip line. For aZ stack in which the distance between the
strips is much smaller than the width, electromagnetic prop-
erties in the critical state are similar to those for slab super-
conductors.
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