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We calculate the binding energies, wave functions, and diamagnetic coefBcients of excitons in
perovskite lead iodide based compounds in the form of self-organized semiconductor/insulator su-
perlattices with allowance for the image potential and the superlattice structure of these materials.
We demonstrate a good agreement between our theory and the experiment; the 6tting of our theory
to the experiments makes it possible to evaluate the reduced mass of excitons in these compounds
of the order of 0.2mo.

I. INTRODUCTION

Recently there has been considerable progress in the
grow th of a large class of self-organized perovskite
lead iodide based compounds with pronounced exci-
tonic properties. These compounds may be regarded
as semiconductor/insulator (S/I) multiple-quantum-well
(MQW) structures consisting of lead iodide semicon-
ductor layers sandwiched between alkylammonium (or
phenethylammonium) insulator layers, with energy gap
more than three times larger than that of the PbI layers.
These materials are of great interest because of possible
optoelectronic applications due to the pronounced exci-
tonic eBects.

The lead iodide compounds have a chemical formula
(RNHs)z(CHsNHs) iPb 13 +] where B stands for
either a hydrocarbon chain C H2 +q or a phenethyl
group C6H5C2H4. The former corresponds to the
alkylammonium family (C„Hz„+iNHs) zPb14, abbrevi-
ated as C -PbI4 (here m = 1), with n integer. The
latter corresponds to the phenethylammonium family
(CsHQCQH4NH3)2(CHsNHs) iPb Is +i, abbreviated
as PhE-Pb I3 +q, with m = 1, 2. The thickness of in-
sulator (organic) layers increases with increase of n in
the C -PbI4 family, and the semiconductor (lead iodide)
layer thickness in PhE-Pb2I7 is twice as large as in the
PbI4 family. Also the dielectric constant of the insula-
tor layers in the PhE family (about 2.34) is larger than
in the C -PbI4 one (about 2.1). The ultimate member
CHsNHsPbls (m = oo), or Ci-Pbls, according to our
abbreviation, is also known. This structure lacks insula-
tor layers and can be considered as a three-dimensional
(3D) version. As a result, lead iodide self-organized com-
pounds represent an interesting example of S/I superlat-
tices (SL s) with diferent ratios of barrier to well thick-
nesses and dielectric constants.

Excitons in PbI-based S/I MQW compounds are sig-
nificantly enhanced as compared to the 3D version. The

exciton binding energy varies from 170 to 330 meV in
C -PbI4 and PhE-PbI families, while it is only 45 meV
in Cg-PbIg. 6

The enhancement of an exciton in quasi-2D systems
is a well-known phenomenon —for example, the spatial
electron and hole confinement in a very thin and deep
QW quadruples the exciton binding energy and halves
the exciton Bohr radius. This is not the case of the PbI-
based compounds where the exciton radius is comparable
with the layer width; 2D potential confinement is still ef-
fective, but not enough to explain the enhancement. It
was shown in Refs. 2, 3, and 5 that the exciton en-
hancement in PbI-based compounds may be attributed
to alternating semiconductor and insulator layers with
considerably different dielectric constants (about 6 and
2, respectively), causing an image-potential-magnified
electron-hole (e-h) attraction.

This efFect of the so-called dielectric confinement of
excitons was predicted by Rytova and Keldysh, who
investigated excitons in a thin semiconductor film in di-
electric surroundings. The variational approach to the
same problem in a single quantum well was developed by
Hanamura et al. io (see also Ref. 11 for quantum dots). In
III-V semiconductor/semiconductor nanostructures such
as GaAs/Al Gai As, the difFerence between dielectric
constants of adjoining layers is not large (usually of the
order of 10 %%uo), and the efFect of the clielectric confinement
of excitons is small. However, in II-VI nanostructures
and especially in III-V/II-VI ones (see, e.g. , Ref. 13)
the difference between the dielectric constants of adjacent
layers and thus the dielectric confinement of excitons may
be comparatively large. And in semiconductor/insulator
nanostructures, such as lead iodide based self-organized
SL's, the eÃect of dielectric confinement should be excep-
tionally significant.

The variational approach of Ref. 10 was used in Refs. 2
and 5 for theoretical investigation of excitons in PbI-
based compounds. However, within this approach the in-
teraction of QW-localized electrons and holes with their
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own images (self-image terms) is not taken into account
correctly. Moreover, the calculations in Refs. 2 and 5
were made for a single QW, without taking the SL ef-
fects into account.

The purpose of the present paper is to calculate the
exciton wave functions, binding energies, radii, and dia-
magnetic factors in semiconductor/insulator superlat-
tices with special emphasize on the PbI-based perovskite
compounds. We use a standard approach for the theory
of heterostructures treating different lead iodide based
compounds as MQW structures, postulating the param-
eters of "parent" well and barrier materials for each lead
iodide family, and changing only the layers' thickness.
Our model demonstrates a good agreement with the ex-
perimental data on excitons in lead iodide based com-
pounds, if we take into account the image potentials (in-
cluding the self-image corrections) and the superlattice
(SL) effects.

The SL effects lead to the dependence of exciton pa-
rameters on the insulator layer width in the C„-PbI4
family. In the present paper, we consider the SL ef-
fects on the image potentials only (following the approach
of Guseinov ), but we neglect the overlap of the elec-
tron and hole wave functions between different QW's.
The barrier heights and widths of insulator layers in all
PbI-based compounds are large enough to make the tun-
neling between neighboring layers negligibly small. In
other words, we treat the PbI-based compounds as MQW
structures, neglecting the width of the SL minibands. As
to the self-image terms, we include them into the one-
electron and the one-hole QW-localizing potential, con-
trary to the approach of Ref. 15. The self-image interac-
tion does not depend on the in-plane e-h distance, and
modifies basically the one-electron and one-hole states.

Our model is based on several assumptions.
(1) We assume the excitonic state to be of a Wannier-

Mott type. This assumption will be self-consistently ver-
ified: the calculated mean e-h distance in an exciton a
is large compared to the interatomic distance ao (about
12 and 3 A, respectively). However, we have to ascertain
that the Wannier-Mott condition a,„&& ao is on the verge
of its validity. An alternative approach of Frenkel-type
excitons to the PbI-based compound. s was developed in
Ref. 16. We believe, however, that the Wannier-Mott ap-
proach is more reasonable, because of considerable over-
lap of the electron orbitals in the perovskite layers, which
hinders the electron and hole localization on one ion.

(2) We use the effective mass approximation (EMA)
when solve the Schrodinger equation for the in-plane mo-
tion. This assumption is very crude, because the exciton
radius is of the order of the in-plane period of the per-
ovskite structure (about 6—7 A). As a result, the role of
nonparabolicity could be significant.

(3) We use macroscopic dispersionless susceptibilities
for semiconductor and insulator layers, and get unphysi-
cal divergences in the one-particle potentials at the S/I
interfaces. To avoid these divergences, we introduce tran-
sitional layers instead of abrupt interfaces. The wid. th of
this transitional layer L is an additional adjustable pa-
rameter of our model. Fortunately, the exciton binding
energy does not depend significantly on this parameter.

II. EXCITONS IN
SEMICONDUCTOR/INSULATOR

SUPERLATTICES: ROLE OF THE IMAGE
POTENTIALS

Following the approach of Ref. 5, we treat the PbI-
based self-organized structures as S/I SL's composed of
alternating barriers and wells (insulator and semiconduc-
tor layers, respectively), with thicknesses (dielectric con-
stants) lg (rb) and I (e' ).

Within the Wannier-Mott and effective mass approx-
imations the excitonic Schrodinger equation takes the
form

(
h2 h2

&r + &(». «» lv. —n»l)) @(»., »»)
2m 2mI,

= EC(~., vh, ). (1)

Here r; = (p;, z, ), i = e, h, p is a 2D in-plane vector,
4(v'„ri, ) is the e-6 (excitonic) wave function, and the
e-h potential energy can be written as (see the Appendix)

&(z z~
I p —p~l)

U (z ) + U (zh) + V(z zh Ip —pal) (2)

Here U""(z) are the one-electron and one-hole potentials,
which take into account the S/I conduction and valence
band offsets, and the self-image interaction

&""(z)= ~""+2P(z)

e
(p(z) = liin y(z, z, p) ——

p—+0 PP
(4)

where f ', e are F ', e and t&', ct, inside wells and
barriers, respectively, and

&(z. « Ip —p~l) = —e v (z. z~ lp. —»I)
is the image-potential-mediated e-h, interaction. Here the

(4) We use in our model the envelope-function
approximationi (EFA) with the simplest boundary con-
ditions (BC's) of a continuous wave function and proba-
bility current. Strictly speaking, such BC's become rea-
sonable only if the Bloch (enveloped) functions of ad-
joining layers are similar. This is not the case of the
S/I interfaces. However, it is well understood (see, e.g. ,
Ref. 18) that if the carriers are mainly confined within
well layers the EFA is not sensitive to the BC's.

The structure of the paper is as follows. In Sec. II the
model of quasi-2D excitons is presented and the impact
of the image potentials on the e-6 interaction and QW
localizing potential is analyzed. In Sec. III the results
of our calculations of the excitonic parameters for lead
iodide compounds are given, and the comparison with the
experimental data of Refs. 2, 3, 5, 6, and 19 is discussed.
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function symmetrical over the electron and hole coordi-
nates, &p(z„zb,

~ p, —pb~), is the electrostatic potential at
point v, = (p„z,) of a hole at point v'b ——(pb, zb). The
exact expression for it as well as the proof of Eqs. (3)—(5)
are in the Appendix [we regularize the electrostatic en-
ergy of the point charge, evaluating the limit in Eq. (4)].

In order to simplify the calculations, we assume that
the excitonic wave function with the center of mass mo-
mentum K = 0 takes the form

4'(r„rb) = @ (z, )@"(zb)B (p) exp(imp),

i.e. , the lowest order of perturbation theory over the ratio
of the e-h interaction to the MQW localizing potential.
Here the functions @""(z)are the solutions of the one-
electron and one-hole Schrodinger equations for motion
perpendicular to the SL planes and m and B (p) are
the exciton angular momentum and the in-plane wave
function. Such an assumption can be justified by the
fact that the band o8'sets in PbI-based compounds are
much larger than the exciton binding energies (about 2
and 0.3 eV, respectively; see Sec. III).

Thus our calculation involves two successive steps:
(A) we find the MQW one-electron and one-hole wave
functions of perpendicular motion, and (B) we solve
the Schrodinger equation for the in-plane excitonic wave
function.

A. Self-image potential and one-particle
QW'-confined states in 8/I superlattices

Let us consider the one-electron and one-hole
Schrodinger equations for motion perpendicular to the
SL planes:

e2 e —cb 1 r, z&0,
X

+ gb z Gb ) z ) 0. (10)

A charge in a semiconductor (insulator) layer is repulsed
from (attracted towards) the interface. It is a well-known
property of the image potentials. However, we cannot
leave the divergent terms in Eq. (8), which are unphys-
ical and appear in our model as a result of the unrealis-
tic assumption of local dielectric susceptibility changing
abruptly at the interfaces. (The approximation of con-
stant dielectric susceptibility is valid only if the correc-
tions to the electron and hole energies are small compared
to Es.) In order to avoid such Coulomb divergences we
introduce transitional layers instead of abrupt interfaces,
where the one-particle potential changes linearly between
the boundary values determined by Eq. (8) (see Fig. 1,
top). The transitional layer width 4 is an additional
adjustable parameter of our model, of the order of the
interatomic distance.

Large band offsets (and, as a consequence, barrier
heights) allow us to neglect the tunneling between neigh-
boring QW layers, and to use in Eq. (7) only the lowest-
miniband wave functions of the form

~o b(z) = ~ uo (z).

Here uo'"(z) and Eo' (z) are the ground state solutions
of Eq. (7). Typical ground state solutions of Eq. (7) are
shown in Fig. 1.

The self-image potential in Eq. (7) causes first of all an
increase of the one-particle energies and thus a blueshift
of the e-6 band gap transitions. The physical reason for
this is the repulsion of QW localized electrons and holes
from the interfaces. However, the attraction of electrons
and holes in the barrier to the interface manifests itself

(7)

where the one-electron and one-hoLe potentials U '" de-
pend on the coordinate perpendicular to the layers only
and take the forms (see the Appendix)

barrier
l

U (z)

well barrier

eUeh( ) gc ii + g dq 2vre
p(z, z, q)—

27/ F~ g
(8)

2'7t e 1
y(z, z, q) = 2npsinh[qlb]cosh[q(2z + I )]

sbq slllh qo

+o. 8inh[g[lq+i )]+P sinh[q(lq —I )[).
(9)

I I

I

I I

I

U"(z)

lu, o'

h
Q

Here —l & z & 0 and qo is a solution of the secular
Equation (A6). To obtain these formulas for 0 & z & lb,
one should make in Eqs. (8) and (9) the substitutions
8'~ ++ 8'b, lb ++ l~) and z M —z.

Near the interfaces the self-image terms Eqs. (8) and
(9) are the Coulomb-like interactions with the nearest
image charge. For example, near the interface z = 0

Lb/2

FIG. 1. One-electron (solid line) and one-hole (dashed line)
potentials in a semiconductor/insulator superlattice (on the
top) and corresponding ground state wave functions (on the
bottom). The positions of the one-electron and one-hole
ground state energies are shown by solid and dashed arrows.
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in the appearance of additional potential minima Dear
the interface, inside the barrier layers (see Fig. 1, top)
and in wave function tails in the interface region (clearly
seen in the bottom part of Fig. 1). As a result, there is a
redshift of e-6 band gap energies. Unfortunately, the cal-
culated relative magnitude of these blue- and redshifts is
very sensitive to the parameters of our model: the band
offsets and the width of the transition layer. As a result,
we cannot reliably predict the band gap energies within
our model. [Experimentally, the exciton formation en-
ergy is almost constant, while the band gap opens up as
n increases (see Fig. 8 in Ref. 3).] Our calculation of
electron and hole eigenstates is thus no more than an in-
termediate step for evaluation of the exciton parameters.
Fortunately, the latter are not very sensitive to the de-
tails of the one-electron and. one-hole perpendicular wave
functions.

However, on the grounds of the comparison to the ex-
periment, we can at least exclude the case of small con-
duction or valence band offsets, when interface rather
than QW localized states appear within our model. Such
interface localization in PbI-based compounds may be
excluded, because one of its consequences would be a
splitting of the excitonic states, which is not observed
experimentally. That is why we assume equal and large
conduction and valence band offsets in our calculations.

0.0
10 20 30 50
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-0.4—
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I
I
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FIG. 2. Averaged image-potential-mediated electron-hole
interaction in a S/I SL (solid line). Averaged electron-hole
interaction without image corrections is also shown (dashed
line). Corresponding positions of the exciton binding energies
are shown by solid and dashed arrows.

B. Image-potential-mediated electron-hole
interaction in S/ I super lat t ice s

The excitonic Schrodinger equation for the in-plane
motion takes the form

h~ /d2 1 d rn
~
R~+ V(p)R = ER, (12)

2p (dp pdp p )
where m is the exciton angular momentum, p =

m~~ +
m~~& is the reduced mass of the in-plane motion, and

V(p) = fdz. ja ~

zz( z)~'z~zz"(zz)~'V(z. , z„,p) (ia)

is the averaged image-potential-mediated e-6 interaction.
Here

e
V(z„z)„p) = —— (p(z„z)„q)Jo(qp)q dq,

0
(14)

where Jo is the Bessel function, and the function y is
defined in the Appendix [see Eqs. (A4) —(A7)]. At large
distances p (small q) V(z„z)„,p) does not depend on the
transverse coordinates z h and assumes a Coulomb-like
dependence with some effective dielectric constant aver-
aged over the SL,

At small p the potential V(z„z)„p) diverges logarithmi-
cally, like a 2D Coulomb potential.

The typical dependence of the averaged potential on p
and the position of the exciton ground state are shown in
Fig. 2 by a solid line and arrow. The averaged potential
appears to be more localizing in comparison with that
calculated without the image corrections (see dashed line
and arrow in Fig. 2) due to the additional dipole-dipole
interaction of an exciton with its images. This fact is the
physical reason for the dielectric confinement of excitons
in S/I SL's.

III. RESULTS AND DISCUSSION

Let us discuss first of all how we have chosen our
model's adjustable parameters, i.e., conduction and va-
lence band offsets Eb', dielectric constants E;b, perpen-
dicular masses m~, h, reduced in-plane exciton mass p,
thicknesses of barrier and well layers lb, and transition
layer width L. Some of these parameters may be de-
duced &om the known experimental data (see Table I);
others are obtained by a fitting procedure.

(1) As was argued above, we have supposed equal con-
duction and valence band offsets, and taken

Eb E
gC)V 0 fC)V g g

V(z„z„,p) = V(p) =—

l + eblb

Cbl + r Lb

for the C -PbI4 family. Here E = 5.5 eV and E
&.68 eV are the band gaps of CqqH25NH2 and Cq-PbI3
materials, which are believed to have the same structure
as insulator (barrier) and semiconductor (well) materials
in the C -PbI4 family. (For n = 12 at least; we have
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also assumed the same band offsets for all other n. ) A
difFerent procedure (see below) was used to determine
Fb

' for the PhE-Pb I3 +1 family, because we have not
found in the literature the band gap of the corresponding
organic material C6H5C284NH2.

(2) The x-ray data on the geometric positions of iodine
atoms allow us to deduce "nominal" thicknesses of bar-
rier and well layers l& in all PbI compounds (see Table
I). However, real thicknesses lb may differ from these
values due to some eBective ionic radius of the interface-
located iodine atoms BI,

+ 2BI, lb ——lb —2BI. (17)

We assumed BI to be the same for all PbI compounds
and obtained its value (about O.S A) from fitting our
theory to the experimental data on C10-PbI4.

(3) We have assumed s~ = 2.1 for the C -PbI4 and
2.34 for the PhE-Pb I3 +1 family, i.e. , the values in the
corresponding parent organic materials (see Table I). In
order to deduce c, we have used the experimental data

(see Table I) on the high-frequency dielectric constant
of lead iodide compounds,

&~a ~u + &b~b

+ I,b
(Is)

and Eqs. (17). Thus we have guaranteed the correct ex-
perimental value of the high-frequency dielectric constant
G'oo .

(4) We have obtained the values of perpendicular
masses and the transition layer width (assumed to be
the same for all compounds) by means of fitting the cal-
culated band gap energy of C10-PbI4 to the experimental
data (Table I). As was mentioned above, this procedure
is very sensitive to these adjustable parameters. For-
tunately, the exciton parameters are not too sensitive
to these parameters [the electron and hole perpendicular
wave functions are needed only for averaging the e-6 in-
teraction, Eq. (13)j. We have postulated the same values
of perpendicular masses and transition layer width for
the PhE-Pb I3~+1 family and estimated its E = 4.5 eV

TABLE I. Experimental and calculated parameters of lead iodide compounds: high-frequency
dielectric constant c, band gap Eg, geometric semiconductor and insulator layer thicknesses l
and lb, exciton binding energies E,„, diamagnetic factors co, and mean radii a „.
Compound

Cn H2n+1-
NH2

2.1
2.0?'

(n =10)

(eV)
(T=1.6 K)

5.5b
(n=12)

)0
b

(A) (A.)

&.x
(meV)

expt.

Cp Cp

theor.theor. expt.
(meV) (10 —2) (10 ev2 )

ae„

theor.

COH5-
C2H4NH2
C1-PbI3

C4-PbI4

C6-PbI4

2.34

6.5g

4.5

1.678

2.88

2.88

6.36

6.36

8.53
8.81'

10.03'

63

299

45
37g

290 + 20 287

27

2.16—
3.53

14.2

2.25

2.21'

33.0
28'

13.2

13.1

Cs-PbI4
C9-PbI4
C1p-PbI4

C12-PbI4
PhE-PbI4

PhE-Pb2 I7

3.24

3.39
4.41

2.88
2.88
2.88
2.87

2.58
2.57"
2.34
2.32"

6.36
6.36
6.36

6.36
6.36
6.41

12.70
13.05

12.02' 310
13.53' 320 + 30' 315
14.89' 320 + 30 3213

18.15 310 + 30 330
9.82 220 + 30 250
9.85
9.71 170 + 30 190

71

0.7 + 0.4

2.19
2.19
2.18

2.17'
2.60

3.50

13.0
13.0
13.0

13.0
14.2

16.5

CBC Handbook of Chemistry and Physics, 63rd ed. , edited by R. C. West (Chemical Rubber
Company, Boca Raton, FL, 1983).
Reference 3.

'T. Ishihara, X. Hong, J. Ding, and A. V. Nurmikko, Surf. Sci. 26'?, 323 (1992).
Estimated value (see the text).

'Reference 6.
Theory, this vrork.
M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).

"Reference 5.
'3. Takahashi (unpublished).
~Fitted number, this vrork.

Reference 16.
'Reference 19.

M. Hirasama, T. Ishihara, T. Goto, K, Uchida, and N. Miura, Solid State Commun. 86, 479
(1993),
"Reference 4.
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from the inverse fitting procedure.
(5) The most significant parameter is the reduced in-

plane exciton mass p. Examples of calculated E and
a „dependences in Cqo-PbI4 on p, are shown in Fig. 3.
We assumed p to be the same for all PbI compounds
and obtained its value (0.17mp) &om fitting our theory
to the experimental data on the exciton binding energy
E,„and the diamagnetic factor cp ——e a,„/8p, . E,„was
fitted to the experimental value for Cio-PbI4, and co to
that for C6-PbI4, due to a large range of the experimental
values for Cip-PbI4 (see Table I). The second paraxneter
obtained within this fitting procedure is the efFective ionic
radius Rl (see above).

It is noteworthy that our fitted reduced mass is twice
as large as that obtained previously. ' This larger value
looks more trustworthy for such wide band gap materials
as lead iodide compounds. The basic reason for obtain-
ing a larger value of p is our taking into account the self-
image terms, which was not done previously. In Refs. 3
and 5 an infinite-barrier model was used for the perpen-

800

0
O 200-
X

LJ

0

dicular wave functions, @""oc sin(2vrz/l ). As a result
of these more QW-confined wave functions (as compared
to our wave functions with tails into the barrier layers,
Fig. 1) the averaged e-lx interaction V(p) becomes more
con6ned too, and one needs a smaller p to Gt the same
experimental value of E,„.

As a result, we have got for C -PbI4 p = 0.17m,o, By ——

0.8A. , my~ = 0.2mp, mph' = 0.5mp, m~ i, = 2.5mp,
2.1, e = 6.05, 4 = 2 A, E = 1.68eV, and

E = 5.5 eV. For PhE-Pb I3 +g eg ——2.34, e = 6.48,
and E = 4.5 eV; the other parameters are the same.

Let us discuss now the results of our calculations ofE, co, and a „,which are shown in Table I and in Figs. 3
and 4. One can see that, although our fitting procedure
was rather crude and the number of unknown material
parameters was large, the theoretical results show reason-
able agreement with the experimental data for the whole
lead iodide family.

The fact that our theory gives diferent excitonic pa-
rameters for different members of the C -PbI4 family
clearly demonstrates the role of the SL eKects. With an
increase of n the ratio li, /l increases. Experimentally
there are some hints that E,„ increases too (see the ex-
perimental points in Fig. 4 and Table I). The calculated
dependence of E,„on l&/l (shown in Fig. 4 by a solid
line) clearly demonstrates this tendency. The calculated
dependence saturates very soon at a value which corre-
sponds to the exciton binding energy in a single quantum
well embedded into the corresponding organic material.

The comparison of calculated binding energies for C6-
PbI4 and PhE-PbI4 (300 and 250 meV, respectively),
which have the same barrier and well thicknesses but
different dielectric constant ratios (e /ei, = 2.88 for Cs-
PbI4 and e /ei, = 2.77 for PhE-PbI4), clearly demon-
strates that, due to the dielectric confinement, the exci-
ton binding energy increases with increase of the diÃer-
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FIG. 3. Exciton binding energy (a) and averaged radius
(b) as functions of reduced exciton mass in Cxo-PbI4 with
allowance for image and QW localizing potentials (solid lines),
only QW potential (short dashes), and in a hoxnogeneous 3D
semiconductor, made of the well xnaterial (long dashes).

220
0.0 1.0 2.0 3.0

d y/cE
4.0 5.0

I'IG. 4. Exciton binding energy as a function of layer thick-
ness ratio. The experimental data on corresponding C -PbI4
compounds are show'n by asterisk and bars.
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ence between the semiconductor and insulator dielectric
const ant s. In the case of the double well layer in PhE-
Pb2I~ the average distances between carriers and their
images are larger and image potentials are weaker than
in PhE-PbI4, and the exciton appears to be less bound.

The net magnitude of the dielectric confinement ef-
fect can be seen also f om Fig. 3, where the exciton pa-
rameters as functions of the reduced mass are shown as
calculated with and without image charge effects (solid
and short dashed lines, respectively). For comparison,
we show also the same dependences calculated for a ho-
mogeneous 3D semiconductor without barrier layers at
all (long dashes). For example, we get (for p = 0.17mo)
E, = 320 meV for both dielectric and quantum well con-
finement, 152 me V for quantum well

confinement

only
(i.e. , calculated with ss = e' and the other parameters
the same), and 63 meV without any confinement at all.
The last number is of the order of the experimental value
of E,„ in Ci-PbIs (45 meV, see Table I). We see that in
this case the quasi-2D QW confinement enhances the ex-
citon binding energy by 2.4 times only (i.e. , less than 4,
the limiting value for 2D confinement), and as much as
5 times when the image charges are taken into account.

To conclude, we have developed a theoretical model
for calculation of the exciton binding energies in semi-
conductor/insulator superlattices with special empha-
sis on the lead iodide based self-organized compounds.
This approach takes into account the image potentials
and demonstrates good agreement with the experimen-
tal data. Thus we believe that the dielectric con6nement
model explains the exciton enhancement in lead iodide
compounds, and our theory offers a good starting point
for further discussion of their excitonic properties.

APPENDIX: ELECTROSTATIC ENERGY OF AN
EXCITON IN A S/I SUPERLATTICE

Let us calculate erst of all, following Guseinov, the
electrostatic potential ]»)(z, zo, ~p, —p), ~) of a charge e,
located at point v'o ——(po, zo) in a semiconductor layer
of a S/I SL. It is the solution of Poisson's equation

4' e
b(r —v o) (Al)

with the boundary conditions

0pb Op~
Pb = Pn ) &b

gz Bz (A2)

Here s = s inside the well (e.g. , for —/ & zo & 0) and
ss (0 & zo ( /s). The solution takes the form

]» (z, zo, I»
—vol)

d
exp(q (»)) —p ))]»)(z, z, q), (A3)

where q = ~q~, q is the in-plane wave vector, and the
Fourier-transformed potential is
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]»,(z, zo, q) = e ~' "~ + C+e" + t e ", (A4)
2&6

where (for —/ & z, zo & 0)

2~e exp[q(zo + / )](sinh[q/b] + exp[ —qzo](D —Ar/)

s„q 2gsinh [qo]

2vre exp[ —q(zo + / )]],'sinh[q/s] + exp[qzo] (D —Ar/)

8'~ g 2)7sinh[qo]
(A5)

P = exp[qo] and qo is a positive solution of the SL secular equation

)7cosh[qo] = n cosh[q(/s+ / )] —p cosh[q(/i —/ )],
D = a2exp[q(/s+/ )] —P exp[ —q(/g —/ )],
sq = s),/s- o = (I+ r/)/2 p = (I —&)/2 (A6)

i»)(z, zo, q) = 2'7T'8 2&C
sinh(q~z —zo~) + . 2nPsinh[q/&]cosh[q(z + zo + / )]8'~ g ssq sinh qo

~(a sich]q]is+ I )]+)q sich]q]is —i )])cosh]q]z —zo)]). (A7)

To obtain the corresponding formula for 0 ( z, zo & /i„one should make in Eq. (A7) the substitutions s
/s ++ /, z ~ —z, and zo E+ —zo. When z and zo belong to different layers the potential ]»)(z, zo, q) does not contain a
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singular part.
When the charge and observation point are in neighboring layers the potential is

27t C
p(z zp q) = crsinh[q(l& + I )]cosh[q(z —zp)] + Psinh[q(l& —l )]cosh[q(z + zp)]

sbq sinh qp

+)q(qos sinh]qis]sinh]qt ]
—sinh]qo])sinh]q(z + zo)] + os(2)q sinh]qis]sinh]q/ ]

—sinh]qol)sinh(qlz sol) ).
(AS)

Equations (A4) —(A8) are simplified Guseinov formulas (see Ref. 14).
Using Eqs. (A3)—(A8), we can write the electrostatic potential of an exciton (v', and v h, being the electron and the

hole coordinates) as

~(r ~- ») = v (z « lp —p~l) —v (z, z. , lp —p I). (Ao)

Let us calculate now the full electrostatic energy of an exciton in a S/I SL

W(z„zi„ lp, —phl) = — E Dd r,=1 3

8m
(Alo)

where Vsi, is the SL volume. The integral in Eq. (A10) can be split into a sum of integrals over well and barrier layers
V and V(, with corresponding dielectric constants s and ss (n = 0, +1,+2, . . .; n = 0 corresponds to the well to
which the exciton is conFined). Using subsequently Green s formula, the electrostatic boundary conditions Eq. (A2),
the Poisson equation Eq. (Al), and Eq. (A9), we get

Vg
) ~ d r+ss d r [V'C V'4]

8x Vm, n

e

2
—[4(r i„r., ri, ) —4(v. , v. , xi, )]

—[p(z ) + (p(zh) —(p(z, zh Ip. —pihl) —p(zh, z Ip. —pihl)] (All)

where

e
g(z) = lim p(z, z, p) ——

p —+0 PP

@de 2716
p(z, z, q)—

0 2K Gg

in Eqs. (All) and (A12).
Finally, we get the following expression for the regu-

larized electrostatic energy of the exciton:

(A12) ~(zeqzi q I pe phI)

It is well known that the electrostatic energy Eq. (A10)
contains divergent terms, which correspond to infinite
self.-energies of point charges. These terms do not depend
on the electron and hole positions and do not contribute
to their equations of motion. They can be extracted from
Eq. (A10), and such a renormalizing procedure is implicit

= —[P(z.) + P(z~) —2v (z. « I p. —pi I)]. (A»)

In order to obtain the excitonic Hamiltonian, we have to
add Eq. (A13) to the usual kinetic and MQW localizing
energies.

' Electronic address: tikhgpi. ru
Electronic address: terryue. ipc.hiroshima-u. ac.jp
S. S. Nagapetyan, Yu. I. Dolzhenko, E. R. Arakelova, V.
Koshkin, Yu. T. Struchkov, and V. E. Shklover, Zh. Neorg.
Khim. 3$, 2806 (1988) [Russ. J. Inorg. Chem. $3, 1614
(1988)].
T. Ishihara, J. Takahashi, and T. Goto, Solid State Com-
mun. 69, 933 (1989).
T. Ishihara, J. Takahashi, and T. Goto, Phys. Rev. B 42,
11099 (1990).

J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L.
Thorn, and Y. Wang, J. Am. Chem. Soc. 113,2328 (1991).
X. Hong, T. Ishihara, and A. V. Nurmikko, Phys. Rev. B
45, 6961 (1992).
T. Ishihara, J. Lumin. 608c61s 269 (1994).
M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Appl. Phys.
Lett. 65, 676 (1994).
N. S. Rytova, Vestn. Mosk. Univ. 3, 30 (1967).
L. V. Keldysh, Pis'ma Zh. Eksp. Teor. Piz. 29, 716 (1979)
IJETP Lett. 29, 658 (1979)].



14 378 MULJAROV, TIKHODEEV, GIPPIUS, AND ISHIHARA 51

E. Hanamura, N. Nagaosa, M. Kumagai, and T. Takaga-
hara, Mater. Sci. Eng. Bl, 255 (1988).
T. Takagahara, Phys. Rev. B 47, 4569 (1993).
D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and
D. Bimberg, Phys. Rev. B 42, 5906 (1990).
J. Cen and K. K. Bajaj, in Proceeding. s of the 22nd ICPS,
Vancouver, lggg, edited by M. L. W. Thewalt (World Sci-
entificc,

Singap ore, in press) .
R. R. Guseinov, Phys. Status Solidi B 125, 237 (1984).
I. Wendler and B. Hartwig, 3. Phys. Condens. Matter 3,

9907 (1991).
T. Kataoka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and
S. Miura, Phys. Rev. B 47, 2010 (1993).
G. Bastard, 8 ave Mechanics Applied to Semiconduc-
tor Heterostructures (Les Editions de Physique, Les Ulis,
France, 1988).
S. G. Tikhodeev, Solid State Commun. 78, 339 (1991).
C. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y.
Takahashi, K. Kumata, and R. Ito, Solid State Commun.
79, 249 (1991).


