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The oscillating behaviors of correlation functions in real space are determined for the one-dimensional

Hubbard model with various electron densities and arbitrary values of U by the exact-diagonalization
technique. Of them, the oscillation of density-density correlation function depends drastically on the
value of Uand doping: The oscillation occurs at 2k+ for small Uor large doping and at 4kF for large U
or small doping. The pairing susceptibility in the singlet channel shows 2kF oscillations while there are
no oscillations in the triplet channel. The hole spectral function is also calculated, and it is found that in

the large-U limit the dynamical property of a single hole depends strongly on the background with dop-

ing.

The Hubbard model is one of the simplest Hamiltoni-
ans for studying a strongly correlated electron system
and is considered as a possible candidate to describe
high-T, superconductivity. Although high-T, oxide ma-

terials are two-dimensional (2D) systems, it is interesting
to study the one-dimensional (1D) model since some
properties in the 1D case are believed to be shared by the
2D system. '

Interacting 1D electron systems generally behave as
Luttinger liquids in which the correlation functions have
power-law decays with the critical exponents which de-
pend on the interacting strength. For the 1D Hubbard
model, the exact solution was obtained some time ago by
Lieb and Wu and the thermodynamics was clarified by
many authors. ' Many important properties, such as
correlation functions and the corresponding critical ex-
ponents in some limits (e.g. , weak coupling and large U),
have also been studied recently by both analytical and nu-
merical approaches. ' However, these quantities as
well as the dynamical property at arbitrary U still need to
be investigated by a systematic method.

The purpose of this paper is to calculate various corre-
lation functions in real space and study the dynamical
properties of holes for the 10 Hubbard model with vari-
ous electron densities and arbitrary U by using the exact-
diagonalization technique. Because of the limitation of
finite sites, the critical exponents which govern the
asymptotics of the correlation function cannot be calcu-
lated directly with our method. But, the oscillating be-
havior of the correlation in real space corresponding to
the singularity in momentum space can be determined.
In addition, through the calculation of the spectral func-
tion, we find that the hole dynamical property depends
strongly on the dopant concentration: In the large-U

limit, when a hole moves in a high doping background,
the quasiparticle peak at the bottom of the spectrum al-

ways shows up, while when it moves in a half-filling back-
ground, the low-lying excitation peak is smeared out.

The 1D Hubbard model is given by
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where the hopping matrix element has been taken as uni-

ty for convenience. Here we use the Lanczos method"'
to obtain the energy and the wave function of the ground
state of a finite-site system. By examining the conver-
gence of the results, we confirm that the ground-state en-

ergy and wave function are accurately determined (about
12 and 6 decimals, respectively). In order to treat the
sign caused by the exchange of electrons properly, we
choose a periodic boundary condition for N =4m +2 and
an antiperiodic boundary condition for N=4m, with 1V

being the electron number and m an integer. For any
electron density n ( =N/N„N, is the site number) and
U, we have compared our results of the ground-state en-
ergy and the local moment Lo =(1/N, )g; ( S; ), where S;
is the spin operator at the ith site, with those of the
Bethe-ansatz exact solution at the thermodynamical lim-
it, and found that for 1V, =8 our results are already very
close to the Bethe-ansatz solution.

With the ground-state wave function obtained by the
Lanczos method, we can easily calculate various physical
quantities in real space. First we consider the distribu-
tion function defined in real space by
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which has been computed on different Hubbard chains
from N, =8 to 12 sites. It is found that for small U, C
shows a kF oscillation, which means the behavior of fer-
mions favors free electrons, while for large U, in addition
to the kz oscillations, C- has a weak modulation at 3kF.
These results correspond exactly to the singularities of
distribution functions at kz and 3kF in momentum space
in the large-U limit, which have been found by both
analytical ' and numerical approaches. By increasing
the value of U, we find that although weak 3kf oscilla-
tions can be enhanced, the kF oscillations of the distribu-
tion function cannot be removed, from which we can see
how the dynamics of an electron is affected by spin back-
ground. For example, one might expect that in the
large-U limit, electrons should behave like spinless fer-
mions, so their distribution in real space may have an os-
cillation at 2k„.As we have shown above, the rearrange-
ment of spin configurations in the hopping process plays
a very important role in smearing out the 2kF singularity,
leading to a singularity at k~ and a weak oscillation at
3kF instead.

Another interesting quantity is the spin-spin-
correlation function:

(3)

We have performed the calculation for S with various
electron densities and values of U and found that a 2k„
oscillation always shows up from weak-coupling region to
the large-U limit. At half-filling, this result is equivalent
to that of the 1D S=—,

' Heisenberg model since in this
case kF =sr/2. With the increase of the distance x, the
amplitude of S is decreased. This result indicates that
there is no long-range antiferromagnetic order in a 1D
model, which is different from that of the higher-
dimensional system. When the system is away from
half-filling, the oscillation of the spin-spin correlation is
incommensurate. The increase of U can only enhance the
amplitude of S, which results in increasing the spin-spin
correlation length. Doping also leads to a decrease of the
amplitude of S, but the 2k+ oscillation cannot be
smeared out by varying the electron density. In this
sense, the effect of doping on S is equivalent to the de-
crease of U. The 2k+ singularity of the spin-spin correla-
tion in momentum space has been also observed by other
approaches.

Now we present the results of the density-density
correlation and the pairing susceptibility. The density-
density correlation function in real space is defined by

g(n, n, + ) .
1

(4)

Figure 1 shows the results of density-density correla-
tion function with various values of U at quarter filling
for N, =12. We find a noteworthy result, namely that
the oscillating behavior of N depends drastically on the
value of U. It can be seen from this figure that for U=0,
X has an obvious oscillation at 2k~ (kF=a./6 in the
present case). However, when we turn on U, the oscilla-
tion is shifted gradually away from 2k~. For U ~ 5, 2k~
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FIG. 1. Real-space density-density correlation function S,
{see text) at quarter filling for a 12-site system. The inset shows
more clearly that the oscillating behavior of X,- changes with U.
Here the solid lines are drawn as guides to the eyes.
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Figures 2(a) and 2(b) show B ' for a 12-site system
with four holes and six holes at different values of U. It is
clear that for all values of U (from U=O to 30) the pair
susceptibility in singlet channel has 2kF oscillations,
which means that the oscillating behavior of B~ does nots

depend on U. This behavior is very similar to that of the
spin-spin correlation. The 2k~ oscillations in B have
also been obtained by the bosonization approach for the
whole region of U. ' However, a surprising result is
found, namely that there does not exist any oscillation in
B for all values of U and its magnitude is much smaller

oscillations are smeared out and oscillations show up at
4kF. The inset of Fig. 1 shows more clearly how the os-
cillating behavior of the density-density correlation
changes with varying values of U. We have done the
same calculation for different electron densities and
found that the smaller the doping, the larger U is needed
to create an oscillation at 4kF and eliminate that at 2k~.
Near half-filling, as U is increased, this correlation func-
tion is rapidly suppressed because the number of doubly
occupied sites is reduced. Our results support the idea
that in the large-U limit, the description of the charge dy-
namics of the system is possible in terms of noninteract-
ing spinless fermions, where kF has to be replaced by
2kF. Hence the oscillation at 2k+ has to be modified cor-
respondingly in this limit and the leading contribution to
the density-density correlation function is the oscillations
at 4k~.

Another important quantity is the pair susceptibility:

g S, T ( ( b S, T)fbS, T)'1

N i

where superscript S (T) stands for the singlet («ipl«)
channel and the operators b, ' are defined by
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FIG. 3. Hole density of states D(co) for 10-site systems with

various U and electron densities with (a) N/X, =10/10, (b)

N/N, =8/10, (c) N /N, =6/10, and (d) N/N, =4/10. D(co)
has been calculated with a hole lifetime of 0.1. From bottom to
top the curves are shifted by 0, 30, 60, 90, and 120 on the verti-
cal scale.

doping concentration. It is clear from Figs. 3(c) and 3(d)
that when a hole moves in the four-hole and six-hole
backgrounds (both cases are close to the quarter filling),
the quasiparticle peak at the bottom of the spectrum still
remains even at U =30, which means that the effect of U

is not a crucial issue at high doping. This result is
reasonable because the number of the doubly occupied
sites is reduced at high doping, which causes U to be less
important. The spectrum in Fig. 3(b) shows similar be-
havior except that at the large-U limit (say U=20 and
30) the low-lying peaks have almost equal weight with the
high-energy excitations.

The interesting results have been found at half-filling.
From Fig. 3(a) it can be seen that when U) 10 the low-

lying peak at kF almost disappears. This indicates that
the conventional quasiparticle picture does not work in
this case, which is very different from the 2D Hubbard
model where the quasiparticle peak at the bottom of the
spectrum always shows up regardless of how 1arge U is.
Here we attribute this disappearance of the quasiparticle
peak to the singularity of the spectrum at kF.

Another point we should note is that in Figs. 3(a)—3(d)
the spectrum at U=20 is almost the same as that at
U=30. This means that our results already reach the
large-U limit at U=20. Thus we can convince that the
spectrum at U=20 and 30 can represent the large-U be-
havior.

Summarizing, we have studied the oscillating behavior
of various correlation functions in real space for the 1D
Hubbard model by a numerical study of finite sites. Par-
ticularly, we have also calculated the hole spectral func-
tion and found that the hole dynamical properties depend
strongly on the doping background.
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