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The wave equation subject to Dirichlet boundary conditions has a bound state in an infinite tube of
constant cross section in any number of dimensions, provided that the tube is not exactly straight. We

prove this result, develop Green's-function methods to find the energy eigenvalue, and solve some simple
cases. We discuss the implications for quantum systems and electromagnetic waveguides.

I. INTRODUCTION

It is easy to see that the uncertainty principle can pro-
vide binding in quantum systems. Consider, for example,
an infinite cylindrical tube with a bulge in the middle. A
particle constrained to move in this tube can have lower
transverse momentum and therefore lower transverse en-

ergy within the bulge, where it is less severely confined.
A bound state results because the quantum particle
would have to squeeze into the cylindrical section of the
tube in order to propagate away to infinity. Such a
system —a straight tube with a slowly changing
radius —can be mapped into a one-dimensional problem
in which the changing radius appears as a changing po-
tential. A bulge corresponds to attraction, and in one di-
mension an attraction, no matter how weak, suffices to
produce binding.

The object of this paper is to demonstrate that bends
do as well as bulges. We will prove that an infinite tube (a
precise definition of which will be given in Sec. II 8) with
a constant normal cross section always has a bound state
if it bends. Apparently, a bend provides a region in
which the quantum particle can relax, lowering its
momentum in comparison with straight regions, though
this is not as obvious as it is for bulges.

We will give a simple variational proof of our result in
Sec. II. The proof is formulated for channels of constant
width in two dimensions but the extension to tubes in
three dimensions and to other situations is straightfor-
ward and is given Sec. II B. The proof does not require
the tube to be in any sense narrow, nor must its curvature
be small nor even continuous. The result applies to any
system characterized by the wave equation with Dirichlet
boundary conditions and therefore has application
beyond quantum mechanics.

In Sec. III we develop the machinery necessary to find
the bound-state energy under rather general conditions.
We apply this formalism to the case of a very-small-angle
bend in two dimensions. We also solve the special case of
a right-angle bend which requires other methods.

In Sec. IV we address several issues surrounding the
detection of these bound states. First, we discuss the ex-
istence of such bound states for radiation in waveguides.
We prove that bound states exist in a class of bent
waveguides. We cannot prove as general a result as in

the case of the Schrodinger equation. We suspect that
bound states exist under much more general conditions
but have not found a more general proof or example.
Next we discuss the observation of these bound states. In
practice all tubes have ends, and consequently our
"bound states" can decay by tunneling out the ends of
the tube. They are therefore resonances and can be excit-
ed by their coupling to the continuum. Alternatively, the
bound states can be observed indirectly by their effect on
scattering states in the tube. We show that the presence
of the bound state has a significant effect on the transmis-
sion and re6ection coefficients for waves propagating
down the tube. For electrons in a metal, the transmission
coefficient is related to the resistance measured across the
ends of the tube, so a careful measurement of the resis-
tance can detect the presence of the bound state.

Our interest in the problem was stimulated by Ref. 1 in
which a particular model of quark confinement is recast
as a problem of Schrodinger dynamics in a two-
dimensional right-angle channel. This subject has been
studied in a series of works by Exner, Seba and collabora-
tors and by others. They proved the existence of bound
states in two-dimensional channels of fixed width and
small and slowly varying curvature, for which an adiabat-
ic approximation applies. We have not been able to find

any reference to this phenomenon in the extensive litera-
ture on electromagnetic waveguides.

II. EXISTENCE OF A BOUND STATE

In this section we give a simple variational proof of the
existence of a bound state of the wave equation in the
two-dimensional case. Afterwards we describe the gen-
eralization to three dimensions and briefiy to other
differential operators.

A. Variational proof in two dimensions

Our proof applies to an infinite "channel" of constant
width in the plane. The channel is constructed as fol-
lows: Let C be a curve parametrized by its length. C is
straight on both ends, say for s (—s, and s )s

&
~ In the

middle, C curves in an arbitrary way. (For the sake of
simplicity we will assume C does not cross itself and has
no kinks —it has a unique tangent at each point—
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although both of these restrictions can be relaxed. } At
each point on C erect a unit normal on the same side of
C. The tip of the normal traces out another curve C'.
(The length of the normal is limited by the condition that
C' does not cross itself and has no kinks. ) The channel C

is the region between C and C' as shown in Fig. 1.
We will prove that the wave equation,

(V' +k )P(x)=0, (2.1)

in C, subject to the boundary condition f(x) =0 on C and
C', has a bound state with the sole exception of the case
when C (and C') is an infinite straight line. The proof
employs the variational principle. Break up the channel
into three regions: (I) s (—s„(II) —s, ~s ~sI', (III)
s )s, . Let points in C be labeled by x=x(s)+yn(s),
where x(s) is the curve C, n(s) is the unit normal to C at
x=x(s), and 0~y ~ 1, i.e., we choose the channel width
as our unit of length. Choose a candidate Schrodinger
wave function:

We parametrize the I[/] in terms of the coordinates y
and s. First note

dx(s)
GALS

is the unit tangent to C, and

dt dn=Kn, = —Kt
Gfs 8$

defines the curvature, «(s). Then

ldxl =dy +[1—«(s)y] ds

d x=ds dy[1 —«(s)y] .

(2.6)

(2.7)

(2.8)

(2.9)

Substituting the trial function /II(s, y) =sinny we obtain

I [&II]=n f ds f dy [1—«(s)y]
1

X[sin (ny}—cos (ny)]=0 . (2.10)

—A(~s) —s)) .
f(s,y) =e ' sin(ny) for lsl )sI (2.2)

Finally we note that 1(» is not stationary point of I [1(],
from (2.8),

with A, &0. The only constraint on f in region II is

g(+s„y) =study. The normal derivatives of 1( need not
match at lsl =s, . We must evaluate

~'%II+ ~'III= (1—«y) %0 .
Cj III

1 —Ky By
(2.11)

J,d'x
l vol'

E[@1= (2.3)
Thus, there must exist some other trial function, P, for
which

f d'xy'= ' + f d'xy'
C 2A, II

f d'xlvyl'= —+ +f d'x Ivy(l',

where I II refers to region II, where lsl ~ s, . Let

(2.4)

I[y]=f d'x(~'y' lV pl'), — (2.5)

(independent of A, ). From (2.3) and (2.4), a bound state
exists if I & —,'A, &0 and we can always choose k&2I, pro-
vided that I & 0.

There is a bound state if we can show that for some g,
E[g](m. since n is the energy of the lowest-energy
traveling wave that can escape to s =+ ao. It is elementa-

ry to calculate

I [0]&0, (2.12)

which is what we aimed to show.
This proof informs us that we can find useful (i.e.,

bound) estimates of the true ground state of the original
problem in the space of functions satisfying 1( =sin(ny) at
lsl =1. The true ground state is a superposition of IP„]
where

-A, „(siP„(x)=sin(nay)e ", iP„=n m~ —k (2.13)

B. Generalization to three dimensions

for lsl )s, , and n will appear as a channel (i.e., matrix) la-
bel on the Green's-function formulation of the problem.
We see that useful estimates of the bound-state energy
will be found within the truncated one-channel approxi-
mation to the problem.

S
1

I
S= +S

f

FIG. 1. A channel in two dimensions constructed from a
curve, C, and its unit normal, n.

In three dimensions the theorem holds in "tubes" with
constant normal cross sections. To be more precise, let S
be a region in three-dimensional space which is swept out
by the rigid motion of a two-dimensional disc D. The
disc D may have arbitrary shape and may have holes.
For the theorem to apply, X) must have the additional
property that the plane containing the disk D intersects
the boundary of 2) normally. This is shown graphically
in Fig. 2. It is equivalent to the statement that as the disk
D tumbles through space sweeping out 2), at each instant
its angular velocity co lies in the plane of the disc D.

For analytic purposes it is convenient to construct 2)
somewhat differently. First choose a curve C
parametrized by x(s). Next erect the Frenet frame con-
sisting of the unit tangent, the normal, and the binormal:
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The variational argument proceeds much like the two-
dimensional case. The tube is divided into straight sec-
tions, I and III with lsl & s „and an interior, curving sec-
tion, II, with lsl & s, . We take a trial function

y(g, g)e ' for lsl &s,

y(g, 7) ) for lsl =s, ,
(2.21)

where y is the lowest eigenfunction of the Dirichlet prob-
lem in the disc D,

FIG. 2. A tube in three dimensions swept by the disc D as it
tumbles through space.

a2 a2+ +k~ y(g, ri)=0 in D,
ay' aq'

g(g, ri)=0 on aD .
(2.22}

n dx'=
d.

t'=co Xt=«.(s)n,
n' =co Xn = —«.(s)t+ r(s)b,
b' = ra Xb = —r(s)n .

(2.14)

For convenience we choose units such that ko =1. Then
the existence of a bound state reduces to showing

(2.23)f d x(g —lVQ ) &0

for some trial function 1(, with g(+s „g,rl ) =y(g, g).
For the trial function g»(s, g, ri) =y(g, g), (2.23)

reduces to

N'=QXN, B'=QXB . (2.16)

Now we choose 8(s) so that 0 has no component in the
direction of t. A brief calculation yields

8(s) = —f ds'r(s') (2.17)

and

N'= —«(s) cos[8(s)]t,
B'=«(s )sin[8(s )]t,
t'=~(s)[ cos[8(s)]N —sin[8(s)]B] .

(2.18)

«(s) and r(s) are the curvature and torsion of x(s).
(' denotes dids. ) co=co(s) is the instantaneous angular
velocity of the Frenet frame. In general co has a com-
ponent along t. %e define new unit vectors, N and B, in
the plane normal to C, by a rotation:

N = cos[8(s) ]n+ sin[8(s) ]b,
(2.15)

B=—sin[8(s)]n+ cos[8(s)]b,

and

Since y satisfies (2.22),

f dodgy' IV~I'—)=0.
Also, it is easy to prove that

f dg d g a xi(y lV~l )
—=0

(2.25)

(2.26)

for any vector a which does not depend on g or g. (Note:
it is essential that «and 8 depend only on s. ) Together
(2.25) and (2.26) imply

f d'x(g lVq„l'}=0,— (2.27)

and we complete the proof as we did in two dimensions,
by arguing that 1(t& does not satisfy V g»+ftt=0 in II,
so there must exist some P(x) for which

j»d x(P —lVPl ) &0.
When «(s) is small and slowly varying, it is easy to see

how a bound state arises. From (2.20),

slf ds f dr) dg[1 —«( g cos8 —g sin8}](g —lV~l ) .
1

(2.24)

ldxl =dg +dg +[1—«(gcos8 —gsin8)] ds

d x =(1—«(s)[r) cos[8(s)]—/sin[8(s)] j )ds dgdg .
(2.20)

The tube 2) is now constructed very simply: the disc D is
mounted rigidly in the reference frame where N and 8
are at rest. 2) is swept out by D as it tumbles along with
the ( t, B,N ) frame moving along the curve.

Points in the tube X may be parametrized by

x(s, g, g) =x(s)+gB+gN, (2.19)

and an elementary calculation shows that the volume ele-
ment, d x, can be written

a„aq a„a@ 1 a lan(
ag" ay+a~" a& +h as h as

h = I +«. sin8 $—«cos8 r) .

With g=h 'i
P the wave equation becomes

a2
V2~+ —h

— ~+h
— '(t +

4 Bs Bs

2
2

——h
a hp+ —h

ah /=0.
2 ps 2 4 ds

(2.28)

(2.29)

(2.30)
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If ~ and 8/Bs are both of order 1/s, with s& )) 1 then to
order 1/s, the equation becomes

the right-angle channel [Fig. 3(c)] for which a different
variant of the method of Green's functions is more suited.

(}2rh
V~~/+ [—rr(s)] P+ +k /=0 .

4
(2.31)

A. Solution via a mixed Green's function

The solution is P=y(g, g}u (s), where u (s) is the bound-
state wave function in the attractive one-dimensional po-
tential

V(s) = —
—,
' [a.(s}] (2.32)

III. GENERAL SOLUTION
AND SPECIAL CASES

For further elaboration of the adiabatic approximation
see Ref. 2.

One further generalization is obvious at this point:
The theorem applies equally to the case in which there is
an arbitrary transverse potential energy, V= V(g, ri) in
the disc D.

f(x)= g a„y„(a)e
n=1

(3.1)

Here, s is the distance along the channel and a denotes
the coordinates in the disc D which sweeps out the chan-
nel. Iy„(a) j are eigenstates of

We consider a three-dimensional domain consisting of
two straight tubes (I and III) connected to a region (II) of
arbitrary shape except for the condition that the whole
system has a refiection symmetry about some plane [see
Fig. 3(a)]. We seek to find the lowest eigenvalue of the
wave equation. Its wave function will be the same in
both straight tubes and will decay exponentially,

In this section we set up a general formalism for
finding bound states of the wave equation in channels
with reflection symmetry. It is a straightforward applica-
tion of Green's-function methods. We work nominally in
three dimensions but the specialization to two dimensions
is trivial and the generalizations to higher dimensions, to
channels without reflection symmetry and to other
differential operators are straightforward. We then use
the general method to solve the example of a small-angle
bend in two dimensions [Fig. 3(b)]. Finally we consider

(Vj+k„)y„(a)=0

in D, with

y„(a)=0

on the boundary of D normalized so that

f ds y (a)y„(a)=5 „.
The [a.„J are fixed by the condition that

2 k2 I 2
&n n

(3.2)

(3.3)

(3.4)

DT

A bound state exists if a solution exists with all ~„real.
Region II consists of a reflection symmetric domain

whose boundary, D», has two holes where the straight
channels, I and III, are attached. We complete region II
by attaching two copies of the disc, D, and D»„ to fill the
two holes. We define a Green's function for region II
which is Dirichlet on D» and Neumann on D& and D&».

(o)

(V +k )G(x, y, k )=—5 (x—y) in II,
G(x, y, k )=0 on D»,
8 G(a, y, k )=0 on D, ,D„, ,

where

8J'(a)—:lim n Vf (x)
x~aED

(3.5)

(3.6)

and we take the outward normal. Then the wave func-
tion P in region II is given by

(b)
f»(x}=f ds G(a, x, k )8 P(a) .

DI+DIII
(3.7)

(c)

We obtain an eigenvalue condition on the Ir~„] by
demanding continuity of g and Vg at the discs D& and
D»& which join region II to the straight channels. Let x
approach p ED& in (3.7), substitute

FIG. 3. (a) Domains relating to the mixed Green's-function
formulation. (b) A small-angle bend constructed form concen-
tric circles of radius R and R + 1; (c) A right-angle bend.

BIrg(p) = —g a„r~„y„(p),
(3.8)
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and "Fourier" expand by means of the orthonormality of
the Iy ], to obtain

fo(q }-&2/( I —R )sin(

july)

with

(3.16)

a =gb, „(k )I~„a„, (3.9) q2 —j2~2 1/4R 2 (3.17)

where

b, „(k )= —f ds f ds&G(P, a, k )y (P)y„(a) .

The factor 1/4R in (3.17) is the only residue of the cir-
cular geometry. The channel eigenfunctions, y (a), are
also trigonometric,

(3.10)
(a)~&2sin(m ny) (3.18)

P~(x)P~(y)
G(x, y, k )= g

q
—k

(3.11)

Equation (3.9) has solutions if and only if the determinant
of the matrix [6 „(k )v„—5 „]vanishes when all a.„are
real, i.e., for k (k1.

The structure of 5 „can be made more apparent by
expanding 6 in terms of the eigenfunctions of the prob-
lem defined in (3.5):

so that the matrix b, „(k ) is easily computed in the limit
(5~0, R ~Do }

b. „(k)=— 5„.2 2 1

—k —1/4R
(3.19)

With b of this form, (3.9) has solutions in the vicinity
of k =n twit.h a„@0and all a =0 for mXn. Consid-
er, for example, the lowest eigenstate with eigenvalue
- m . Equation (3.9) yields the condition

where the (t obeys the homogeneous form of (3.5) with
the eigenvalue q . Then

—=h„(k )=—1 2 2 1

8R m. —k —1/4R
(3.20)

mal —
q

(3.12)

where g is the "channel coupling" of the pth eigenstate
to be mth channe1:

The limiting solution (as 5~0) is I/~, =h»(~ ) or
I~, =5/SR. This result can be checked using the adiabatic
approximation developed in Sec. II where it corresponds
to the eigenenergy of a particle in a one-dimensional
square well of depth 1/4R and width 5R.

g ~= f ds y (a)P~(a) . (3.13) C. Right-angle channel in two dimensions

In general, of course, the eigenvalues of (3.9) can only
be obtained by direct numerical analysis. This task is
made easier under certain special circumstances, some
examples of which are given in the following sections.

B. Small-angle bend in two dimensions

We consider the two-dimensional domain shown in
Fig. 3(b) in the limit 5~0, R~~. We choose polar
coordinates with r =R+y so that O~y 1 0 0~5.
The eigenfunctions I P~ ] have two integer labels, l and j:

P (x)~ &I,fI(q~, y) cos(~~&/5),

where

(3.14)

d 1 d I m + 2 q( )d„„d„5(R+y) qi f qiy (3.15)

and fI(0)=f&(qI ) =0 fixes the eigenvalue qt . The eigen-
functions f& are Bessel functions of order 17r/5. In the
limit 5~0 only 1=0 contributes. As R~~, fo(q~y)
(q =qI o ) can be expressed in terms of trigonometric
functions:

I~ a =gb, „'(k )a„. (3.21)

'(k ) can be written in terms of the Dirichlet Green's
function in a fashion similar to (3.10),

Next we consider the right-angle channel shown in Fig.
3(b). This problem is treated with different methods in
the last entry of Ref. 2. Strictly speaking this is not a
channel as we have defined it: it does not have constant
normal cross section. Nevertheless it was the original
geometry which motivated the study of this problem' and
its solution is quite instructive. The separability of the
wave equation in Cartesian coordinates results in the
"discs" D, and D»& being described by different coordi-
nates, y =1 for D& and x =1 for D&&&. This renders the
expansion of 6 „ in the channel space slowly convergent
and suggests that we seek a Green's function better suited
to this particular problem. The proper choice is the Dir-
ichlet Green's function as explained by Lenz et al. when
they considered variants of this problem in Ref. 1. It will
become clear, however, that this method is of limited use.

The analysis which led to (3.9) in the previous case
leads to the inverse equation in this case,

1 1
2

„'(k )=2 dy dy'sin(may)sin(nay'), Gz(x, y;x', y', k )
0 0 XBX x=x =1

1, 1
2

+2 dx' f dy sin(max'}sin(nay), G~(x,y;x', y', k )
0 0 axe' x =y'=1

(3.22)
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The eigenfunction expansion for GD cannot be used
directly because the derivatives 8 /BxBx' cannot be in-

terchanged with the sum over eigenfunctions. In the spe-
cial case at hand (region II is a square), the eigenfunction
expansion can be subtracted and rendered more conver-
gent:

GD(x,y;x'y', k )

number of channels is increased the eigenvalue falls
monotonically. For N =2, 3, and 4 we obtain k =9.255,
9.224, and 9.208, respectively. Thus the channel expan-
sion of the Dirichlet Green's function converges quite
rapidly for this case.

IV. DISCUSSION

and

sin(pox)sin(qmy)sin(pox'}sin(qmy')

m(p+q) —k
(3.23)

In this section we discuss several issues which are im-
portant if the bound state we have found is to be observed
experimentally. First, we discuss the existence of such a
bound state for light, and second we describe how to ob-
serve the bound state by a scattering experiment.

a2
, GD(x,y;x', y', k )

x =x'=1 A. Electromagnetism

00

x cothx =1+2x
X +P

which replaces the divergent (and useless) result,

(3.25)

p
X +P

which follows from manipulating GD(x,y;x', y', k )

naively. For more general geometries the usefulness of
the Dirichlet Green's function is limited by our ability to
perform this subtraction. If, for example, we subtract at
k =0, so that

1(„(x)g„(x')
GD(x, x', k )=GD(x, x', 0)+k

kz(k„—k )
(3.26)

then the normal derivatives may be taken under the sum:

8 8 .GD(a, a', k )=8 8 GD(a, a', 0)

= —2 g ~qcoth(a )sin(q~y)sin(qmy') . (3.24)
q

The "subtraction" is embodied in the dispersion repre-
sentation of x cothx

We consider an idealized waveguide with infinite con-
ductivity realized by the boundary conditions n 8=0 and
nXE=O. We have not been able to extend our general
variational proof to this case. However, there is a special
case of sufficient generality to be of interest. Let 2) be a
three-dimensional tube constructed by taking a two-
dimensional channel, C', in the x-y plane, and translating
it normally in the z direction (see Fig. 4). In this case the
proof of the theorem in two dimensions is directly gen-
eralizable because there exists a scalar field P(x,y) obey-
ing (V +k )/=0 in 2) and /=0 on the boundary of S
with A=gz, B=—zXVQ, E=ikgz, and V A
=z V/=0. We believe that in more complicated
geometries the existence and nature of bound states de-
pend more delicately on the shape and curvature than in
the scalar case.

Of course, physical conductors have only finite conduc-
tivity so that even if this bound state could be formed, it
would dissipate very rapidly. This brings us to the final
subject in our analysis: How can this bound state be ob-
served, either for light in a waveguide or for electrons in
some solid-state device?

B. Effec of the bound state on scattering

8 P„(a)B P„(a')+k2T
k(k —k)

In practice, tubes are of finite length. Consider one
long enough so that the bound state is only slightly per-
turbed by the finiteness of the tube. Since the bound-state
wave function decays exponentially down the long
straight sections, the result is an exponentially small am-
plitude for the bound state to "tunnel" down the straight
sections and out into the continuum. The bound state
has become a resonance centered close to the infinite tube
energy with a small but non-negligible width. Such a res-
onance can be excited by exposing a finite tube to an
external source (of radiation or particles}. The resonance
wi11 appear as a sharp increase in the absorption of power

(3.27)

But this representation is only useful if we, independent-

ly, have a representation for the "subtraction constant"
8 8 G(a, a', 0)—i.e., for the normal derivatives of the
Dirichlet Green's function for the Laplacian.

Returning to the right angle, we insert (3.24) and (3.22)
and evaluate (8 /Ox'')GD straightforwardly {it needs
no subtraction), to obtain

(3.28)

1 )n ™nm~2
„'(k )= —5 „a. cotha +2

vr(n +m ) k—
The eigenvalues of (3.21) can be found numerically. The
single-channel approximation yields the transcendental
equation

a., +a,cotha, 2n/(a, +sr )—=0. .

whose solution is x&=0.7276 so that k =9.340. As the
FIG. 4. A tube in three dimensions obtained by translating a

planar channel normally in the z direction.
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S (—$1 (4.1)

where k =q +k and k is the mth eigenvalue of the
transverse wave operator [see (3.1)—(3.4)]. Equation (4.1)
corresponds to an incident wave in the mth mode of
transverse oscillation and reflection in all modes. For n

large enough, q„becomes imaginary, in which case
q„=i lq„ l.—In region III the corresponding wave is

T „(k) +q,(xk)= g e ", s&s, .
V'q„

(4.2)

If the wave is incident from the "right" (s »s, ), we have

y (a)
(x, k)=

V'q.

Xn(a) iq s+ gR'„(k) e ", s&s,
Qq„

y„(a ) —;q,T'„(k) e ", s& —s,
Qq„

We define the S matrix by

(4.3)

(4.4)

Smn =
R

~mn

mn

R'„ (4.5)

and find that unitarity requires S S= 1.
The effects we are interested in occur at such low ener-

gy that only the lowest channel momentum, q, is real, so
that it su%ces to consider a "reduced" S matrix,

~11 R 11
(4.6)

which is separately unitary. Time reversal (in this basis)
requires S =Sor T» = T11. Together with unitarity this
allows us to parametrize S as follows:

(or, equivalently, a decrease in reflection) by the tube at a
frequency below the critical cutoff. In the case of radia-
tion, the power is then dissipated in resistive losses in the
(imperfect) conductor from which the tube is fabricated.
This effect has recently been observed by Carini, who
observed resonant absorption of microwave radiation by
a right-angle elbow at a frequency within a fraction of a
percent of the value predicted by the analysis of Sec. III.

Another way to detect the bound state is to observe its
effect on the propagation of radiation or electrons above
the continuum threshold. In general, bound states just
below the continuum have striking influence on scatter-
ing amplitudes. The bound state we are considering can
be detected by its influence on the phase of the waves
propagating down the tube in exactly the same fashion
that the deuteron can be detected in very low energy p-n
scattering. The formulation of the scattering problem
mimics multichannel scattering in one dimension. Con-
sider a tube with a wave incident from the "left"
(s « —si ):

+ y (a);q, X„(a)
g+(x, k)= e™+g R „(k) e

V'q. .= i
" V'q.

i5l—ge
S=- l' ( 5 I

+52 ) /2v'1 —g e

i (51+5~)/2v'1 —q e
i5~

Xfe

(4.7)

Consider, now, a tube with curvature characterized by
some length lo (e.g. , radius of curvature). At incident
momenta large compared with lo (but still below thresh-
old for the second channel momentum, q2) it can be
shown that 6& and 5z are small (analogous to the Born ex-

pansion). At small incident momenta the pole at k =i',
dominates the scattering amplitude. A trivial calculation
yields

5, =52—:5—=tan '(a, /k) (4.g)

for k-a, . So at the lowest energy (k~0) 5~qr/2. As k
increase 5(k) falls to zero over momentum scales of order
~, —1/lo. Likewise the transmission coefficient

l Tl,
which is unity at large momentum, drops to zero like
k /(k +irf) as k ~0. This striking effect, no phase shift
at high incident momentum followed by a sudden change
to 5=90' at momenta small compared to 1/lo would give
strong experimental evidence of the bound state.

In the case of electrons moving in a strip fabricated as
a semiconductor nanostructure, the transmission
coefficient,

l Tl, can be directly measured by making a
measurement of the conductance, cr, across ends of the
strip.

l
Tl and o. are related to each other under condi-

tions of ballistic transport (low impurity levels and low
temperatures) by Landauer's formula'

Trl Tl'= g 8(E E„)T„T—„,
mn

(4.9)
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where E is the Fermi energy in the leads connected to the
ends of the strip. Tr denotes the trace over open chan-
nels. There has been considerable interest of late in the
behavior of o. at low energy for straight strips and aper-
tures of various shapes. Sudden jumps of 2e /h in o. at
successive transverse channel thresholds, as suggested by
(4.9), have been observed. The bound state we are consid-
ering would modify the shape of the step in o at the
lowest threshold for a curved strip. Furthermore, at each
successive threshold there should appear a resonance—
actually a bound state in the mth channel just below the
mth threshold and decaying into lower channels —and a
characteristic variation of o near threshold. The scale of
these effects would be determined by the curvature of the
strip.
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